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MicroRNA (miRNA) is a non-coding single-stranded small molecule of approximately
21 nucleotides. It degrades or inhibits the translation of RNA by targeting the 3′-UTR.
The miRNA plays an important role in the growth, development, differentiation, and
functional execution of the nervous system. Dysregulated miRNA expression has
been associated with several pathological processes of neurodegenerative disorders,
including Huntington’s disease (HD). Recent studies have suggested promising roles
of miRNAs as biomarkers and potential therapeutic targets for HD. Here, we review
the emerging role of dysregulated miRNAs in HD and describe general biology of
miRNAs, their pathophysiological implications, and their potential roles as biomarkers
and therapeutic agents.
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INTRODUCTION

Huntington’s disease (HD) is a neurodegenerative disorder caused by abnormal amplification of
CAG sequences in the Huntingtin (Htt) gene on chromosome 4. This results in the production of
a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine repeat (Jacobsen
et al., 2010). The pathogenic gene, Htt, located on chromosome 4p16.3 and was identified in
1993 (Bates et al., 2015). HD is related to the unstable expansion of CAG triplet repeats in exon
1 of Htt. The normal Htt allele contains 6–35 CAG triplet repeats. CAG triplet expansion of
40 repeats or more is abnormal and complete penetration. Alleles with 36–39 CAG repeats are
considered to have lower penetrance. Although the 27–35 CAG repeats are within the normal
range, they are considered to be intermediate or unstable alleles that may extend or contract
during reproduction. The main clinical symptoms of HD are usually classified into three categories:
motor symptoms, psychiatric disorders, and cognitive dysfunction (Sheikh and Guerciolini, 2019).
The typical dyskinesia of the disease is chorea-like involuntary movement. Approximately 90% of
patients with HD experience this typical dyskinesia, but most of the patients’ motor symptoms
are a combination of various dyskinesias, including chorea-like symptoms, dystonia, ataxia, and
Parkinson’s syndrome (Heo and Scott, 2017). Psychiatric symptoms in patients with HD may
appear earlier than dyskinesia, and patients may also experience anxiety and irritability (Goh et al.,
2018). In addition, the cognitive impairment of HD is mainly executive dysfunction, and some
studies have shown that the cognitive impairment could be worsen with the increase in the repeat
length of the CAGs and the patient’s age (Bayliss et al., 2019).

Currently, the molecular mechanism of HD remains unclear; however, there are two main
hypothesis: wild-type Htt (wtHtt) loss-of-function and mutant Htt (mHtt) gain-of-toxicity (Tellone
et al., 2019). The wtHtt plays an important role in embryonic development; it is antiapoptotic,
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regulates gene transcription in neurons and synaptic
transmission, and promotes vesicle transport function (Romo
et al., 2018; Orozco-Diaz et al., 2019; Smith-Dijak et al., 2019).
The loss of the normal physiological functions of wtHtt is
involved in the pathogenesis of HD. The mHtt also produces
additional toxic pathogenic effects, including adverse effects
on apoptosis, gene transcription, axonal transport, synaptic
transmission, the ubiquitin-proteasome system, and calcium ion
signal transduction (Hamilton et al., 2019; Wanker et al., 2019).
Although the precise mechanisms underlying HD pathogenesis
have not yet been fully elucidated, it is known that transcriptional
dysregulation is associated with this disease. Thus, the regulation
of transcriptional regulators has been considered to be a key
pathogenic mechanism in HD (Tabrizi et al., 2019).

Although some breakthroughs have been made in the study
of HD pathogenesis, there is still a lack of effective approaches to
treat HD. Currently, empirical symptomatic supportive therapy
is the main treatment method. Antipsychotic drugs such as
butbenazine or olanzapine can be used to control the chorea.
Antidepressants may improve the symptoms of depression,
and psychotherapy is mainly expected to alleviate cognitive
dysfunction. However, these therapeutic strategies failed to meet
clinical expectations (Fritz et al., 2017). Induction of mutant
IT-15 gene silencing therapy can fundamentally reduce the
formation of the mHTT protein to achieve the therapeutic
effect. Non-specific partial inhibition of wtHtt and mHtt gene
expression was effective in animals with HD, and no apparent
adverse effects were detected. However, potential safety risks
could not be ruled out after application in humans (Wild
and Tabrizi, 2017). The optimal treatment strategy is to target
specific alleles for gene interference, which selectively inhibit the
expression of the mHtt gene but have no effect on the wtHtt gene
(Shannon, 2020).

