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Simple Summary: The current study provides an insight into the binding and dynamic differences
between wild-type RBD and B.1.620, which harbor S477N-E484K mutations in the spike protein’s
receptor-binding domain (RBD). Our analysis revealed that though the number of hydrogen bonds
and salt bridges remained the same, the binding affinity of B.1.620 for ACE2 was higher than that of
the wild type, consequently increasing infectivity. Moreover, the stable dynamics and other features
further justify the findings, corroborating the previous literature.

Abstract: Recently, a new variant, B.1620, with mutations (S477N-E484K) in the spike protein’s
receptor-binding domain (RBD) has been reported in Europe. In order to design therapeutic strategies
suitable for B.1.620, further studies are required. A detailed investigation of the structural features
and variations caused by these substitutions, that is, a molecular level investigation, is essential to
uncover the role of these changes. To determine whether and how the binding affinity of ACE2–RBD is
affected, we used protein–protein docking and all-atom simulation approaches. Our analysis revealed
that B.1.620 binds more strongly than the wild type and alters the hydrogen bonding network. The
docking score for the wild type was reported to be −122.6 +/− 0.7 kcal/mol, while for B.1.620, the
docking score was −124.9 +/− 3.8 kcal/mol. A comparative binding investigation showed that
the wild-type complex has 11 hydrogen bonds and one salt bridge, while the B.1.620 complex has
14 hydrogen bonds and one salt bridge, among which most of the interactions are preserved between
the wild type and B.1.620. A dynamic analysis of the two complexes revealed stable dynamics,
which corroborated the global stability trend, compactness, and flexibility of the three essential loops,
providing a better conformational optimization opportunity and binding. Furthermore, binding free
energy revealed that the wild type had a total binding energy of −51.14 kcal/mol, while for B.1.628,
the total binding energy was −68.25 kcal/mol. The current findings based on protein complex
modeling and bio-simulation methods revealed the atomic features of the B.1.620 variant harboring
S477N and E484K mutations in the RBD and the basis for infectivity. In conclusion, the current study
presents distinguishing features of B.1.620, which can be used to design structure-based drugs against
the B.1.620 variant.
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1. Introduction

As coronaviruses continue to emerge at numerous intervals and spread at staggering
levels around the world, they fall into four genera, namely, α, β, γ, and δ, in the Orthocoro-
navirinae subfamily of the family Coronaviridae [1–3]. Previously, the worldwide effects
of beta coronaviruses have been detrimental to public health, society, and economics as
reported in 2003, 2012, and 2019, respectively [4,5]. Approximately 264 million people have
been infected, and 5.32 million deaths have been reported since the start of the current
pandemic. In comparison, the SARS-CoV-2 case fatality ratio (CFR) is 3%, which is less than
that of SARS at 10% and MERS at 35% [6–9]. However, the rapid spread of SARS-CoV-2
and the appearance of novel variants pose an increased risk to human health. The spread of
β-coronaviruses among humans has been associated with these epidemics [5–7]. Genome
sequencing insights have shown the nucleotide substitution rate as being ~1 × 10−3 per
year for SARS-CoV-2 [10,11]. Since the outbreak of SARS-CoV-2 in late 2019, more in-
fectious and virulent strains have been discovered, including B.1.1.7 (United Kingdom),
B.1.135 (South Africa), and P.1 (Brazil). As a consequence, infectivity and hospitalization
have increased. Variations in different proteins of SARS-CoV-2, particularly the spike
glycoprotein, lead to a drift in the antigenicity of vaccines or other therapeutics [12–15].
The US government’s SARS-CoV-2 Interagency Group (SIG) and the European Center for
Disease Prevention and Control (ECDC) have classified SARS-CoV-2 variants into three
groups, i.e., variants of concern (VOCs), variants of interest (VOIs), and variants of high
consequence (VOHCs) [16]. Due to the phenomenal spread of VOCs, they remained a
concern because of their enhanced transmission, causing more severe disease, a significant
decline in antibody neutralization, and decreased treatment effectiveness [17]. Single
amino acid substitution in protein sequencing results in structural changes affecting a
protein’s function. The substitution of D614 for G614 in the spike glycoprotein causes
changes in the conformation of the cleavage site loop, leading to more effective S1 and
S2 cleavage by enhancing furin accessibility [18]. As a result, viruses are capable of more
effective transmission and replication. Globally, most SARS-CoV-2 isolates have the D614G
mutation [19].

