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Abstract

Background: Differences in arsenic metabolism capacity may influence risk for type 2 diabetes, 

but the mechanistic drivers are unclear. We evaluated the associations between arsenic metabolism 
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with overall diabetes prevalence and with static and dynamic measures of insulin resistance among 

Mexican Americans living in Starr County, Texas.

Methods: We utilized data from cross-sectional studies conducted in Starr County, Texas, 

from 2010-2014. A Mendelian randomization approach was utilized to evaluate the associations 

between arsenic metabolism and type 2 diabetes prevalence using the intronic variant in the 

arsenic methylating gene, rs9527, as the instrumental variable for arsenic metabolism. To further 

assess mechanisms for diabetes pathogenesis, proportions of the urinary arsenic metabolites 

were employed to assess the association between arsenic metabolism and insulin resistance 

among participants without diabetes. Urinary biomarkers of arsenic metabolites were modeled as 

individual proportions of the total. Arsenic metabolism was evaluated both with a static outcome 

of insulin resistance, homeostatic measure of assessment (HOMA-IR), and a dynamic measure of 

insulin sensitivity, Matsuda Index.

Results: Among 475 Mexican American participants from Starr County, higher metabolism 

capacity for arsenic is associated with higher diabetes prevalence driven by worse insulin 

resistance. Presence of the minor T allele of rs9527 is independently associated with an increase in 

the proportion of monomethylated arsenic (MMA%) and is associated with an odds ratio of 0.50 

(95% CI: 0.24, 0.90) for type 2 diabetes. This association was conserved after potential covariate 

adjustment. Furthermore, among participants without type 2 diabetes, the highest quartile of 

MMA% was associated with 22% (95% CI: −33.5%, −9.07%) lower HOMA-IR and 56% (95% 

CI: 28.3%, 91.3%) higher Matsuda Index for insulin sensitivity.

Conclusions: Arsenic metabolism capacity, indicated by a lower proportion of monomethylated 

arsenic, is associated with increased diabetes prevalence driven by an insulin resistant phenotype 

among Mexican Americans living in Starr County, Texas.
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Introduction

Arsenic is a global health threat that contaminates drinking water, food, soil, and 

air for millions of people worldwide. There is significant evidence of the negative 

health consequences of arsenic exposure, including linkage to cancer, skin lesions, and 

cardiovascular disease (Kuo et al., 2017). There is also research that associates arsenic 

exposure with type 2 diabetes (T2D) risk (Sung et al., 2015); however, the mechanisms 

of arsenic’s metabolic toxicity are incompletely understood. Following exposure to 

inorganic arsenic (iAs), the metalloid is metabolized by multiple enzymes including 

arsenite methyltransferase (AS3MT) in the liver where it is methylated to increase the 

efficiency of excretion. Inorganic, monomethyl- (MMA), and dimethyl-arsenic (DMA) all 

differ with respect to both toxicity and clearance. Arsenic is commonly evaluated using 

urinaiy biomarkers where the proportion of the arsenic species can indicate the efficiency 

of methylation. Specifically, a higher proportion of MMA in urine indicates a lower 

methylation efficiency whereas a higher proportion of DMA indicates a higher methylation 

efficiency (Del Razo et al., 1997). How methylation efficiency influences arsenic’s toxicity 
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has been studied extensively for cancer and cardiovascular disease outcomes with consistent 

evidence indicating MMA as the more pathogenic arsenic species; however, the evidence for 

metabolic disease and diabetes is conflicting. Additionally, research evaluating associations 

between arsenic methylation efficiency and diabetes among minority populations, whose 

exposure is elevated but not at or above the World Health Organization limit, is sparse.

Hispanics/Latinos are the largest and growing minority population in the United States, and 

they have both higher rates of chronic disease and a higher likelihood of toxic environmental 

exposures (Schulz and Sargis, 2021). Mexican Americans make up over 60% of the 

Hispanic/Latino population living in the United States, and many living in Southern Texas, 

at the Texas-Mexico border, have markedly elevated rates of chronic disease, including T2D 

(Hanis et al., 1983, U.S. Census Bureau, 2020). With the exception of a few regions, the 

majority of the United States has low to moderate levels of arsenic in groundwater (<50 

ug/L) and community water systems (<10 ug/L). Texas ranks 10th for populations dependent 

upon domestic well water with over 1.3 million residents using domestic wells; located on 

the national border, Starr County specifically has a moderate concentration of private wells 

per square kilometer (Johnson and Belitz, 2017). Starr County groundwater has been noted 

to have arsenic levels above the EPA standard (10 ug/L) in the United States, and the county 

has markedly elevated rates of T2D (Hanis et al., 1983).

