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Activation of the Unfolded Protein Response 
Pathway in Cytotoxic T Cells: A Comparison 
Between in vitro Stimulation, Infection, and the 
Tumor Microenvironment
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IRE1α is an extremely conserved intracellular receptor that regulates one branch of the unfolded protein 
response (UPR†). Homologs of IRE1α are found virtually throughout all eukaryotes. This receptor plays a 
pivotal role in a cell’s reaction to stress, determining whether to take compensatory measures and survive 
or undergo apoptosis and die. While the role of the unfolded protein response in lower organisms and 
secretory cells has been comprehensively studied, the precise role of IRE1α in the context of cytotoxic T 
cells has only begun to be elucidated within the past decade. This review discusses what is known about 
IRE1α and the unfolded protein response in cytotoxic T cells within the context of development, pathogen 
response, and cancer cell growth.
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INTRODUCTION

The unfolded protein response was first recognized 
with the discovery of two proteins expressed after the 
infection of chick embryo fibroblasts and rat kidney 
cells with avian RNA tumor viruses in the 1970s. In 
both the mammalian and avian cells, viral infection led 
to increased expression of 73 and 95 kDa proteins [1]. 
Later studies demonstrated that the proteins are encoded 
by the host cells, not the viruses, and that the expression 
of these proteins could be induced by glucose depriva-
tion, calcium disruption, or other conditions that disrupt 
the endoplasmic reticulum (ER) homeostasis [2]. Since 
these proteins were induced by glucose deprivation, they 
were named glucose-regulated proteins (GRP) 78 and 94. 
In parallel, GRP78 was identified as an immunoglobin 
heavy chain binding protein, BiP [3]. Today we recognize 
BiP as a calcium-dependent chaperone and a central regu-
lator of the unfolded protein response (UPR) [4,5].

 In humans there are three main activating receptors 
that constitute the unfolded protein response: IRE1α, 
PERK, and ATF6. All three receptors reside on the ER 
with a receptor domain in the ER lumen that can bind 
to BiP (Figure 1). IRE1α is the most highly conserved 
receptor of the three, with homologs in mice, yeast, and 
Arabidopsis. In fact, human IRE1α inhibitors show activ-
ity in yeast and Arabidopsis [6]. IRE1α contains receptor, 
transmembrane, kinase, and RNase domains. Once BiP 
dissociates from IRE1α, it is capable of dimerizing and 
undergoing auto-transphosphorylation. There is some ev-
idence in yeast and human that IRE1α can bind unfolded 
proteins directly, facilitating this process as well [7,8]. 
IRE1α itself is the only known target of the IRE1α kinase 
domain.

The phosphorylation of IRE1α facilitates the binding 
of adapter proteins, such as TRAF2 [9], and activates the 
RNase domain, which mediates regulated IRE1-depen-
dent decay of mRNA (RIDD) and specific splicing of a 
26-nt intron from XBP1 mRNA. This leads to the trans-
lation of a longer XBP1 isoform, XBP1s [10]. XBP1s is 
a potent transcription factor that increases pro-survival 
factors, such as hexosamine pathway enzymes [11], 
endoplasmic-reticulum-associated degradation (ERAD) 
proteins [12,13], chaperones [13], and XBP1 itself [14]. 
Eventually, IRE1α undergoes a higher-order oligomeri-
zation and forms foci that appear to have different func-
tional characteristics. Specifically, they seem to promote 
XBP1 splicing over the generally pro-apoptotic process 
of RIDD [15]. In humans, there is also an IRE1β gene 
capable of binding TRAF2, splicing XBP1, and RIDD; 
however, this protein is only expressed in gastrointestinal 
epithelial cells and aberrant expression of this receptor 
leads to degradation of 28s rRNA and cell death [16,17].