To date, many variants have been reported, among which the VOC Delta (δ)+ (AY.1
or lineage B.1.617.2.1), which evolved from Delta, demonstrated a different mutational
landscape by acquiring L452R and T478K mutations in the RBD. In contrast, the δ+ variant
acquired an additional mutation, the K417N mutation, alongside the L452R and T478K
mutations [20]. In January 2021, the δ variant was discovered in Colombia and was reported
to increase COVID-19 cases. This variant harbors E484K, N501Y, and P681H mutations in
the spike protein, while many other new mutations accompany these mutations, including
R346K, Y144T, Y145S, and 146N insertion [21]. Moreover, a novel VOI termed as C.37,
or the Lambda/λ variant, reported in Peru with mutations L452Q and F490S in the RBD
was suspected to be associated with decreased antibody neutralization susceptibility,
particularly due to the F490S mutation in the RBD [22,23]. The Kappa (κ) variant, also
known as B.1.617.1, first identified in India, and designated as a VOI, owns a single
mutation, that is, L452R, which was suspected to be associated with reduced antibody
neutralization by disrupting the respective conformational epitopes [24]. Another VOI
known as Iota (ι) from lineage B.1.526, reported in New York City in early 2021, had the
E484K mutation reported in the P.1 variant and was reported to partially or wholly escape
the response from the two currently used therapeutic monoclonal antibodies (mAbs) and
is less susceptible to neutralization [25]. The E484K substitution in the P.1 variant has been
reported to establish direct interaction with the host receptor hACE2 [26]. A novel variant,
C.12, has recently been reported in South Africa, but, at present, no associated risk has
been confirmed. It is currently included in variants under monitoring [27].

In order to control COVID-19, multi-omics data must be collected to help understand
its proteome, which is composed of 16 non-structural proteins (NSP1–NSP16) and 4 struc-
tural proteins (S, E, N, and M) [28,29]. These structural proteins accomplish a variety
of functions, including adherence to the ACE2 receptor, transcriptional regulation, and
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replication [30]. In SARS-CoV-2, the spike protein connects with the host ACE2, which
allows the virus to attach and invade the host cell [30]. Two subunits of SARS-CoV-2 (S1
and S2) enable its transmission [31]. On infection, these subunits trigger the host’s immune
system and provide an optimal means of innate immunity [32]. During infection, the
host cell protease cleaves the S protein at the S1/S2 cleavage site. This priming (cleavage
of S protein) results in the division of protein into S1-ectoderm at the N-terminal and
S2 membrane-anchored protein at the C-terminal. The former recognizes the associated
cell surface receptor, and the latter is related to viral entry. The SARS-CoV S protein has
conserved 14 aa RBD, which functions to recognize ACE2 and can infect both humans
and bats. In these conserved 14 aa in SARS-CoV, 8 residues are highly conserved in SARS-
CoV-2, supporting the assumption that ACE2 is also the receptor of this new virus [33].
In human CoVs, which are less pathogenic, the S2 cleavage site contains a monobasic
sequence with no basic residues at either P2 or P4 needed for permitting furin cleavages,
signifying fewer effective cleavages or sealing the initial step depending on the relevant
proteases to the target cell. Although this process is believed to be the vital step for the
activation of the S protein, the associated protease is still not identified [34]. For this reason,
inhibiting the ACE2–RBD complex is essential to stop the spread of virulence instigated by
SARS-CoV-2 [35].