The associations between arsenic exposure and both T2D prevalence and incidence have 

been extensively studied in the United States through both cross-sectional and prospective 

investigations (Navas-Acien et al., 2008, Grau-Perez et al., 2017). It is postulated that the 

metabolism of inorganic arsenic may contribute to the metalloid’s toxicity, but limitations 

to biomarker evaluation and potential residual confounding introduce debate into the field. 

In contrast to the risk for cardiovascular disease and cancer, several studies have found 

an association between lower proportion of urinary MMA and increased prevalence of 

diabetes and obesity (Del Razo et al., 2011, Gribble et al., 2013, Rangel-Moreno et al., 

2022). Additionally, analyses conducted using the Strong Heart Study cohort also reported 

associations between a lower proportion of urinary MMA and both diabetes incidence and 

insulin resistance (Grau-Perez et al., 2017, Kuo et al., 2015). On the other hand, a recent 

study conducted in New York City found associations between increased proportion of 

MMA with increased diabetes prevalence and increased hemoglobin A1c (Wu et al., 2021).

The distribution of organic arsenic species in urine has been shown to have genetic 

determinants, with single nucleotide polymorphisms (SNPs) in the gene encoding for 

AS3MT established as independent predictors of arsenic metabolite proportions (Pierce 

et al., 2012). As a result, these SNPs have been utilized as instrumental variables to 

assess associations between arsenic metabolism and health outcomes resistant to residual 

confounding and exposure misclassification (DiGiovanni et al., 2020). This method is 

referred to as Mendelian randomization (MR), which can be conceptualized as a type of 

instrumental variable study design, if the instrumental SNPs are associated with arsenic 

methylation and with type 2 diabetes, but that the association with diabetes is exclusively 

mediated through arsenic methylation (Burgess et al., 2013).
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Utilizing a well-phenotyped cohort of Mexican American adults living in Starr County, 

Texas, this study used MR to evaluate the association between inorganic arsenic metabolism 

and diabetes prevalence in a minority population in the United States between the years 

2010-2014. The SNP rs9527, an intronic variant in the AS3MT gene, has been established 

as a strong independent predictor of arsenic methylation efficiency and was used as an 

instrumental variable for arsenic metabolism in this study (Fig. 1) (Pierce et al., 2012, 

DiGiovanni et al., 2020, Das et al., 2016, Gao et al., 2019). To further elucidate mechanisms 

of toxicity, we investigated the associations of inorganic arsenic metabolism with continuous 

measures of insulin resistance among individuals without diabetes in the same cohort using 

both steady-state and dynamic measures.

Methods

Study population

The study sample for this analysis included Mexican American individuals residing in Starr 

County, Texas, who had participated in a previous study of novel diabetes risk factors 

(Hanis et al., 2016) and individuals participating in an ongoing study of the gut microbiome 

and progression of dysglycemia (Jun et al., 2020). Briefly, a systematic survey, largely 

representative of the age and sex distribution of the Starr County population, was conducted 

in 3,085 households within 309 blocks in Starr County from 2002-2006 to determine the 

frequency of diabetes. Predominantly from those who answered the survey, 1200 individuals 

from independent households (selected to include approximately half with diabetes) returned 

for a follow-up examination of novel diabetes risk factors in 2010-2014 (Hanis et al., 2016). 

Of these participants, 412 individuals were randomly selected for urinary metal analyses. 

The sample size was then supplemented with an additional 157 individuals (identified from 

the original survey) without known diabetes participating in an ongoing study examining the 

impact of the gut microbiome on the progression of dysglycemia. In total, 569 individuals 

were selected for urinary metal analyses, of which 475 participants aged 31 to 80 years 

had undergone genetic testing. To evaluate the association between arsenic metabolism and 

insulin resistance, 414 individuals without diabetes were included. Complete oral glucose 

tolerance tests were completed on a subgroup of 257 of the 414 individuals. The overall 

analytical subsample selection is depicted in Fig. 2.