 PERK, like IRE1α, contains receptor, transmem-

brane, and kinase domains. Also, like IRE1α, PERK 
undergoes dimerization and auto-transphosphorylation 
upon dissociation from BiP. Unlike IRE1α, however, 
PERK is capable of phosphorylating additional factors, 
namely the translation initiation factor eIF2α. This phos-
phorylation halts most translation and initiates translation 
from alternative open reading frames in select transcripts, 
including ATF4. ATF4 is a transcription factor that initi-
ates accumulation of the pro-apoptotic factors CHOP and 
GADD34 [18].

ATF6 has divergent properties from IRE1α and 
PERK, and is the least studied of the three receptors. Once 
BiP dissociates from ATF6, the receptor translocates to the 
Golgi apparatus and is cleaved by S1P and S2P to form 
a 50 kDa soluble transcription factor [19,20]. One target 
gene of ATF6 includes the IRE1α pathway effector XBP1, 
possibly acting as a priming mechanism for the IRE1α 
pathway [14]. XBP1s, ATF4, and CHOP further activate 
an overlapping gene expression program including target 
genes like DNAJB11, PDIA6, and GFAT1, among others 
(see overlapping target pathways in Figure 1).

THE REGULATION OF IRE1α

IRE1α activation is predominantly spontaneous 
upon dimerization/oligomerization, which facilitates the 
auto-transphosphorylation of the activation loops [21-
23]. Classically, BiP is considered sufficient for holding 
IRE1α as a monomer and inactive [4]; however, several 
studies have shown that BiP binding to IRE1α (or its ho-
mologs) alone is not sufficient. In some instances, direct 
BiP-IRE1α association modulates the activity of IRE1α 
rather than completely inactivating the receptor [24-26]. 
The protein ERdj4 (DNAJB9) binds IRE1α while IRE1α 
is still dimerized and facilitates ATP hydrolysis, which 
then increases the affinity of BiP for IRE1α and disrupts 
IRE1α signaling [27]. Cab45S also stabilizes BiP-IRE1α 
interactions, decreasing the accumulation of XBP1 pro-
tein and phospho-c-JNK [28]. While the binding of the 
chaperone BiP to IRE1α’s ER luminal domain attenuates 
ΙRE1α signaling, and binding to the chaperone HSP90 and 
its co-chaperone CDC37 in IRE1α’s cytoplasmic domain 
also attenuates IRE1α signaling, it appears that the long-
term binding of HSP90 to IRE1α stabilizes the protein 
and maintains the ability of the UPR to activate [29,30]. 
In addition to interactions with other proteins, an intra-
molecular IRE1α interaction also prevents IRE1α signal-
ing. Specifically, an intrinsically disordered N-terminal 
domain called subregion I binds to the core stress-sensing 
region and prevents it from binding unfolded proteins and 
IRE1α from forming high-order oligomers [31].

Recently two mechanisms for IRE1α signaling atten-
uation upon prolonged ER stress have been elucidated. 
First, phosphorylation of eIF2α by PERK leads to the 



Kerr and Katz: Activation of the IRE1α pathway in cytotoxic T cells 677

selective translation of the phosphatase RPAP2, which 
dephosphorylates IRE1α and thereby turns off IRE1α 
signaling while leaving PERK signaling intact [32]. This 
first pathway ultimately leads to apoptosis. Second, AKT-
mTOR signaling helps re-establish ER-mitochondrial 
contacts following ER stress, which dephosphorylates 
IRE1α and attenuates its signaling [33]. This second path-
way limits IRE1α without maintaining PERK signaling 
and thus limits apoptosis and improves cell survival.

Viruses are also potent activators of the unfolded 
protein response and have evolved to manipulate the 
IRE1α pathway to increase viral production and decrease 
apoptosis. Broadly, mammalian viruses actively inhibit 
the splicing and expression of XBP1, but selectively acti-
vate other branches of the IRE1α pathway. For example, 
the M50 protein from MCMV (murine cytomegalovirus), 
UL50 protein from HCMV (human cytomegalovirus), 
and UL41 protein from HSV-1 (Herpes Simplex Virus) 
all actively suppress the expression of XBP1 [34,35] and 
XBP1-deficient cells demonstrate decreased apoptosis 
with HCV (Hepatitis C Virus) infection [36]. HBV (Hep-