MicroRNAs (miRNAs) are a class of evolutionarily conserved
endogenous non-coding short RNAs. By binding to the 3′
untranslated region (UTR) of the target mRNA, the expression
activity of the target gene is negatively regulated by miRNAs
at the post-transcriptional level to inhibit the translation or
degradation of the target mRNA (Tafrihi and Hasheminasab,
2019). The miRNAs regulate the expression of approximately
90% of genes in the body and are involved in cell proliferation,
development, and senescence (Ying et al., 2018). Studies have
shown that miRNAs are involved in the early differentiation,
development, and function of neurons (De Pietri Tonelli et al.,
2008). Targeted regulation of specific miRNA expression may
provide new hope for the treatment of HD. Previous studies
have shown that miR-9/miR-9 significantly decreased in the
brain during the progression of HD disease, which interacted
with HTT by regulating the expression of repressor element-
1 silencing transcription (REST) (Packer et al., 2008). In
addition, miR-22 has a potential protective effect on neurons,
and it has been confirmed that miR-22 could delay the
progression of HD by mediating neuronal synthesis and survival
(Jovicic et al., 2013).

In this review article, we introduce the canonical miRNA
biogenesis pathway and miRNA function and describe the most
relevant brain-specific miRNAs associated with HD. Potential

biomarkers involved in HD diagnosis and the use of miRNA-
based therapeutic strategies are also highlighted.

BIOSYNTHESIS AND FUNCTION OF
miRNAs

The miRNAs bind to complementary sequences in the UTR
of target genes to inhibit their cleavage, degradation, or
translation (Hajjari et al., 2017). In the nucleus, miRNA genes are
transcribed into initial miRNAs (pri-miRNAs). The pri-miRNAs
are processed by Drosha and Dicerase into precursor miRNAs
(pre-miRNAs), which are approximately 70 nucleotides with
a stem-ring structure. Exportin 5 and Ran GTPase transport
the pre-miRNAs to the cytoplasm. Dicerase then cleaves the
pre-miRNAs into double-stranded miRNAs of approximately
21 nucleotides. The double strands are then broken down into
two single-stranded molecules, one of which degrades, and the
other binds to the Argonaute proteins to form the RNA-induced
silencing complex (RISC) (Yates et al., 2013). RISC binds to
the 3′-UTR of target genes. Incomplete complementation of
the miRNAs and target genes leads to either target mRNA
degradation or inhibition of translation (Kim et al., 2016). By
binding to the 3′-UTR of the target mRNA, the expression activity
of the target gene is negatively regulated by the miRNAs at the
post-transcriptional level, and the translation of the target mRNA
is inhibited (Miranda et al., 2006).

The miRNAs are involved in nearly all biological processes,
including development, proliferation, inflammation, and
apoptosis (Kawahara, 2014). In addition to being intracellular,
miRNA is also present in the peripheral circulation (Mori
et al., 2019). By detecting the sequence, structure, type, and
number of miRNAs in peripheral blood, we can understand
the physiological status of an organism and the type and extent
of the disease. Moreover, the detection method is simple, easy,
and non-invasive, which is ideal for early screening (Majdi
et al., 2016; Li et al., 2017). In recent years, it has been found
that abnormal expression of miRNAs plays an important role
in HD pathogenesis (Langfelder et al., 2018). The potential of
miRNAs as biomarkers for diagnosis and prognosis is gradually
being recognized and applied to clinical practice. Gene silencing
strategies targeting miRNAs have also been tested in animal
models of HD (Pfister et al., 2018).

The miRNAs in HD
An increasing number of studies have shown that miRNAs
are dysregulated in HD (Soldati et al., 2013; Kocerha et al.,
2014; Reynolds et al., 2018). Sinha et al. (2012) showed that
54 miRNAs were differentially expressed in the postmortem
brains of patients with HD, which included 30 miRNAs with
high expression and 24 miRNAs with low expression. Among
these differentially expressed miRNAs, 26 were regulated by
the REST, TP53, and E2F1 transcription factors (Sinha et al.,
2012). Moreover, Johnson and Buckley (2009) found that some
critical neuronal miRNAs (e.g., miR-9, miR-124, and miR-132)
were downregulated in the brains of HD patients and mouse
models, potentially disrupting mRNA regulation and neuronal
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function. By using miRNA microarray analysis, Lee et al. (2007)
showed full expression profiles of miRNAs in three HD mouse
models. The R6/2 HD transgenic mice expressed the N-terminal
exon 1 of a human mHtt (Ehrnhoefer et al., 2009), while
the YAC128 transgenic mice expressed a full-length mHtt that
replicated the one found in patients with HD. The authors
showed that nine miRNAs (miR-22, miR-29c, miR-128, miR-
132, miR-138, miR-218, miR-222, miR-344, and miR-674∗) were
downregulated in YAC128 and R6/2. Chronic 3- nitropropionic
acid (3NP) administration inhibits mitochondrial succinate Ca2+