Meanwhile, the use of neutralizing monoclonal antibodies (mAbs), which bind to the
RBD region of the spike protein, has received greater attention but is accompanied by the
risk of virus-induced resistance. As an alternative, antibodies that target sites other than
the RBD and that can be used in combination may neutralize the virus more efficiently. The
4A8 antibody, reported in a recent study, neutralizes the spike protein that is isolated from
the serum plasma of COVID-19 patients. 4A8 has been reported as one of the ten naturally
produced antibodies that bind robustly to NTD and protect against viral infection [36].
Many small drug molecules, such as chloroquine, hydroxychloroquine, azithromycin,
remdesivir, lopinavir, favipiravir, ritonavir, ribavirin, and ivermectin, are available as a
treatment option for COVID-19 [35]. However, immunoglobulin, corticosteroids, interfer-
ons, tocilizumab, and many vaccines (including Sinopharm, Pfizer, AstraZeneca, Sinovac,
Moderna, and Johnson Johnson) are available, but their efficacy is limited by the emergence
of different variants [35]. There is a need for randomized control trials involving the
whole world population to govern the effectiveness and potency of these existing possible
treatment choices [37]. Because of these findings, the spike protein has the potential to be a
viable drug target for therapeutic development against SARS-CoV-2 [38].

Recently, a new variant, B.1620, with mutations (S477N-E484K) in the RBD of the spike
protein has been reported in Europe. It has been reported that B.1.620 is likely to escape the
antibody response [39]. Most of the mutations reported in this strain are uncharacterized;
however, it has been reported that the N-terminal mutations interfere with glycan binding
and have been reported to partially escape natural antibodies [23,40]. A report published in
Cell reported that these mutations (S477N-E484K) in the RBD increase the binding affinity
for the host receptor ACE2 [41]. The mutations are reported to occur on the same loop,
thus providing an opportunity for better conformational optimization and binding [42].
Mutational alterations in amino acids are anticipated to influence the structure and function
of the related proteins. Therefore, it is imperative to discover the mutational landscape
while creating novel antiviral therapies. Hence, it is important to determine the mutations
that have been observed in the spike protein and the subsequent influence on protein
structure and interaction with the host body. To design therapeutic strategies suitable for
B.1.620, further studies are required. A detailed investigation of the structural features
and variations caused by these substitutions, that is, a molecular level investigation, is
essential to uncover the role of these changes. To determine whether and how the binding
affinity of ACE2–RBD is affected, we used protein–protein docking and all-atom simulation
approaches. We studied variations in the hydrogen bonding network of the wild-type and
B.1.620 complexes and revealed the distinguishing features. The current study provides a
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basis for understanding the higher infectivity caused by B.1.620 and structure-based drug
discovery against the new variants.

2. Material and Methods
2.1. Structure Retrieval and Mutants’ Modeling

Using UniProt accession number (P0DTC2), the amino acid sequence of the spike
RBD of SARS-CoV-2 was retrieved, corresponding to positions 319–541. Residues S477
and E484 were mutated to Asn and Lys. The mutated sequence was then subjected to
structural modeling using Modeller version v13.0 [43]. The modeled structure was refined
and validated.

2.2. Modeling the RBD and ACE2 Complexes through Docking

Using HADDOCK, the wild-type and B.1.620 complexes (S477N-E484K) were sub-
jected to interaction modeling to explore binding differences [44]. The interface residues
were specified as reported previously, and restrained docking was performed [31]. For the
wild type, the docking structures were provided by Professor Dong-Qing Wei [26]. Guru
platform was used for the docking, as it employs all the available structural features to
model the protein complexes and is regarded as the best feature docking. The PDBsum
server [45] was utilized to discern the electrostatic interactions, hydrogen bonds, and
salt bridges.

2.3. Dynamics of the Wild-Type and B.1.620 Complexes

The wild-type RBD–ACE2 and B.1.620 RBD–ACE2 complexes were studied at the
atomic level using force field FF20SB in AMBER20 simulation package [46]. The systems
were solvated by adding a water box (TIP3P) and neutralized by adding sodium ions. For
each complex, two steps of energy minimization were used, 12,000 and 6000 each, using
the conjugate gradient and steepest descent methods to remove any bad clashes and to
relax the complexes. The heating of each complex using default parameters of 300 ◦K for
200 ps was performed. A 200 ns MD was accomplished for each complex using constant
pressure equilibration for density equilibration for 2 ns with weak restraint. A Langevin
thermostat with a 1 atm pressure and 300 ◦K was used to control the temperature. For the
evaluation of long-range interactions, we used the particle mesh Ewald algorithm with a
cutoff distance of 10 Å. The SHAKE algorithm was employed to treat covalent interactions
involving hydrogen [32].