atitis B Virus) similarly appears to have reduced viral 
production with the expression of the XBP1 target gene 
EDEM1 [37]. Conversely, HCMV, HBV, and HCV all ap-
pear to promote activation of other branches of the IRE1α 
pathway (or UPR in general). HCMV uses the US11 
protein to promote the degradation (similar to ERAD) of 
the MHC-I molecules from host cells as a mechanism of 
immune escape and this is not dependent on XBP1 [38]. 
Both HBV and HCV target the promoters of IRE1α/UPR 
genes BiP and Hsp90 to increase chaperone expression 
using the Large Surface protein or E2 protein for HBV 
and HCV, respectively [39,40]. The NS4B protein from 
HCV promotes RIDD to degrade the pro-apoptotic 
miRNA miR-125a; thereby increasing cell survival and 
consequently viral production [36]. Broadly, it appears 
that while viruses utilize the UPR to increase replication, 
they appear capable of specifically modulating the dif-
ferent components of the UPR in order to optimize viral 
production.

Figure 1. An overview of the 3 unfolded protein response pathways. ATF6 (left) is translocated to the Golgi appa-
ratus after activation and cleaved. The p50 fragment translocates to the nucleus where it functions as a transcription 
factor. IRE1α (middle) undergoes dimerization and auto-transphosphorylation when activated. Once phosphorylated, 
IRE1α binds adapter molecules such as TRAF2. Phosphorylation also activates the RNase domain, which is capable 
of splicing a regulatory intron from XBP1 mRNA. The spliced XBP1 mRNA then encodes a potent transcription fac-
tor, XBP1s. IRE1α also decays other mRNAs and undergoes oligomerization (not pictured). PERK (right) undergoes 
dimerization and auto-transphosphorylation when activated as well. Phosphorylated PERK can phosphorylate eIF2α, 
leading to alternative translation of ATF4 mRNA. ATF4 is a potent transcription factor. Figure generated with Biorender.
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[54,55]. Broadly, pro-apoptotic, necrotic, and inflamma-
tory aspects of the PERK pathway during I/R appear to 
overshadow the cytoprotective aspects of IRE1α since 
globally decreasing ER stress with 4-phenylbutyric acid 
or TUDCA reduces apoptosis, necrosis, and inflammation 
[52,56]. Thus, under the hypoxic stress of I/R inhibiting 
the PERK pathway or stimulating the IRE1α pathway 
reduces cellular damage. Similar changes may also help 
protect T cells in the hypoxic tumor microenvironment. 
Interestingly, culturing cytotoxic T cells under 1% oxy-
gen increased their production of granzyme-B and their 
ability to kill target cancer cells [57]. Although a tran-
scriptomic analysis of these hypoxic T cells revealed 
higher levels of Glut-1 and glycolysis-related genes, 
full mRNA profiling was not reported. It is interesting to 
speculate whether changes in the UPR might correspond 
to those observed in I/R injury.

THE UNFOLDED PROTEIN RESPONSE 
IN T CELLS DURING ACTIVATION AND 
INFECTION

Multiple studies have shown that the UPR is activat-
ed almost immediately after TCR stimulation in CD8+ 
T cells. Cao et al. demonstrated that PERK and IRE1α 
phosphorylation occurs within 48 hours of αCD3/αCD28 
stimulation and is accompanied by the expression of 
downstream effector molecules [58]. The phosphory-
lation of these receptors is one of the first steps in the 
activation of the UPR pathways, but is more difficult to 
measure than mRNA splicing. Also, Cao et al. did not 
measure extremely early timepoints after stimulation. 
Kamimura and Bevan showed that IRE1α splicing of 
XBP1 mRNA is detectable in as little as 2 hours after 
αCD3/αCD28 stimulation in vitro [59]. The splicing of 
XBP1 and phosphorylation of IRE1α and PERK are not 
dependent on transcription or translation, so these are the 
earliest detectable changes. Further down the IRE1α path-
way, the XBP1 target gene BiP (GRP78) is up-regulated 
at 6 hours after CD3 stimulation or alternative activation 
with PMA/ionomycin and is critical to preventing activa-
tion-induced apoptosis [60]. This 6-hour timepoint was 
the earliest timepoint measured by Takano et al. In vivo, 
the activation of the CD8+ T cells is thought to be slower 
and this would explain why XBP1 splicing was observed 
at day 5 after infection with LCMV or Ova-Listeria [59], 
or how increases in BiP occurred in T cells 2 days follow-
ing stimulation in a H2-Kb-recognizing transgenic mouse 
model [61].