Assessment of outcomes

Hemoglobin A1c (HbA1c) (Siemens DCA Vantage Analyzer point of care device, 

Malvern, PA), fasting plasma glucose (FPG), post-load glucose, and fasting plasma 

insulin (Roche Cobas Analyzer, Chicago, IL) concentrations were analyzed from blood 

samples collected at enrollment. Seventy-five-gram oral glucose tolerance tests (OGTTs) 

were conducted with blood drawn at 0, 15, 30, 60, 90, and 120 minutes. Glucose 

was measured using a YSI 2300 STAT Plus Glucose and Lactate Analyzer (YSI Life 

Sciences, Yellow Springs, Ohio). Diabetes status was determined using the American 

Diabetes Association diagnostic criteria defined as meeting any of the following: 1) 

hemoglobin A1c greater than or equal to 6.5%, 2) fasting plasma glucose greater than or 

equal to 126 mg/dl, or 3) 2-hour postload glucose greater than or equal to 200 mg/dl. 

Additionally, two independent insulin resistance measures were calculated, the homeostatic 
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model assessment of insulin resistance (HOMA-IR), an estimate of steady-state insulin 

resistance, and the Matsuda Index for insulin sensitivity, a dynamic measure of insulin-

glucose dynamics. HOMA-IR was calculating using 
G0

nmol
L ∗ I0

μU
mL

22.5  (Matthews et al., 

1985), where I0 represents fasting insulin, and G0 represents fasting glucose. The Matsuda 

Index is a measurement of insulin sensitivity using the 6 time points of an oral glucose 

tolerance test with both glucose and insulin measurements in the following equation 
10000

g0 ∗ i0 ∗ go ∗ 15 + g30 ∗ 30 + g60 ∗ 30 + g90 ∗ 30 + g120 ∗ 15
120 ∗ i0 ∗ 15 + i30 ∗ 30 + i60 ∗ 30 + i90 ∗ 30 + i120 ∗ 15

120
(Matsuda and DeFronzo, 1999). These outcomes were further supplemented with the 

evaluation of the homeostatic model assessment of β-cell function (HOMA-β), which was 

calculated using 
I0

pmol
L ∗ 3.33

G0
mmol

L − 3.5
, and HbA1c.

Assessment of exposure

Spot urine samples were collected from each participant and stored at −70°C until analyses 

were performed. The urine samples were analyzed for iAs, MMA, DMA, and arsenobetaine 

(AsB) at the Trace Element Analysis Core at Dartmouth College. Briefly, samples were 

oxidized with 10% H2O2, this converts all inorganic arsenic to arsenate, which simplifies 

and enhances the chromatography but does not otherwise affect the organic arsenic species 

(Scheer et al., 2012). The urine samples were analyzed by anion chromatography, Hamilton 

PRPX100 column with carbonate eluant, coupled to ICP-MS using an Aglient 1260 HPLC 

and 8900 ICP-MS (Agilent, Wilmington DE) (Jackson, 2015). Quality control included 

duplicate and spiked species samples and continuing analysis of reference urines NIST 2669 

level 1 and 2 every ten samples. Within this study population, 0.2% of samples were below 

the limit of detection (LOD) for DMA and MMA, 35% for iAs, and 3.8% for arsenobetaine 

(AsB). Samples below the limit of detection were assigned calibration values from the 

instrument.

As the primary objective of this study is to evaluate the impact of inorganic arsenic 

metabolism on diabetes risk and insulin resistance independent of seafood consumption, the 

metabolites were adjusted for other organic sources of arsenic exposure. AsB is a lipid form 

of arsenic commonly found in fish and other marine animals that is metabolized into MMA 

and DMA (Jones et al., 2016). As a result, the measured urinary arsenic from participants 

was adjusted for AsB. The residual method was utilized to determine the estimated arsenic 

species concentration independent of AsB by regressing log transformed AsB on the log 

transformed arsenic species and extracting the model residuals using the following equation: 

log(arsenic species) = β0 + β1 ∗ log(AsB) + εi, where εi represents the estimated arsenic species 

concentration independent of AsB. These estimated concentrations were utilized to calculate 

the relative proportion of each species that were utilized in the subsequent analysis.