2.4. Post-Simulation Trajectory Analysis

Using CPPTRAJ and PTRAJ [47], structural/dynamic features were explored to de-
termine how the recently evolved variant affects stability, flexibility, compactness, the
bonding network, SASA, and protein dynamics. The stability of each complex was
evaluated as the RMSD, while the residual flexibility was measured as the RMSF. The
Rg and hydrogen bonds for the whole simulation trajectories were calculated to reveal
structural compactness.

2.5. Binding Energy Differences Estimation

We used 10,000 frames from the simulation trajectory to compute the Gibbs free
energy in order to explore the binding differences produced by heterogeneity in the protein
structure after mutations. For each complex, the electrostatic, van der Waal, and total
binding energies were calculated with the MM/GBSA method [48]. These methods are
widely used and have been shown to be quite accurate [49–53]. Each aforementioned
energy term was calculated as part of the total binding free energy.

“∆G(bind) = ∆G(com)− [∆G(rec) + ∆G(lig)]”



Biology 2021, 10, 1310 5 of 15

The equation below was used to calculate each energy term of the total free energy:

“G = Gbond + Gele + GvdW + Gpol + Gnpol”

“Gbond”, “Gele”, and “GvdW” symbolize the bonded, electrostatic, and vdW interactions,
while “Gpol” and “Gnpol” denote both the polar and non-polar terms.

3. Results and Discussion
3.1. Structural Modeling and Analysis

The prolonged pandemic caused by SARS-CoV-2 reported in late 2019 further exas-
perated the situation with the advent of new variants. The reported variants, including
P.1, B.1.1.7, B.1.617, B.1.351, and B.1.618, exhibited mutations in the RBD domain of the
spike protein [35]. The spike protein is an important druggable and neutralization target
for vaccines [54]. Because of its prime role in binding and infection, the spike protein is
deemed as an important drug target in the SARS-CoV-2 proteome. Due to continuous
exposure to therapeutics, the spike protein is prone to mutations. Due to this fact, the
spike protein continuously harbors mutations and evolves with more devastating effects.
The spike-specific mutations, particularly the RBD, help the virus to increase binding and
infectivity and evade the immune response. The spike protein, a homotrimeric complex,
binds to the ACE2 protein via the RBD domain. As a result of this binding, a series of events
occur, all of which assist in fusing the host cell and viral membranes for cell entrance. This
interaction helps the spike protein transition from pre-metastable to post-metastable [55].
Recently, a new variant of concern, B.1.620, with 23 mutations in total, including S477N,
E484K, D614G, and P681H, has been reported. This strain has gone unnoticed and has been
spreading in Europe since February 2021. Initial reports revealed that it is a neutralizing
antibody-escaping variant, but no concluding data are available to reveal the importance
of this variant. Hence, a thorough investigation of the RBD-specific mutations, i.e., S477N
and E484K, is required to reveal more information on this variant. For instance, a detailed
analysis of the other variants (B.1.1.7, B.1.351, P.1, B.1.617, and B.1.618) using computational
modeling and simulation approaches discovered that these mutations increase the binding
affinity toward the host receptor and escape the antibody response [26,31,56]. To explore
the role of these mutations and the impact on the binding of RBD with ACE2, we also
employed molecular docking, hydrogen bonding network, and molecular dynamics simu-
lation analyses to explore the variations in affinity and binding in comparison with the wild
type. The structure of the spike RBD in the complex with ACE2 was retrieved from RCSB,
and mutations were introduced into the sequence. The B.1.620 variant’s RBD structure was
modeled using Modeller software. The structures were minimized and prepared. Figure 1A
represents the multi-domain spike protein with domain organization; Figure 1B shows the
interface residues of the ACE2–RBD complex; and Figure 1C represents the superimposed
structure of the wild-type RBD and B.1.620 RBD, which revealed an RMSD difference of
0.841 Å. The two mutations in the RBD domain are also shown as sticks in panel C.