Beyond these few studies focused on the UPR in 
CD8+ T cells, are several global genomic studies on 
cytotoxic T cell activation. Best et al. gathered broad 
transcriptomic data from CD8+ T cells activated using 
an in vivo Ova-Listeria model of infection. An investi-

THE ROLE OF IRE1α IN LEUKOCYTES

IRE1α and XBP1 knockouts are embryonic lethal 
due to a malformation of placental tissue [41], so most 
studies to-date have used conditional cell lineage dele-
tion. One consistent theme emerges – IRE1α and XBP1 
are essential in highly secretory leukocytes. The most 
canonical example is that XBP1 is essential to the end-
stage differentiation of B cells into plasma cells. With-
out XBP1, plasma cells do not form and immunoglobin 
production is inhibited [42]. Inhibition of XBP1 splicing 
in plasma cells is lethal and has even been proposed as 
a potential therapeutic strategy [43]. In addition, IRE1α/
XBP1 signaling is essential for effector functions in many 
other highly secretory leukocytes such as pro-inflam-
matory macrophages, CD8+ dendritic cells, NK cells, 
eosinophils, and Th2 (CD4+) T cells. This is evident by 
a reduction in cytokine production, effector molecule re-
lease, and antigen processing/presentation upon loss of 
IRE1α or XBP1 [44-50].

THE ROLE OF IRE1α IN HYPOXIA

Analysis of ischemia-reperfusion injury may offer 
some perspective of T cell behavior in tumors, as both 
scenarios have to navigate a hypoxic environment. 
Ischemia-reperfusion injury (I/R) is when a temporary 
occlusion of an artery prevents circulation to a part of 
the body and is followed by a resurgence of blood flow 
to the affected area. Often, this is studied in the context 
of the heart as a myocardial infarction, but also occurs in 
the brain, liver, and intestines. The process of I/R mim-
ics known activators of the UPR – the initial hypoxic 
environment with ischemia causes perturbations in Ca2+ 
flux and the subsequent reperfusion leads to the produc-
tion of reactive oxygen species (ROS) in the heart [51]. 
Despite the fact that these alterations activate all three 
branches of the UPR [52], the PERK pathway appears 
to increase cellular damage while the IRE1α pathway is 
cytoprotective. CHOP deficient mice (a PERK pathway 
protein) experience less tissue damage, less DNA dam-
age, and reduced inflammatory gene expression after I/R 
compared to wild-type mice despite increases in XBP1 
after injury [53].

Comparatively, XBP1 is central to the cytoprotective 
roles of the IRE1α pathway and splicing of XBP1 can 
be detected in as little as 5 minutes after the initiation 
of ischemia [11]. XBP1 as a transcription factor then 
stimulates the hexosamine pathway and expression of 
BiP to help decrease injury during and after I/R [11,54]. 
Outside of XBP1, the IRE1α pathway also increases 
Protein Disulfide-Isomerase (PDI) expression to increase 
survival and stimulates the RACK1 pathway to prevent 
apoptosis by increasing the phosphorylation of BCL-2 
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tion, as measured by increased expression of BiP, other 
chaperones, and other ER proteins [61]. Second, T cell 
activation is followed by a massive up-regulation in 
protein production that eventually leads to a doubling of 
T cell volume from ~5µm in diameter to ~10µm [65]. 
Similarly, most secretory cells (plasma cells, goblet cells, 
acinar cells, and Paneth cells) activate IRE1α in order 
to properly fold and maintain turnover of the massive 
amounts of protein they produce [66]. Third, activated T 
cells increase the production of reactive oxygen species 
(ROS) as effector molecules (e.g. NO, O2