homeostasis and dehydrogenase complex II, which induces
striatal neurodegeneration due to mitochondrial dysfunction. In
the 3NP-induced rat model of HD, the miRNA profile did not
overlap with that of the transgenic mice, which may because
mHtt modulated some aspect of the HTT activity in extra-
mitochondrial energy metabolism rather than causing a direct
impact on the mitochondrion (Lee et al., 2007). Accordingly,
mHTT seems to compromise both the level and function
of miRNAs. The mechanism by which mHTT alters miRNA
biogenesis warrants future studies. HD is characterized by
selective neuronal vulnerability, and neurons in the striatum
and deep layer cortical neurons are the most vulnerable to
degeneration; in contrast, neurons in other areas of the brain
(such as the cerebellum) are relatively resistant to cell death
induced by mHTT (Vonsattel and Difiglia, 1998). By analyzing
the expression of miRNAs in the different regions of the brain of
HD model mice with increasing CAG length in the endogenous
Htt, Langfelder et al. (2018) found that the differential expression
of miRNAs was most apparent in the striatum (159 differentially
expressed miRNAs) followed by the cerebellum (102 differentially

expressed miRNAs), hippocampus (51 differentially expressed
miRNAs), and cerebral cortex (45 differentially expressed
miRNAs). They further showed that miR-212, miR-132, miR-128,
and miR-218 might be significantly associated with Htt CAG
repeat expansion, thus suggesting that these miRNAs may be
involved in the differential sensitivity to CAG length expansion
(Langfelder et al., 2018).

The miRNAs have also become a research hotspot for
potential therapeutic strategies for HD that would alter their
expression. Jovicic et al. (2013) demonstrated that miR-22
has various anti-neurodegenerative properties; it can inhibit
apoptosis and HD-related mRNA expression. Overexpression
of miR-22 inhibited neurodegeneration in the striatum and
cortex due to mHtt fragments and improved neuronal viability
in an in vitro HD model (Jovicic et al., 2013). Moreover,
overexpression of miR-27a reduced mHTT aggregation in HD
cells by modulating multidrug resistance protein-1 function (Ban
et al., 2017). Liu et al. (2015) found that miR-124 could slow down
the progression of HD by affecting neuronal differentiation and
development. Below, we have detailed the most recent studies of
miRNAs associated with HD pathology and dysregulated in this
disease (Figure 1 and Table 1).

The miR-9
miR-9 is encoded by three different genes and is specifically
expressed in neural cells. The miR-9 is also one of the most
frequently altered miRNAs and is significantly downregulated
in HD (Johnson and Buckley, 2009). Dysregulation of
the REST transcription factor is the most understood
molecular mechanism for neurodegeneration involved in HD

FIGURE 1 | Possible mechanisms of the involvement of dysregulated microRNAs in the pathogenesis of Huntington’s disease. Several studies have been conducted
on Huntington’s disease to regulate the expression of miRNAs for therapeutic purposes, and their results encourage further molecular research on all major
neurodegenerative diseases, including Huntington’s disease. BNDF, brain-derived neurotrophic factor; CBP, cyclic AMP-response element-binding (CREB) protein;
CCNA2, cyclin A2; CHEK1, checkpoint kinase 1; mHTT, mutant huntingtin; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator-1α; MFN2, mitofusin2;
REST, repressor element 1-silencing transcription factor; RANBP10, RAN binding protein 10; TBP, tata binding protein. *indicates the passenger strand of miR-9.
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TABLE 1 | Some of the miRNAs most commonly associated with HD.

miRNA Samples
(P/HC)

CAG repeat
(P/HC)

Brain region Expression
levels

Significance in HD pathophysiology References

miR-9 19/7 37-46/16-21 BA4 cortex Down-
regulated

Participation in transcriptional
dysregulation, target of REST in normal
condition

Packer et al., 2008

miR-10b-5p 26/36 44.6±2.9/NA BA 9 cortex Up-regulated Promotes striatal involved in HD Hoss et al., 2015a

12/9 NA Prefrontal cortex Up-regulated Regulates BNDF expression in normal
condition