The arsenic methylation measures were calculated from the estimated measured 

concentrations of iAs, MMA, and DMA. Total arsenic concentration was calculated as 

a sum of each estimated arsenic species, namely MMA, DMA, and iAs. The relative 
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proportion of each species (MMA%, DMA%, and iAs%) was standardized by the total 

arsenic concentration.

Genotyping

DNA was isolated and extracted from whole blood samples. Genotyping was conducted 

using the Affymetrix Genome-Wide SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA) 

and custom genome-wide array of for insulin sensitivity, a dynamic measure of insulin-

glucose dynamics the Broad Institute and imputed with 1000 Genomes phase 3 reference 

panel using the Michigan Imputation Server (Michigan Imputation Server). Of the 475 

participants with rs9527 genotype data, the minor allele frequency (T) was observed to be 

0.15. Genotype was coded as a binary variable with 1 representing the presence of at least 

one minor T allele.

Assessment of covariates

Self-reported participant characteristics, including age (years), sex (male, female), years 

of education, employment status (full time, part time, unemployed, retired, or disabled), 

smoking status (current, former, never), pack-years of smoking, height (m), weight (kg), and 

alcohol consumption (yes, no) were available from baseline questionnaires administered to 

participants. Participant’s height in meters and weight in kilograms were used to calculate 

body mass index (kg/m2). Urinary creatinine was quantified from the spot urine samples 

using DetectX Urinary Creatinine Kit (Arbor Assays, Ann Arbor, Michigan). Models were 

adjusted for covariates noted to be associated with either arsenic exposure or diabetes risk 

from prior literature (Rahman et al., 2006, Lindberg et al., 2010, Jain, 2015).

Statistical analyses

Demographic characteristics were summarized for the 475 individuals with genetic data, 

the 414 diabetes-free participants with HOMA data, and the 257 diabetes-free participants 

with glucose tolerance testing data. Creatinine standardized total arsenic concentration was 

estimated by dividing the urinary arsenic concentration (μg/L) by urinary creatinine (mg/dL) 

and multiplying by a factor of 100 for a standardized arsenic concentration of μg/g of 

creatinine. The mean and standard deviation (SD) for creatinine-standardized total arsenic 

and each proportion of arsenic species are presented for all participants.

To demonstrate the relationship between the instrumental variable and exposure of interest, 

linear regression was utilized to estimate the association between the minor T rs9527 

allele with MMA%. Logistic regression was used to estimate both the association between 

MMA% and diabetes status and rs9527 T allele with diabetes status. Each model 

underwent a stepwise, a priori adjustment approach where the crude; adjusted for age 

and sex; and adjusted for age, sex, smoking status, and body mass index are presented 

for each model. A cross product term between genotype and creatinine-adjusted arsenic 

exposure, dichotomized at the median concentration, was included, and both stratum-

specific associations for genotype and P-values for interaction are presented for each model.

To evaluate associations between the arsenic metabolite proportions and continuous 

glycemic traits, we constructed quartiles of metabolite percentages based on the distribution 
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in the study sample to capture potential non-linear relationships. The first quartile, 

representing participants with the lowest metabolite proportion levels, was used as the 

reference group. We used multivariable linear regression to estimate the percent differences 

in HOMA-IR, Matsuda index, HOMA-β, and HbA1c as (eβ − 1) × 100 % for each quartile 

compared to the referent. The P-value for trend was obtained by modeling the quartiles 

as a single ordinal variable. All 4 outcomes were natural log-transformed due to skewed 

distributions. Models were adjusted for a priori confounders, including sex (male, female), 

age (years), smoking status (current, former, never), pack-years of smoking, BMI (kg/m2), 

and alcohol consumption (yes, no) (Rahman et al., 2006, Lindberg et al., 2010, Jain, 2015).