-, or OH•), as 
secondary messenger molecules for activation, or as a 
byproduct of increased metabolism, which are all then 
countered chiefly by increased production of the reduc-
ing agent glutathione [67,68]. Similarly, both oxidizing 
and reducing agents (e.g. ROS and DTT, respectively) 
are potent stimulators of the UPR because they cause 
proteins to denature, partially through the disruption of 

gation of chaperones and other IRE1α/XBP1 target gene 
mRNAs, reveals that these genes are acutely up-regulated 
in as little as 12 hours after stimulation (Figure 2A, B). 
Following this acute increase in IRE1α pathway gene 
mRNA expression, there is a chronic increase in IRE1α 
mRNA. Comparatively, PERK mRNA is unchanged or 
mildly decreased following activation [62].

Cytotoxic T cell activation shares many characteris-
tics with known activators of the UPR, so it is logical that 
they would be activated together. First, CD3ζ signaling 
leads to calcium efflux from the ER into the cytoplasm 
through the IP3 receptor. This process is critical to T 
cell activation, and similar to the potent UPR activators 
thapsigargin and calcium ionophore A23187 [63]. While 
the calcium ionophore ionomycin is not potent enough 
to activate the UPR, it is used in combination with PMA 
to activate T cells [61,64]. In fact, PKC activation fol-
lowing T cell stimulation was necessary for UPR activa-

Figure 2. Expression of UPR regulated genes in T cells. A. Transcription of unfolded protein response receptors 
after introduction of an OVA-expressing Listeria monocytogenes model antigen in vivo to C57BL/6 mice with T cells that 
have a T cell receptor that recognizes OVA. T0 is RNA obtained from mouse CD8+ T cells at time 0 before infection. 
B. Transcription of IRE1α/XBP1-target mRNAs, PERK pathway mRNAs, and reference mRNAs after in vivo activation 
of CD8+ murine T cells. Genes 1-14 (GRP94 through EDEM3) are XBP1 target genes; PGM3, GalE, GNAPNAT1, and 
GFAT1 are also hexosamine pathway genes. Tapbp is a target of IRE1α decay and decreases with IRE1α activation. 
CHOP and ATF3 are PERK pathway genes. 28S Protein, CD3D, and GAPDH are included for reference. C. Protein 
expression of XBP1 target genes and ribosomal 28S protein S36 in sorted peripheral human CD8+ T cells. Transcrip-
tomic data is from Best et al. 2013 and then microarray data is available from the accession number: GEO: microarray 
data, GSE15907. Mass spectrometry data is from Aalderen et al. 2017 with the raw data available from the accession 
number: ProteomeXchange Consortium: PXD004637.
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on proteomic data from Aalderen et al. (Figure 2C) [75] 
and BiP-deficient mice demonstrate reduced CD8+ T cell 
effector functions [76].

Altogether it appears that the IRE1α pathway is in-
volved in the natural process of CD8+ T cell activation 
and differentiation. While there is limited functional data 
on the role of IRE1α in T cell activation and differenti-
ation, there is a strong body of correlational expression 
evidence suggesting a role for IRE1α with the natural 
CD8+ T cell effector response.

THE UNFOLDED PROTEIN RESPONSE IN 
THE T CELL RESPONSE TO TUMORS

Given the emerging role of the UPR in T cells re-
sponding to infections, it is reasonable to hypothesize that 
the UPR might also contribute to T cells responding to 
cancer cells. Activation of the UPR within cancer cells 
by dietary restriction leads to cytokine production, re-
cruitment of immune cells and a CD8+ T cell mediated 
response [77]. However, to our knowledge, there are only 
two papers specifically investigating the role of the UPR 
in tumor-infiltrating lymphocytes (TILs) themselves. The 
first, published in late 2018, examines the role of IRE1α-
XBP1 in (IFNγ+, Th1-like) CD4+ TILs [78] and the 
second, published in early 2019, investigates the role of 
PERK-CHOP in CD8+ TILs [58]. Together these papers 
evaluate two distinct subsets of T cells with two distinct 
roles in the tumor microenvironment (TME). As CD8+ 
T cells naturally activate IRE1α during differentiation, 
while CD4+ T cells do not [74], these papers also exhibit 
a difference in UPR activation in the tumor microenvi-
ronment compared to normal differentiation.