Müller, 2014

miR-146a STHdh cells 111/7 NA Down-
regulated

Rescue the abnormalities of HD in cell cycle
and apoptosis, regulates HTT and TBP
expression in cell culture

Sinha et al., 2010, 2011

miR-196a 15/16 44.9±1.3/NA Plasma Up-regulated Anti-cytotoxicity and apoptosis, regulates
CBP, PGC-1α expression in HD

Cheng et al., 2013;
Chang et al., 2017

miR-214 STHdh cells 111/7 NA Up-regulated Suppress aggregates of mHtt, regulates
MFN2 expression in cell culture

Bucha et al., 2015

BA, Brodmann’s area; BNDF, brain derived neurotrophic factor; CAG, cytosine, adenine, guanine; CBP, cyclic AMP-response element-binding (CREB) protein; HC,
healthy controls; HD, Huntington’s disease; NA, Not Available; P, patients; PGC-1α, peroxisome proliferator-activated receptor-γ coactlvator-1α; MFN2, mitofusin2; REST,
repressor element 1-silencing transcription factor; TBP, Tata Binding Protein.

(Ooi and Wood, 2007). REST contains a miR-9 recognition
element. miR-9 also processes the original transcriptional
sequence, which can be occupied by the REST (Van Den Hove
et al., 2014). Packer et al. (2008) predicted target sites for miR-9
in the 3′-UTR of REST mRNA. Moreover, miR-9∗ possesses
a predicted site in the 3′-UTR of CoREST. In postmortem
HD brain samples, bifunctional brain-enriched miR-9/9∗ was
also validated, which targets the REST-CoREST complex.
A subsequent study on the importance of miR-9∗ derived from
peripheral leukocytes of patients with HD found that miR-9∗
expression levels were significantly lower in these patients and
the downregulation may be a signature of neurodegeneration
(Chang et al., 2017).

The miR-10b-5p
miR-10b-5p is located in the HOXD cluster and targets HOXD4.
Hoss et al. (2014) found that miR-10b-5p expression was
upregulated in PC12 Q73 cells and enhanced cell survival
in the presence of an apoptosis-inducing compound. They
surmised that increased miR-10b-5p might play a pathological
role in the expanded polyglutamine repeat of HD and was
associated with the pathology of this disease. Reduced BDNF
expression is involved in the neuronal dysfunction and death
observed in HD. BDNF can be post-transcriptionally controlled
by upregulation of miR-10b-5p. Müller (2014) suggested that
miR-10b-5p upregulation in HD had a neuroprotective effect on
the response to mHTT, presumably through regulating BDNF
expression. Hoss et al. (2016) demonstrated that miR-10b-5p was
markedly increased in HD compared to that in controls and
was negatively associated with the age of HD onset, with higher
miR-10b-5p levels corresponding to an earlier age of onset. The
authors also determined that miR-10b-5p levels were significantly
associated with CAG length in postmortem HD brain tissue
(Hoss et al., 2015a). Furthermore, they found that miR-10b-5p
was elevated in the plasma of individuals with HD, which might
be a promising clinical diagnostic marker to predict the age and
severity of HD onset (Hoss et al., 2015b).

The miR-146a
miR-146a is a major regulator of the NF-κB pathway. Jayadev
et al. (2013) and Juzwik et al. (2019) identified miR-146a as a
negative regulator of the monocyte proinflammatory response.
Ghose et al. (2011) found that miR-146a expression was decreased
in STHdh (Q111)/Hdh (Q111) cells, and the low expression was
due to the low activity of the p65 subunit of NF-κB (RelA/NF-κB).
The miR-146a can also target human and mouse Htt gene.
Sinha et al. (2011) suggested that this regulatory relationship
might provide a new mechanism for the modulation of HD.
In addition, decreased miR-146a expression can increase the
expression of CHEK1 and CCNA2, which may rescue the cell
cycle and apoptotic abnormalities in STHdh (Q111)/Hdh (Q111)
cells. The miR-146a may also target Tata binding protein (TBP),
and dysregulated miR-146a may contribute to HD pathogenesis
by targeting TBP (Sinha et al., 2010). Das and Bhattacharyya
(2015) suggested that heat shock factor 1 (HSF1) could regulate
miR-146a and suppress mHTT aggregates in HD cells. Therefore,
miR-146a may be involved in the pathogenesis of HD through
a variety of mechanisms, and thus, regulating the expression of
miR-146a may be a potential approach to treat HD through a
variety of pathways (Das et al., 2015).