3.2. Interaction Energy and Hydrogen Bonding Network Analysis

To reveal the binding variations between the wild-type and B.1.620 RBD binding
protein–protein, molecular docking was performed using HADDOCK. Proteins identify
one another in a crowded environment and adhere to each other in a very precise way.
This process entails proteins and other biological complexes diffusing across a densely
populated environment before binding (docking) to their chosen protein partner in a
structurally distinct and specific manner. This continually recurring process is absolutely
astonishing, given the huge size of these macromolecules, their great structural variety,
and the population concentration of the biomolecular habitat. Our present understanding
of protein interaction principles is considerably better than it was previously, allowing
us to develop more effective docking complexes [55]. This plays a significant role in
understanding essential cellular functions. Thus, docking of the wild-type RBD with the
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ACE2 receptor revealed a docking score of −122.6 +/− 0.7, similar to that of previous
studies [26,31,56]. However, the docking score for the B.1.620 RBD–ACE2 complex was
reported to be −124.9 +/− 3.8, which is a higher docking score than that of the wild-type
complex. Moreover, the vdW energy in both the wild-type and B.1.620 complexes remained
comparable; however, marginal variations in the electrostatic energies were predicted. It
can be seen that the electrostatic energy in the B.1.620 complex is −203.5 +/− 17.1, while
in the wild type, it is −181.4 +/− 15.5, which suggests that these mutations increase
the electrostatic energy. Similar findings are also reported by other studies on other
variants [26,31,56]. However, similar docking results higher for the variants are reported in
a recent report [16]. The docking scores, including the HADDOCK scores, vdW, electrostatic
energy, and other parameters predicted by HADDOCK for both the complexes, are given
in Table 1.
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Table 1. HADDOCK-predicted docking score for the wild-type RBD–ACE2 and B.1.620
RBD–ACE2 complexes.

Parameters Wild-Type RBD–ACE2 Complex B.1.620 RBD–ACE2 Complex

HADDOCK scores −122.6+/− 0.7 −124.9 +/− 3.8

Cluster size 64 20

RMSD in Å 1.7 +/− 1.0 14.3 +/− 0.2

vdW −59.6 +/− 2.3 −59.4 +/− 4.4

Electrostatic energy −181.4 +/− 15.5 −203.5 +/− 17.1

Desolvation energy −27.1 +/− 3.4 −25.6 +/− 2.1

Restraint’s violation
energy 4.7 +/− 3.8 5.4 +/− 1.9

Buried surface area (A2) 1965.3 +/− 120.6 1906.8 +/− 52.5

Z-score −1.9 −1.1

We further studied hydrogen bonding networks in detail to explore variations in the
interaction pattern of each complex. Despite the variations in the HADDOCK energy of
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the wild-type and B.1.620 complexes, the total number of hydrogen bonds and salt bridges
remained similar in both the complexes. Variations in the binding residues were detected,
but the numbers remained similar. For instance, ten hydrogen bonds in each complex and
a single salt bridge in both the complexes were detected. The Glu30–Lys417 interaction
is strongly conserved in both complexes. Moreover, the Glu35–Gln493 interaction, which
is required for correct orientation and locking, is only present in the wild-type complex
while being absent in the B.1.620 complex. Lys353 forms an important cluster of interaction
with multiple residues and was reported to interact with two residues, namely, Gly496 and
Gly502, in the wild-type complex, while interacting with Tyr449 in the B.1.620 complex.
Glu39–Tyr449 interaction is also important for the stabilized binding of RBD to ACE2 and
is only reported in B.1.620 while being absent in the wild type. In both the complexes, the
interaction between Tyr83 and Asn487 remained strongly conserved. Glu35 and Gln493
established hydrogen bonds with Glu38 and Gly496 in the wild-type complex, while these
residues interacted with Tyr449 and Tyr489 in the B.1.620 complex. The Gln76–Tyr489
interaction was only detected in the wild-type complex. Moreover, Tyr41 formed three
hydrogen bonds with Thr500 in the wild-type complex but not in the B.1.620 complex.
Unique interactions only detected in the B.1.620 RBD–ACE2 complex but not in the wild-
type complex include Leu24–Asn487, Thr27–Ala475, Gln325–Asn439, Asp355–Thr500, and
Ala386–Tyr505 [26,31,56]. This shows that some interactions are preserved in the wild-type
and B.1.620 complexes, while the specific variations in B.1.620 affect virus behavior and
impact transmission. The only salt bridge in both the complexes, Glu30–Lys417, remained
conserved and was reported by other studies on other variants [26,31,56]. For instance, the
Tyr83–Asn487 interaction has been reported to distinguish the higher infectivity between
SARS and SARS-CoV-2. The most important residue, Lys353, which interacts with many
important residues, has also been reported to help in the binding and processing of RBD.
Moreover, the Glu35 interactions with Tyr453 have been deemed as important interactions
for the correct orientation locking of RBD to ACE2 [26,31,56]. The interaction patterns of
the wild type and B.1.620 are shown in Figure 2A–D, while the interactions along with
other details are given in Table 2.
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Figure 2. Interaction paradigm of the wild-type and B.1.620 RBD in complex with ACE2. Panel (A)
represents the 3D interaction of the wild-type RBD with ACE2, (B) represents the 3D interaction of
the B.1.620 RBD with ACE2, and (C,D) represent the 2D interaction of the wild-type and B.1.620 RBD
with ACE2.