In the first paper, Song et al. noted that XBP1 splic-
ing (and by extension IRE1α activation) is induced in 
the TME in T cells. Interestingly, the induction of XBP1 
splicing in the TME compared to peripheral blood is seen 
most dramatically in the CD4+ T cells, whereas CD8+ T 
cells have statistically equivalent XBP1 mRNA splicing 
in peripheral blood and the TME and equivalent to the 
XBP1 mRNA splicing found in peripheral blood CD4+ 
T cells [78]. The expression of XBP1s was deleterious 
to glutamine metabolism, which is necessary for T cells 
to function under the hypoglycemic stress of the TME. 
Proteasomal inhibition appeared to mitigate some of the 
effects of XBP1 splicing, possibly indicating that XBP1 
increased ERAD-mediated decay of glutamine transport-
ers, thereby decreasing glutamine metabolism. Song et al. 
also noted a statistically significant correlation between 
IRE1α/XBP1 activation and CHOP mRNA expression, 
and a significant inverse correlation between TIL pen-
etration and CHOP expression [78]. Overall, it appears 
that the IRE1α pathway is activated in CD4+ T cells in 
the TME, but possibly not CD8+ T cells.

disulfide bonds [69,70]. Fourth, activated CD8+ T cells 
greatly increase their glutamine and glucose metabolism, 
which through the hexosamine pathway increase the pro-
duction of the amino sugar UDP-GlucNAc, an essential 
metabolite for glycoprotein and glycolipid synthesis [71]. 
In other cell types, XBP1 is a potent stimulator of the 
hexosamine pathway by directly up-regulating the ex-
pression of hexosamine pathway proteins, including the 
rate-limiting enzyme GFAT1, thereby relieving stressed 
cells by increasing GlucNAc and protein glycosylation 
[11]. In contrast, tunicamycin inhibits N-linked glyco-
sylation and is a potent UPR activator [63]. Moreover, 
while TRAF2 is an important adapter molecule for IRE1α 
signaling, it is also the central mediator of 4-1BB signal-
ing (a T cell costimulatory receptor) [9,72]. Taken togeth-
er, there are multiple reasons why the IRE1α pathway 
would be stimulated during CD8+ T cell activation and 
be cytoprotective.

During T cell differentiation, XBP1 splicing posi-
tively correlates with CD8 expression, indicating activa-
tion of IRE1α. Once thymic T cells mature into double 
positive (CD4+, CD8+) lymphocytes, XBP1 splicing is 
up-regulated, but the activity of IRE1α is partially lost 
once T cells migrate out of the thymus. Splenic CD8+ 
T cells maintain this increase in IRE1α activity, whereas 
splenic CD4+ T cells as a whole lose IRE1α activation in 
C57B/6 mice (a strain that contains more Th1 CD4+ T 
cells than Th2 CD4+ T cells [73]), indicating a potential 
preference for IRE1α in one lineage over the other [74]. 
Based on a study in CD8+ T cells, this increase in IRE1α 
activity without attenuation by PERK may be due to an 
increase in IRE1α protein expression, similar to the in-
crease in IRE1α mRNA expression that occurs in CD8+ 
T cells with stimulation (Figure 2A). In particular, IRE1α 
is important for production of IL-4, IL-5, and IL-13 from 
Th2 T cells, but does not contribute to IFN-γ or IL-17 in 
Th1 or Th17 T cells, respectively [49,50].