The miR-196a
Elevated miR-196a expression levels have been observed in
both animal and human HD brains (Chang et al., 2017).
Kunkanjanawan et al. (2016) demonstrated that miR-196a
overexpression could ameliorate cytotoxicity and apoptosis. It
could also improve mitochondrial morphology and function in
HD cells by upregulating CBP and PGC-1αα (Kunkanjanawan
et al., 2016). Higher expression of RAN binding protein 10
(RANBP10) in HD transgenic mouse brains may exacerbate the
pathological aggregates in HD. The miR-196a can suppress the
expression of RANBP10 by binding to its 3′-UTR. Moreover,
miR-196a can enhance neuronal morphology by suppressing
RANBP10 expression (Her et al., 2017). By using different
HD models, Cheng et al. (2013) discovered that upregulated
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miR-196a could suppress mHtt expression in the brain and
inhibit the neuropathological progression of the disease.
Furthermore, miR-196a-5p was shown to have a significant
relationship with CAG repeat size and onset of age in HD
patients (Hoss et al., 2015a). The miR-196a-5p is likely to exert
a neuroprotective effect in HD, and future research may focus on
its potential to treat HD. In addition, because its expression level
may be related to the CAG repeat size and age of onset in HD
patients, its potential as a diagnostic biomarker for HD is also
worthy of attention.

The miR-214
miR-214 targets the Htt gene, and its expression is increased
in HD cell models (Sinha et al., 2011). Kozlowska et al. (2013)
confirmed an interaction between miR-214 and the 3′-UTR of
Htt. While wtHtt did not affect miR-214 or β-catenin expression,
mHtt mediated β-catenin downregulation by upregulating
miR-214 (Ghatak and Raha, 2018). HSF1-regulated miR-214
expression can suppress mHTT aggregation in an HD cell model
(Das and Bhattacharyya, 2015). Bucha et al. (2015) showed
that increased miR-214 expression in HD cells could target
mitofusin2 (MFN2), thereby altering mitochondrial morphology
and deregulating the cell cycle. Therefore, miR-214 may be
a potentially critical node for therapeutic intervention in the
pathogenesis of HD.

THE miRNAs AS BIOMARKERS IN HD

HD is a slow-progressing, inheritable neurodegenerative
disorder. Its diagnosis mainly depends on family history
and genetic testing. Although HD is an untreatable disease,
biomarkers may provide early diagnostic clues or reflect disease
progression and treatment response.

There has been some progress in the study of HD diagnostic
biomarkers in recent years (Majid et al., 2011). The direct
quantification of mHTT itself shows its promise as a disease-
related biomarker (Weiss et al., 2009). Due to the accumulation
of N-terminal fragments, mHTT levels increase with the
progression of the disease, and mHTT concentration is correlated
with “CAG–age product” (CAP) score and brain atrophy
rate, indicating a potential functional correlation (Moscovitch-
Lopatin et al., 2010; Weiss et al., 2012). If the ongoing work
to further improve detection methods is successful, it will be
possible to accurately quantify the level of mHTT protein in
CSF, similar to the current use of amyloid beta peptide in
Alzheimer’s disease (Blennow et al., 2010). However, a more
valuable method may be to identify specific post-translational
modifications or abnormal conformations of HTT that are
associated with disease pathogenesis (Ross et al., 2014). The
concentration of plasma neurofilament light chain (NfL) is
significantly increased in patients with HD and is closely
associated with age and CAG repeat length (Coarelli et al., 2021).
Cerebrospinal fluid (CSF) NfL appears to be a more sensitive
marker than plasma NfL to monitor disease progression, and it
has also been shown to increase significantly when carriers come
close to the age of expected disease onset (Scahill et al., 2020).

However, changes in NfL levels are not limited to HD but
are also observed in other neurodegenerative diseases such as
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral
sclerosis, thus making NfL less specific for the diagnosis of
HD. Leukocyte telomere length (LTL) values were observed
to decrease significantly in patients with HD, and an inverse
relationship was found between the mean LTL value and CAG
repeat number in pre-HD patients. Thus, LTL might be a reliable
biomarker to track HD progression. However, a well-designed
follow-up study would be useful to verify the actual relationship
between LTL and HD onset (Scarabino et al., 2019). Levels of
the proinflammatory cytokine IL-6 have also been reported as
a biomarker to diagnose HD (Chang et al., 2015); however, the
sensitivity and specificity of the diagnosis remain to be confirmed.
HD is a genetically confirmed clinical diagnosis. Predictive
testing is available; however, it should be done with caution in
patients who are at risk for the disease but have no clinical
disease expression (Tibben, 2007). Almost a quarter of carriers
may experience adverse events in the first year after disclosure
(Almqvist et al., 2003). Carriers may be more pessimistic when
they reach the expected age of onset (Frank and Jankovic, 2010).
MiRNAs in the peripheral circulation have been extensively
investigated as biomarkers for early diagnosis and monitoring
of disease progression (Pan et al., 2016). In addition, changes in
miRNAs levels may be associated with disease prognosis, such as
Alzheimer’s disease (Zhao et al., 2020).