Biology 2021, 10, 1310 8 of 15

Table 2. Interaction paradigm, including hydrogen bonds and salt bridges of the wild-type and
B.1.620 RBD in complex with ACE2. The table also represents the bond distance in Å.

Complex Name ACE2 Interacting
Residues

RBD Interacting
Residues Distance (Å) Type of Bond

Wild Type

GLU30 LYS417 2.56 Hydrogen Bond

GLU35 GLN493 2.75 Hydrogen Bond

GLU38 GLY496 3.16 Hydrogen Bond

TYR41 THR500 2.73 Hydrogen Bond

TYR41 THR500 2.68 Hydrogen Bond

TYR41 THR500 2.68 Hydrogen Bond

GLN76 TYR489 3.06 Hydrogen Bond

TYR83 ASN487 2.73 Hydrogen Bond

LYS353 GLY502 3.15 Hydrogen Bond

LYS353 GLY496 3.16 Hydrogen Bond

GLU30 LYS417 2.56 Salt Bridge

B.1.620

LEU24 ASN487 3.08 Hydrogen Bond

THR27 ALA475 3.23 Hydrogen Bond

GLU30 LYS417 2.55 Hydrogen Bond

GLU35 TYR489 2.65 Hydrogen Bond

GLU38 TYR449 2.61 Hydrogen Bond

TYR83 ASN487 2.81 Hydrogen Bond

GLN325 ASN439 3.05 Hydrogen Bond

LYS353 TYR449 2.74 Hydrogen Bond

ASP355 THR500 2.92 Hydrogen Bond

ALA386 TYR505 3.31 Hydrogen Bond

GLU30 LYS417 2.55 Salt Bridge

3.3. Structural/Dynamic Features Investigation
3.3.1. Dynamic Stability Calculation

The structural/dynamic stability of the wild-type and B.1.620 complexes was esti-
mated as the root mean square deviation (RMSD) as a function of time. The wild-type
and B.1.620 complexes were subjected to RMSD analysis over the 200 ns simulation tra-
jectory. The wild-type complex remained more stable compared to the B.1.620 complex.
The average RMSD for the wild-type complex was reported to be 2.0 Å. Smaller deviations
were observed during the first 75 ns, but then the RMSD stabilized, and no deviation was
reported during the last 125 ns. In the case of B.1.620, the complex reported significant
deviations at different time intervals over the simulation time. During the first 25 ns,
significant deviation was observed, particularly between 15 and 25 ns. Then, the RMSD
stabilized for some time, 26–75 ns, and remained lower than the first 25 ns. The RMSD
then converged between 75 and 78 ns, and then again, the RMSD stabilized. The RMSD
experienced convergence between 100 and 120 ns and then again converged. The B.1.620
complex exhibited significant deviation for 150–175 ns. The structure then stabilized until
200 ns, and the average RMSD was observed to be ~2.5 Å. The previous literature re-
ported that mutations that induce destabilizing effects produce a radical function; thus,
the behavior of B.1.620 is more detrimental than that of the wild type [11,31]. However, a
particular mutation in the RBD, C432D, lessens ACE2-assisted entry into the cell using a
spike trimer. The findings strongly corroborate previous findings, where mutations with
stability induction correlate with a higher binding affinity [41]. Consequently, we reported
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that the higher binding of B.1.620 with a destabilizing effect has a radical function and,
thus, increases infectivity. The RMSDs of the wild-type and B.1.620 complexes are shown
in Figure 3A.
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3.3.2. Structural Compactness Analysis