Best et al. also noted distinct transcriptional sig-
natures were associated with different terminal differ-
entiation states in CD8+ T cell lineages. Within these 
transcriptional signatures, BiP and other chaperones 
were classified as part of the initial effector response, 
IRE1α with late effector-memory T cells, PERK with 
early effector and late memory T cells, and ATF6 was left 
un-clustered during the un-biased analysis [62]. ATF6 
might act as a priming mechanism for IRE1α because 
ATF6 increases XBP1 RNA expression [14]. The asso-
ciation of IRE1α with differentiation past effector-mem-
ory cells is collaborated by the fact that Xbp1-/- CD8+ T 
cells demonstrate reduced end-stage differentiation into 
effector CD8+ T cells in vivo [59]. As further evidence 
of the role for IRE1α and chaperones in CD8+ T cell dif-
ferentiation, BiP and other XBP1 target chaperones are 
up-regulated through CD8+ T cell differentiation based 
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ative role for ATF4 in the tumor response of CD8+ TILs, 
in peripheral blood CD4+ T cells ATF4 is necessary to 
drive a metabolic adaptive response to amino acid starva-
tion and oxidative stress [80]. The difference between this 
beneficial effect of ATF4 on metabolic reprogramming in 
CD4+ T cells and its negative effect on anti-tumor activity 
in CD8+ T cells could be due to differences between the 
tumor microenvironment and stressed peripheral blood 
T cells, intrinsic differences between CD4+ and CD8+ 
T cells, such as alternate transcription factors in CD4+ T 
cells like Eomes modifying the response, or differences 
in the functional assays that were tested, where a positive 
metabolic response of increased amino acid production 
and glycolysis does not necessarily result in better cyto-
toxicity.

Further insight on the role and status of IRE1α in 
CD8+ TILs may be derived from larger transcriptomic 

In the second paper, Cao et al. investigated the role 
of the PERK pathway in CD8+ T cells in the TME. They 
found that PERK was activated in the TME for CD8+ 
T cells and that canonical ATF4-induced CHOP expres-
sion directly repressed the anti-tumor activity of T cells 
through a direct repression of T-bet, a master regulator of 
CD8+ T cell effector functions [58]. This is in agreement 
with a study by Baitsch et al. that found increased levels 
of ATF4 as well as several genes associated with T cell 
exhaustion in CD8+ T cells in lymph nodes infiltrated by 
melanoma compared to peripheral blood CD8+ T cells 
[79]. It is possible that this aberrant PERK activation 
results in an increased negative feedback on IRE1α ac-
tivation through RPAP2, possibly explaining why IRE1α 
activation was not detected in CD8+ TILs from Song et 
al. [78].

In contrast to Cao et al.’s study demonstrating a neg-

Figure 3. Expression of UPR related genes in TILs. A. Transcription of IRE1α pathway and PERK pathway in 
tumor infiltrating CD8+ T cells compared to control CD8+ T cells from adjacent, tumor-free tissue (n=36). XBP1 and 
EDEM2 mRNA is increased when the IRE1α pathway is activated and CHOP and ATF3 mRNA is increased when the 
PERK pathway is activated. B. Comparative mRNA expression of IRE1α pathway genes (DNAJB11 and PDIA6) and 
Granzyme A (GZMA) from CD8+ tumor-infiltrating T cells with enhanced (CD103hi; n=7) or decreased (CD103lo; n=5) 
cytotoxicity. For A and B, all differences between samples are significant (adjusted p < 0.05). Transcriptomic data is 
from Ganesan et al. 2017 and available from the accession number: GEO: GSE90730.
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the rest show a large amount of correlational evidence 
between IRE1α activity and CD8+ T effector functions 
during activation and infection. However, it appears that 
the IRE1α pathway is not activated in CD8+ T cells in the 
tumor microenvironment and instead the PERK pathway 
is predominantly active at the loss of CD8+ T cell effector 
function. This may be one potential explanation why T 
cells are unable to successfully eliminate cancer cells in 
a tumor. Further studies into the roles of IRE1α and the 
UPR pathways in CD8+ T cell survival and effector func-
tions will help guide future cancer therapies and increase 
our understanding of T cell physiology.
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