Previous studies have shown that miRNAs secreted in small
vesicles or non-vesicles (e.g., peripheral blood, serum, plasma,
saliva, and urine) can bind to proteins or other molecules. For
example, miRNAs in plasma can bind to high-density lipoprotein
to form stable structures in peripheral blood (Noren Hooten
et al., 2013). Thus, miRNAs in the peripheral circulation may be
important biomarkers for detecting HD because they can exist
stably outside cells. The most important research findings for
the potential role of miRNAs as biomarkers in HD patients are
summarized below and in Table 2.

Diez-Planelles et al. (2016) investigated differences in miRNA
levels between 15 symptomatic patients with 40–45 CAG repeats
in the Htt gene and seven healthy controls. They identified 168
altered circulating miRNAs in the symptomatic HD patients.
Specifically, miR-22-5p, miR-30d-5p, miR-128, miR-130b-3p,
miR-222-3p, miR-223-5p, miR-223-3p, miR-338-3p, miR-361-5p,
and miR-425-5p were significantly increased in HD patients
as compared to that in controls. Further analysis showed
that patients with higher Unified Huntington’s Disease Rating
Scale total motor scores had significantly lower miR-122-5p
levels. Increased miR-100-5p levels and decreased miR-330-3p
and miR-641 levels were associated with the Total Functional
Capacity of patients with HD. The authors suggested that
the circulating miRNA profile might be modified by disease
progression, and thus, it could be a promising biomarker for
monitoring disease status. Subsequently, Chang et al. (2017)
examined miRNA expression levels in the peripheral leukocytes
of 36 HD patients, eight pre-symptomatic HD carriers, and
28 healthy controls. They identified 13 candidate miRNAs and
subsequently determined that miR-9∗ was significantly lower
in HD patients than in the healthy controls. They did not

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 August 2021 | Volume 15 | Article 705348

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-705348 August 4, 2021 Time: 13:13 # 6

Dong and Cong Dysregulated MicroRNAs in Huntington’s Disease

TABLE 2 | Circulating miRNAs as biomarkers in HD.

miRNA Samples
(P/C/HC)

CAG repeat
means

(P/PR/HC)

Sex M: F
(P/PR/HC)

Age means
(P/PR/HC)

Source Expression in
pre-HD/HD

patients

References

miR-22-5p, miR-30d-5p,
miR-128, miR-130b-3p,
miR-222-3p, miR-223-5p,
miR-223-3p, miR-338-3p,
miRNA-361-5p, miR-425-5p

15/NA/7 41.73/NA/NA NA NA Plasma Increased in HD Diez-Planelles
et al., 2016

miR-135b-3p, miR-140-5p,
miR-520f-3p, miR-3928-5p,
miR-4317, miR-8082

15/30/15 42.14/42.3/20.7 5:10/15:15/7:8 55.5/40.8/45.4 CSF Increased in
Pre-HD

Reed et al., 2018

miR-10b-5p, miR-486-5p 26/4/8 NA 11:15/1:3/3:5 53.0/42.5/46.1 Plasma Increased in HD Hoss et al., 2015b

miR-9* 36/8/28 46.42/44.13/NA 20:16/3:5/17:11 45.6/29.8/42.0 Peripheral
leukocyte

Decreased in
HD

Chang et al., 2017

miR-34b 16/11/12 44.5/42.0/NA 8:8/4:7/5:7 51.0/40.0/49.0 Plasma Decreased in
Pre-HD

Gaughwin et al.,
2011

CAG, cytosine, adenine, guanine; HC, healthy controls; HD, Huntington’s disease; NA, Not Available; P, patients; PR, pre-manifest HD.

find a significant correlation between the miR-9∗ levels and
the Unified Huntington’s Disease Rating Scale; however, the
potential implications of miR-9∗ as a biomarker in the peripheral
leukocytes of HD patients require further investigation.