Additionally, to account for potential confounding by initial dosage of total arsenic, 

creatinine-adjusted total arsenic was included as a model covariate (Willett et al., 1997). As 

a result, the association between an increase in one arsenic species proportion corresponds 

to a decrease in either of the other two species. As the second methylation step, which 

converts MMA to DMA, is the final methylation step for arsenic methylation, discerning 

the relationship between changes in these two species is vital for understanding methylation 

efficiency. To address this, the leave-one-out approach was utilized where two metabolite 

proportions are included in the model and the third is left out (Kuo et al., 2015). This 

method allows us to present the relative measures of association. Specifically, the association 

for each metabolite proportion will be presented twice, each measure relative to a decrease 

in the two counterparts individually.

All statistical analyses were performed using SAS software version 9.4 (SAS Institute Inc., 

Cary, NC), R version 3.0.2 (R Foundation for Statistical Computing, Vienna, Austria), and 

Stata 17 (StataCorp, College Station, TX).

Results

Participant Characteristics and Arsenic Metabolite Distributions

Table 1 shows the characteristics of each study participant subsample. Most participants 

were female, had a BMI in the obese range, worked full-time, had a high school education, 

and did not smoke or drink alcohol. Table 2 shows the mean and standard deviation of 

the creatinine-standardized total arsenic and metabolite proportions for each sample. There 

are minimal differences between the two diabetes-free participant classes. As a result, the 

same confounders were conditioned on for the continuous glycemic outcome analysis and a 

stepwise adjustment approach was utilized for the Mendelian randomization analysis.

Mendelian Randomization

To use the allelic variation in the rs9527 SNP as an instrumental variable for MMA%, 

we assessed the direct association between binary genotype and MMA% using a linear 

regression model stratified by total arsenic concentration dichotomized at its median. At 

higher levels of arsenic exposure, the T allele for rs9527 is associated with a 4% increase in 

MMA% (2%, 6%), and this estimate is conserved across all levels of confounding control 

(p<0.001) (Table 3; Fig. 3). Using multivariable logistic regression, log transformed MMA% 

is associated with 50% reduced odds for type 2 diabetes (0.31, 0.83) and this estimate is 
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conserved for both high and low total arsenic exposures with additional confounding control. 

Lastly, utilizing rs9527 genotype as an instrumental variable revealed consistent associations 

with MMA% exposure where the T allele was found to be associated with a 45% reduction 

in the odds of type 2 diabetes (0.27, 1.10) among those with high total arsenic exposure 

(p=0.09).

Arsenic Metabolism and Insulin Resistance

To discern potential mechanisms for the association between arsenic metabolism and 

diabetes pathogenesis, we assessed the associations between arsenic metabolite proportions 

with continuous glycemic traits among diabetes-free participants. Table 4 summarizes the 

associations between quartile increases in the proportion of each metabolite with HOMA-IR 

with both a priori adjustment and the leave-one-out approach. Compared to the lowest 

quartile of MMA%, the highest quartile had a 22% decrease in HOMA-IR with a significant 

linear trend (p=0.001). Using the leave-one-out approach, increased MMA% was associated 

with 34% and 42% reductions in HOMA-IR per decrease in DMA% and iAs%, respectively, 

with significant linear trends (p=0.0002 and p=0.008, respectively). The highest quartile 

of DMA% was associated with 67% higher HOMA-IR but only when MMA% was also 

decreased (p=0.001). Similarly, the highest quartile of iAs% corresponded to higher HOMA-

IR compared to the lowest quartile (p=0.006; p=0.009).

Matsuda Index

There are limitations to the use of HOMA-IR as a measurement of insulin-glucose 

homeostasis as it is a static measure of insulin resistance. A subgroup of the diabetes-free 

sample (n=257) completed OGTTs with glucose and insulin measurements at 0, 15, 30, 60, 

90, and 120 minutes after receiving a 75-gram oral glucose load. These measurements were 

used to calculate the Matsuda Index for insulin sensitivity for which higher values represent 

greater insulin action and enhanced glucose uptake. The Matsuda Index is a dynamic 

measure of insulin sensitivity and is a robust estimate for insulin-glucose dynamics. Table 

5 shows the associations between arsenic species with the Matsuda Index among the 257 

participants with OGTTs. Similar to HOMA-IR, MMA% and DMA% were associated with 

a 57% increase in insulin sensitivity and a 26% decrease in insulin sensitivity, respectively 