Understanding the structural compactness in a dynamic environment using simulation
helps in understanding the packing of protein–protein complexes and demonstrates the
binding and unbinding events that occur during the simulation. We calculated structural
compactness as the radius of gyration (Rg) using the simulation trajectories. In Figure 3B, it
can be seen that the wild type remained more compact than B.1.620. Though the structural
compactness of B.1.620 during the first 155 ns remained uniform, the Rg decreased to
30.8 Å and then increased again. This shows the binding and unbinding events and more
conformational optimization for binding, which corroborates previous findings [26,31,56].
The Rg(s) for each complex is shown in Figure 3B.

We further extracted the structures of both wild-type and B.1.620 complexes at 50,
100, 150, and 200 ns to see the RMSD differences by superimposing them on each other.
As presented in Figure 4, the RMSD at 50 ns was 2.09 Å, at 100 ns it was 2.21 Å, and
at 150 ns it was 2.44 Å, while at 200 ns, a 3.40 Å RMSD difference was observed. This
shows the structural and dynamic variations induced by the mutations, affecting the
dynamic properties.

3.3.3. Residual Flexibility Analysis

Residual flexibility is always an important parameter for exploring the binding
strength induced by a particular residue. It is the main factor that determines the strength
of the binding of biological molecules. To determine the flexibility of each residue, we
calculated the root mean square fluctuation (RMSF) for each complex. It can be seen that
the RMSF of the wild-type and B.1.620 complexes is primarily comparable, and at different
regions, the wild type displayed a relatively higher fluctuation. The RMSF of the B.1.620
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complex is stabilized by the binding of the interacting proteins and, thus, displays minimal
fluctuation. Figure 5A shows the RMSF of the wild-type and B.1.620 RBD in complex
with ACE2. We further calculated the RMSD of the apo RBD of both the wild type and
B.1.620. Both the complexes displayed similar fluctuation except in the regions between
475 and 490, where mutations lie (Figure 5B). Moreover, to see the flexibility profile of the
three important loops (474–485, 488–490, and 494–505) previously reported to be the most
important residues for the interaction, we calculated the RMSFs for these loops, which are
presented in Figure 5C. The structure shows that some of the fluctuations are stabilized
while some are conserved, as previously reported [26].
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3.3.4. Hydrogen Bonding Analysis

Protein–protein interactions are primarily influenced by a number of different fac-
tors, the most important of which are the hydrogen bonds and hydrophobic interactions.
Water molecules constantly occupy protein interfaces, competing with hydrogen bonding
among residues [57]. The mechanisms underlying protein–protein complex formation,
as well as the ramifications of hydrogen bonds’ participation in this relationship, are un-
clear [58]. The question of whether or not hydrogen bonds regulate protein–protein binding
is a long-standing one with a process that remains poorly understood [59,60]. Thus, to
reveal variations in the bonding pattern between the wild-type RBD and B.1.620 RBD com-
plexes, we performed a hydrogen bonding network analysis of the simulation trajectory to
demonstrate the binding specificity for each complex steered by hydrogen bonding. The
calculation of the total hydrogen bonding revealed that the wild-type complex has, on
average, 377 hydrogen bonds, while the B.1.620 complex has 383 hydrogen bonds. For
the other variants, such as B.1.1.7, B.1.351, B.1.617, B.1.618, and P.1, the higher number
of hydrogen bonds are already reported, which strongly justify our findings [26,31,56].
This shows that significant reprogramming of the hydrogen bonds took place during the
simulation, thus increasing binding affinity. The total number of hydrogen bonds in each
complex is shown in Figure 6.
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3.3.5. Solvent Accessible Surface Area (SASA)

Solvent accessible surface area is another important measure that calculates the area
accessible to the solvent molecule. The SASA of the B.1.620 complex is higher than that of
the wild-type complex (Figure 7). Increased SASA values indicate the relative expansion
of mutant structures and increased intrinsic flexibility, which increases the likelihood of
stable binding of the interacting protein with ACE2.
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3.4. Binding Free Energy Calculation