Advances in microarray analysis technology have provided
prospects for the screening of miRNAs as biomarkers. Gaughwin
et al. (2011) conducted microarray analysis to study differentially
expressed miRNAs in mHtt-Exon-1-overexpressing cell lines.
By comparing the expression levels of 56 candidate miRNAs,
they concluded that miR-34b and miR-1285 were upregulated
in mHTT-Exon-1-transfected human teratocarcinoma cell line,
which is a model of mHtt-induced transcription is supported by
immune complex 2 -positive, nuclear immunostaining and the
reduction in pluripotent and neuron-specific transcript levels,
including known mHtt targets (BDNF). The expression levels
of these two miRNAs were studied in the plasma of patients
with HD. The results showed that miR-34b levels decreased
significantly in the plasma of pre-symptomatic HD patients as
compared to that in the control group. In contrast, no significant
differences were observed between the miR-1285 levels of the two
groups. Differential miR-34b expression was verified in the HD
cell model. On the basis of these results, the authors concluded
that miR-34b represented a potential biomarker for HD that
was stably expressed in the plasma and was detected before
clinical symptoms are evident. However, their observations were
based on a small patient cohort. Thus, more patients should be
evaluated to determine the biomarker potential of miR-34b.

The PREDICT-HD study was a prospective observational
study conducted for more than a decade at 32 international
sites (September 2002–July 2014). All PREDICT-HD participants
underwent genetic testing prior to enrollment in the study.
Reed et al. (2018) collected CSF samples from 60 PREDICT-HD
study participants (15 symptomatic, 30 pre-symptomatic, and 15
controls) to evaluate miRNA levels. A total of 2,081 miRNAs were
detected, and six of these miRNAs (miR-135b-3p, miR-140-5p,
miR-520f-3p, miR-3928-5p, miR-4317, and miR-8082) showed
significantly increased levels in pre-symptomatic HD patients.
The increase in the miRNA levels was positively correlated with

the risk of HD onset, with the lowest miRNA levels in the
control group and the highest levels in symptomatic HD patients.
These levels tended to remain stable. Although the study of CSF
biomarkers is not as extensive as that for peripheral biomarkers,
Reed et al. (2018) suggested a clinical basis for using CSF miRNAs
as biomarkers for HD patients, especially for the early diagnosis
of pre-symptomatic HD patients.

Hoss et al. (2014, 2015a) systematically studied the
relationship between miRNAs and the pathogenesis of HD
and their potential use as HD biomarkers. In one study, the
expression levels of four miRNAs in the plasma of the subjects
(26 symptomatic, four asymptomatic, and eight controls) were
measured, and the potential value of these miRNAs as HD
biomarkers was evaluated. The plasma levels of miR-10b-5p
and miR-486-5p increased significantly in symptomatic HD
patients but did not change in asymptomatic patients. These
results suggested that increased miR-10b-5p and miR-486-5p
plasma levels might be clinically relevant for the diagnosis of HD
(Hoss et al., 2015b).

The miRNAs were considered to be the first candidates
for the next generation of biomarkers because they have
some advantages over other candidates such as proteins and
metabolites. First, miRNAs are more likely to lead to early
diagnosis because of their upstream position in the regulatory
cascade. Second, it is easier to discover new miRNAs as
biomarkers through genomic tools such as oligonucleotide
microarrays and deep sequencing, which provide higher
throughput than mass spectrometry, the main tool for protein
and metabolite biomarker identification. Third, low abundance
miRNA biomarkers can be amplified and then detected in a
clinical setting by real-time quantitative PCR (qPCR). qPCR
has been used in FDA-approved clinical trials, but there is
no equivalent method for detecting low abundance proteins
or metabolites (Li and Kowdley, 2012). However, the use of
circulating miRNAs as a diagnostic biomarker for HD still has the
following problems that need to be addressed and resolved: (1)
determination of the specificity of the circulating miRNA in the
diagnosis of HD. The expression level of the circulating miRNA
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may be affected by the combination of multiple diseases in the
same patient, which may affect the specificity of the diagnosis;
(2) there is a lack of uniform and accurate detection method for
circulating miRNA and a lack of internal reference of miRNA
to correct the expression level, because the use of tissue-related
internal reference to correct the expression level of circulating
miRNA is not scientifically rigorous; (3) currently, the research
on circulating miRNA as a diagnostic biomarker of HD is still
in the exploratory stage, and the number of cases and sample
types detected are limited. The sensitivity and specificity of the
circulating miRNA that may be selected as a diagnostic biomarker
of HD need further experimental verification; and (4) The
pathological mechanism by which circulating miRNA is involved
in HD progression remains unclear, and the reference range
of the expression level of circulating miRNA under different
pathological conditions (symptomatic or pre-symptomatic HD)
is yet to be identified.

