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5 Oteo J, Ortega A, Bartolomé R et al. Prospective multicenter study of
carbapenemase-producing Enterobacteriaceae from 83 hospitals in Spain
reveals high in vitro susceptibility to colistin and meropenem. Antimicrob
Agents Chemother 2015; 59: 3406–12.
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Sir,
The evolution of resistance that arises within individual patients
remains an important clinical problem in certain clinical situations.
In such cases, it is important to consider pharmacokinetic proper-
ties such as tissue penetration and half-life time of the drugs to
avoid compartmentalization issues that can increase the likelihood
of antibiotic resistance evolving.1 Here we describe a case of an
acute Pseudomonas aeruginosa infection where compartmentali-
zation within the CNS was associated with the in vivo evolution
of resistance to multiple drugs, including piperacillin/tazobactam.
We collected isolates from a single patient over the course of the
infectious process, and sequenced and assembled their genome
to identify the genomic changes leading to resistance.

At our institution, case reports are exempt from independent
review. Individually identifying information, including patient age,
sex, specific dates and comorbidities, was not disclosed to protect
the patient’s identity.

We report a case of a patient in their early 20 s diagnosed with
AML 3 months prior to admission. After a third cycle of high-dose
Ara-C consolidation chemotherapy, the patient was brought to the
emergency department with a 39.5�C fever and tachycardia but
normal blood pressure. Admission blood cultures were positive for
P. aeruginosa. Empirical treatment with piperacillin/tazobactam,
vancomycin and micafungin was initiated (Figure 1a) which led to
a rapid resolution of the bacteraemia. However, fevers persisted
and the patient subsequently developed confusion and altered
sensorium.

On Day 10, the patient became more lethargic and developed
acute left-sided weakness. On the same day, brain MRI revealed
small foci of restricted diffusion in the right frontal lobe suggestive
of an infiltrative inflammatory process (Figure 1b). The patient was
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Figure 1. Summary of clinical course, antibiotic treatment and genomic analysis of P. aeruginosa isolates. (a) Course of antibiotic treatment during
hospitalization (white background) and as an outpatient (grey area). (b–e) MRI or CT angiogram images of the patient’s brain taken at different stages
of disease progression. Grey dashed lines extending from panel (a) to (b–e) indicate the hospitalization day in which the images were taken. (f)
Antibiotic susceptibility profiles of the P. aeruginosa isolates OT4, OT7 and OT8. BAL, bronchoalveolar lavage fluid. (g) Identified genomic variants in
OT4, OT7 and OT8 over the entire closed genomes of the isolates. The functional annotation of each gene is given on the right side of the heat map.
Annotation of each variant is indicated in Human Genome Variation Society (HGVS) format. Antibiotic doses in (a): piperacillin/tazobactam, 4.5 g IV
q8h; ampicillin, 2 g IV q4h; cefepime, 2 g IV q8h; ciprofloxacin, 400 mg IV q8h; meropenem, 2 g IV q8h; vancomycin was not dosed consistently; and
micafungin, 150 mg IV q24h.
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transferred to the ICU and intubated for respiratory protection.
The antibiotic treatment was then transitioned to cefepime, ampi-
cillin and vancomycin (Figure 1a). On hospital Day 11 a bacterial
culture from bronchoalveolar lavage fluid grew P. aeruginosa
(representative isolate OT7) with similar antibiotic susceptibilities
to the earlier blood culture collected on admission (representative
isolate OT4; Figure 1f). A bacterial culture of the CSF taken on the
same day grew P. aeruginosa (representative isolate OT8) resis-
tant to multiple antibiotics, including piperacillin/tazobactam
and cefepime (Figure 1f). Antibiotic therapy was changed to
meropenem and ciprofloxacin (Figure 1a). A second brain MRI
taken on hospital Day 17 demonstrated an increase of the
inflammation in the right parasagittal frontal lobe with blood
products around the area of restricted diffusion, consistent with
the presence of an abscess (Figure 1c). A CT cerebral angiogram
performed on hospital Day 18 demonstrated an 8%6 mm right
middle cerebral artery aneurysm in the location of the brain
abscess (Figure 1d). On the same day, the patient underwent
frontal craniotomy for evacuation of subdural empyema and
resection of the infected aneurysm.

Fevers resolved after surgery, and the patient improved
clinically with resolution of left-sided weakness. The patient
was treated with 2 more weeks of meropenem and ciprofloxa-
cin, followed by an additional 6 weeks of meropenem
monotherapy, partially as outpatient parenteral antimicrobial
therapy. Brain MRI performed 8 weeks after surgery demon-
strated sequelae of the infectious changes with minimal reactive
changes (Figure 1e).