The approximation of the binding free energy of two biomolecules governs the
strength of the bio-molecular complex. The current computational valuation of the free
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energy by the MM/GBSA method is the most widely employed approach to re-rank the
docking complex by forecasting the dynamic stability and strength of key binding hotspots
and the total binding energy. The aforementioned method is computationally inexpensive
compared to the substitute methods, i.e., alchemical free energy calculation approaches.
The MM/GBSA technique is considered as more accurate and precise than the conven-
tional scoring algorithms [61]. Seeing the higher applicability of the specified method,
we projected the impact of new substitutions S477N-E484K in the RBD on the binding
to the ACE2 receptor. The total binding free energy results given in Table 3 show that
the B.1.620 RBD–ACE2 complex has a higher binding affinity than that of the wild-type
complex. The vdWs for these two complexes were reported to be −107.63 kcal/mol and
−100.46 kcal/mol respectively, while the electrostatic energy was increased in the B.1.620
RBD–ACE2 complex. These findings are in accordance with those of previous reports,
where a higher electrostatic energy for the variants was reported to be the main factor that
contributes to the higher binding affinity [26,31,56]. Thus, this shows that our findings
strongly correlate with the previous findings. The electrostatic energy for each complex
was reported to be −592.87 kcal/mol for the wild type and −1129.31 kcal/mol for B.1.620.
The total binding energy for the wild type was −51.14 kcal/mol, while for B.1.620, the total
binding energy was −68.75 kcal/mol. Moreover, we also calculated the binding free energy
by using the MM/PBSA approach, which revealed that both MM/GBSA and MM/PBSA
strongly correlate with each other in terms of defining the final total energy. It can be seen,
as given in Table 3, that the wild type has less binding free energy than that of the B.1.620
variant. Furthermore, here, the notion of more electrostatic energy can also be seen to
have a higher contribution than the other factors. It can be observed that the MM/PBSA
total binding energy for the wild type is −16.54 kcal/mol, while for B.1.620, it is −22.32
kcal/mol. Consequently, this shows that the specific mutations in the RBD (S477N-E484K)
help the new variant to increase binding affinity and, consequently, infectivity.

Table 3. Binding free energy calculation for the wild-type and B.1.620 complexes calculated as
MM/GBSA and MM/PBSA. All the energies are given in kcal/mol.

MM/GBSA VDW ELE GB SA Total

Wild Type −107.63 −592.87 663.18 −13.82 −51.14

B.1.620 −100.46 −1129.31 1174.64 −13.62 −68.75

MM/PBSA VDW ELE PB ESURF Total

Wild Type −52.21 −76.42 118.74 −6.65 −16.54

B.1.620 −54.27 −85.35 126.37 −9.07 −22.32

4. Conclusions

The pandemic caused by SAR-COV-2 has been further exasperated by the evolution
of new variants reported since 2020. The new variants are reported to have mutations in
the spike protein, which affect binding and infectivity. Despite the growing interest in
COVID-19 research, a comprehensive evaluation of the illness is required. SARS-CoV-2, a
severe acute respiratory CoV, with improved virus–host dynamics in terms of improved
binding, may have resulted in increased pathogenicity. As a result, a better knowledge
of the viral mutations and evolution is required. Although just a few variant sites for
SARS-CoV-2 variants have been discovered, the range of intra-host variant contacts and
dynamics linked to the virus’s progression is unclear. The current findings based on
protein complex modeling and bio-simulation methods revealed the atomic features of
the B.1.620 variant harboring S477N and E484K mutations in the RBD. Understanding the
interaction dynamics is key to the protein–protein recognition process and, consequently,
the regulation of important cellular functions. A study on more polymorphic sites to
understand the evolution pattern and the prediction of emerging variants may help to
contain this pandemic. Large-scale genomic analyses are needed to decipher the mutational
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spectrum of SARS-CoV-2 at a genomic scale, and then connecting these patterns to the
genomic attributes could potentially control the evolution of this virus. Our analysis
revealed that though the number of hydrogen bonds and salt bridges remained the same,
the binding affinity of B.1.620 for ACE2 was higher than that of the wild type, consequently
increasing infectivity. These features can be used to design drugs that could efficiently
inhibit the interaction of the RBD with ACE2.
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