THE miRNAs-BASED THERAPEUTIC
STRATEGIES

The miRNA-based therapeutic strategies can be direct
(i.e., increasing or decreasing specific miRNA levels to regulate
target gene expression) or indirect (i.e., regulating target gene
expression by miRNA activation or enhanced endogenous
repair mechanisms in the brain). Despite a better understanding
of the expression and function of miRNAs in HD, only a
few miRNA-based strategies have been studied. Evers et al.
(2018) delivered engineered miRNA targeting human Htt to
mouse and minipig HD models through adeno-associated virus
vector 5 (AAV5-miHTT) to verify the therapeutic effect of this
technique. They found that intrathecal and bilateral thalamic
injection of AAV5-miHTT could significantly improve the motor
coordination of HD animals (Evers et al., 2018). Moreover, the
survival time of the R6/2 HD mice treated with AAV5-miHTT
was significantly prolonged. Additional experiments showed
that changes in the striatum and cerebral cortex of the R6/2 HD
mice in the AAV5-miHTT treatment group were significantly
reduced, and neuronal dysfunction was significantly alleviated.
These changes were accompanied by an improvement in
HD symptoms. Similar results were obtained with transgenic
HD minipigs (Evers et al., 2018). The long-term efficacy of
AAV5-miHTT was evaluated by injecting AAV5-miHTT into
the striatum of Q175 HD mice. The effect of AAV5-miHTT
therapy was dose-dependent and reduced the Htt protein by
inhibiting the formation of mHTT aggregates in the striatum and
cortex. After 8 weeks of AAV5-miHTT therapy, the dyskinesia
of HD transgenic mice was significantly improved, and the
median survival time of the treated mice was prolonged by
4 weeks. Indeed, studies confirmed that AAV5-miHTT could
reduce aggregate formation, prevent neuronal dysfunction, and
alleviate HD-like symptoms (Spronck et al., 2019). By injecting
AAV5-miHTT into the bilateral striatum of an HD rat model,
Miniarikova et al. (2017) showed that AAV5-miHTT could
effectively inhibit mHTT mRNA and almost completely prevent
the formation of mHTT. The authors believed that the structure

of AAV5-miHTT is the most favorable factor in this approach;
this is because AAV5 delivery of miRNA-mediated reduction
of HTT did not activate microglia or astrocytes, indicating that
the AAV5 vector or the therapeutic precursor sequence does not
induce an immune response (Miniarikova et al., 2017). Recently,
similar HD animal model experiments have also yielded
consistent results, further confirming the promising prospects
of intrastriatal miRNA-based gene therapy (Spronck et al., 2021;
Vallès et al., 2021). However, when designing an HTT-lowering
therapy that simultaneously reduces mHTT and wtHTT proteins
in a non-selective manner, the role of wtHTT needs to be
considered to achieve a balance between the benefits of reducing
mHTT and maintaining sufficient wtHTT levels to perform
its normal cellular functions. In addition, the administration
of AAV5-miHTT is also a challenge when unexpected side
effects occur. Therefore, although strong preclinical efficacy is
required, safety is more important (Miniarikova et al., 2016;
Caron et al., 2020; Evers and Konstantinova, 2020). Such a safety
package should include toxicology studies conducted under
good laboratory practice as well as immunogenicity and human
sequence-specific miRNA off-target analysis. The key difference
in this single treatment is that a more invasive injection method
is to inject directly into the areas known to be most affected
by the disease, the striatum. Although attempts to target these
downstream pathways for therapeutic benefit have not been
successful (Travessa et al., 2017), further investigation on miRNA
dysregulation and the pathogenesis of HD and the development
of safe and effective RNA interference drugs remain a potential
therapeutic approach for HD.

CONCLUSION

Emerging studies have confirmed a role of dysregulated miRNAs
in the pathogenesis of HD, some of which have been consistently
identified as HD-specific. As biomarkers, miRNAs have great
potential for diagnosing HD and for monitoring disease
progression and treatment response. Further studies are required
to better understand their roles in physiological and pathological
conditions and to verify their effectiveness as non-invasive
biomarkers. With the advent of clinical trials, therapeutic miRNA
gene intervention methods are likely to change the course of this
neurodegenerative disease.
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