To identify the genetic changes between the three isolates
taken from the patient (OT4, OT7 and OT8) we performed WGS us-
ing Illumina HiSeq 125 bp paired-end data, as well as long-read se-
quencing with the Oxford Nanopore MinION technology. Across
the entire high-quality, closed genomes of all three isolates (as-
sembled genomes are available at the NCBI database with the
BioProject accession number PRJNA598709) we confidently identi-
fied just five variants in five different genes. To determine the an-
cestral and derived state of the five variants, we compared each
with the reference strain P. aeruginosa PAO1 (Figure 1g). The OT4
isolate had a frameshift deletion in the gene pslI [p.(S16RfsTer37)],
while the remaining isolates shared PAO1’s genotype. pslI is part of
the polysaccharide psl locus, which encodes 15 co-transcribed
genes predicted to synthesize Psl, a mannose- and galactose-rich
exopolysaccharide required for the formation of structurally sound
biofilms.2 Despite having a similar antimicrobial susceptibility pro-
file to OT4, OT7 showed two additional variants in genes coding for
an uncharacterized transmembrane protein [PA1625;
p.(Y173A_R174delfsTer188)] and an uncharacterized protein be-
longing to the MBL superfamily, respectively [PA0057; p.(V185I)]
(Figure 1g).

The MDR OT8 isolate had missense variants in the genes
dacB [p.(T428P)] and ampD [p.(T139A)] (Figure 1g). Complete
knockouts of dacB and ampD have been associated with the
deregulation of the b-lactamase AmpC, which led to high levels
of resistance to almost all b-lactams, with the exception of
the carbapenems.3 Several distinct variants in ampD have pre-
viously been reported to increase resistance to the b-lactams
in clinical isolates of P. aeruginosa, highlighting the mutational
diversity of this site.4–6 Indeed, 80 distinct non-synonymous
SNPs in ampD were found in at least 1 of 99 clinical isolates

of P. aeruginosa with varying levels of resistance to the
b-lactams.7 Similarly, 36 non-synonymous SNPs in dacB were found
in the same database.7

In humans, the effective concentration of piperacillin and
tazobactam in the central nervous system is not commonly
achieved as it can be highly variable among patients and usually
lower than required for effective treatment.8 Previous studies
have shown that piperacillin, alone and in combination with tazo-
bactam, systematically leads to the derepression of AmpC. Thus,
the variability in the concentration of both drugs within the CNS
could have allowed selection for mutations in dacB and ampD
that cause derepression of this b-lactamase. Additionally, the pa-
tient had a reduced capacity to fight the infection, which could
have resulted in a larger population size, thereby increasing the
probability of resistance emergence.9,10 Consistent with this
interpretation, imaging showed P. aeruginosa established itself
in high numbers within the CNS (visible in the MRI and CT scans in
Figure 1b–e), subsequently acquiring two mutations leading to
clinical levels of resistance to all b-lactams tested, except for
meropenem (Figure 1g).

The link between theoretical principles and this patient’s clinical
course was evident after the fact, but predicting evolution remains
as challenging in patients as it is in all other aspects of biology.11

This case demonstrates the need to improve these efforts and
suggests that integrating evolutionary principles into clinical risk
prediction models may be fruitful.
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Sir,
A number of drugs, including antibiotics, are notorious for causing
sometimes rapid deterioration in patients with myasthenia.1 To
guide the clinician’s choice there are lists of substances that can in-
terfere with neuromuscular transmission.2–4 However, some of the
substances in such a list may have been included because of only
a few reports. Moreover, a substance not listed could indeed be
safe or excluded because of an arbitrary threshold of reports in the
literature. Ideally, the clinician would appreciate a white list of
drugs explicitly labelled as carrying a low risk of worsening
myasthenia.

As an alternative to lists of substances to avoid, the relative risk
of all antimicrobial options may be estimated from pharmacovigi-
lance databases. For the statins, this approach was pursued re-
cently.5 However, that study addressed whether statins per se
carry a risk of worsening myasthenia. Thus, all drugs other than
statins were used as a reference in that study. In contrast, we
compared the myasthenia-worsening risk only within the group of
antibiotics. Therefore, we used all other antibiotic drugs from a pre-
defined list as a reference to calculate the reporting OR (ROR) for a
given antibiotic.

Via VigiAccess,6 we accessed VigiBaseVR , a database of sus-
pected adverse drug reactions (ADRs) reported to the WHO
Programme for International Drug Monitoring maintained by
the Uppsala Monitoring Centre7 (accessed date: 25 May 2020).
For a specific antibiotic drug D0 the database provides the num-
ber nD0;all of all ADRs reported for that drug. We compiled a
list of antibiotic drugs for which nD0;all was at least 5000. For an-
tibiotic drugs from that list, the target ADRs were found by
searching for ‘Myasthenia’, ‘Myasthenic reaction’ and
‘Myasthenic crisis’ in the output. We added the number of these
three entries to obtain:

a ¼ nD0; Myasthenia (1)

and from that:

c ¼ nD0;not Myasthenia ¼ nD0; all � nD0;Myasthenia: (2)

By adding the corresponding number of reports for all other
drugs D in our list of antibiotics (omitting the antibiotic D0 under
consideration) we found:

b ¼ Nnot D0;Myasthenia ¼
X

D 6¼D0

nD;Myasthenia (3)

and:

d ¼ Nnot D0;not Myasthenia ¼
X

D6¼D0

nD;not Myasthenia (4)

and finally, the RORD0 as:

RORD0 ¼
a=c

b=d
: (5)

ROR is the OR derived from a 2%2 contingency table as illustrated
in Table S1 (available as Supplementary data at JAC Online). If
RORD0 < 1, a particular drug is less likely to be reported as causing
worsening of myasthenia than all other antibiotics. Whether this
difference was significant or not was assessed with the standard
v2 test (1 degree of freedom), with v2"3.841 corresponding to
P"0.05.8
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