(p<0.0001; p=0.01). Using the leave-one-out approach, MMA% was associated with a 

significant 134% and 76% increased Matsuda Index corresponding to a decrease in iAs% 

and DMA%, respectively (p<0.0001). Corresponding to a decreased MMA%, DMA% had 

a significant negative association with Matsuda Index with the highest quartile showing a 

40% lower Matsuda Index compared to the lowest quartile with a significant linear trend 

(p=0.02). Conversely, relative to a decrease in iAs%, increased DMA% was associated with 

a 46% increase in Matsuda Index for the highest quartile compared to the lowest quartile 

(p=0.01). There was not a significant association between iAs% and Matsuda Index.

HOMA-β and Hemoglobin A1c

Lastly, as HOMA-IR and HOMA-β are computed using the same static fasting glucose 

and insulin levels, the reduction in HOMA-IR could correspond to a decrease in HOMA-β 
due to a reduction in insulin secretion. To discern if the associations between arsenic 

methylation with insulin resistance are due to glucose uptake or due to insulin production, 
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we evaluated the associations of the same arsenic metabolism exposures on HOMA-β and 

hemoglobin A1c. The results of this analysis are shown in Supplemental Table 1 and 

2. A higher proportion of MMA% was associated with a 13% lower HOMA-β for the 

highest quartile with a significant linear trend both overall using a priori adjustment as 

well as when corresponding to a reduction in DMA% using the leave-one-out approach 

(p=0.012; p=0.008, respectively). DMA% and iAs% were associated with a 32% and 22% 

increase in HOMA-β only when MMA% is decreased (p=0.02; p=0.04). Furthermore, a 

higher proportion of MMA% was associated with a significant reduction in HbA1c with a 

significant linear trend corresponding to a decrease in iAs % (p=0.02) and DMA% (p=0.02).

Discussion

In the present study, arsenic methylation was found to be associated with diabetes 

prevalence and alterations in measures of insulin resistance among Mexican Americans 

living in Starr County, Texas. Starr County residents have been noted to have higher rates 

of T2D compared to the national average for other Hispanic/Latino groups while also 

living in communities with moderate arsenic contamination of groundwater. We found 

that a higher proportion of urinary MMA was associated with a reduction in diabetes 

prevalence. As this is a cross-sectional study and there are concerns about reverse causality 

and misclassification, these results were supplemented with a Mendelian Randomization 

approach to minimize bias and confounding. Our results showed that the minor T allele of 

the rs9527 genotype, which has been shown to independently predict a higher proportion 

of urinary MMA, is also associated with reduced diabetes prevalence with comparable 

point estimates among those with elevated exposure. These data suggest that a higher 

metabolism efficiency based on genotype, driven by a lower proportion of MMA, is 

associated with an increased prevalence of T2D, and this association has a low risk 

of residual confounding, reverse causality, or exposure misclassification. Additionally, in 

order to elucidate mechanistic evidence for the progression to diabetes, we evaluated 

the associations between arsenic metabolism and measures of glucose-insulin homeostasis 

among diabetes-free participants. We found that a higher proportion of MMA is associated 

with lower HOMA-IR and higher Matsuda Index for insulin sensitivity. In the leave-one-out 

approach, a higher proportion of MMA was associated with lower HOMA-IR and increased 

Matsuda Index when both DMA% and iAs% are lower. Additionally, a higher proportion 

of MMA%, per decrease in either DMA% or iAs%, was associated with a lower HbA1c 

and HOMA-β. These supplementary results show that the lower insulin resistance and β-cell 

function also correspond with lower average blood glucose levels, leading us to propose 

that the associations are driven by insulin sensitivity rather than altered insulin production. 

In combination, these findings support evidence that among individuals exposed to arsenic, 

a high arsenic metabolism capacity with a lower proportion of MMA may be associated 

with higher diabetes prevalence driven by alterations in insulin resistance in this minority 

population. This study is one of few to evaluate the associations between inorganic arsenic 

methylation, independent of seafood consumption, with diabetes pathogenesis in a high-risk 

minority population in the United States using novel strategies to minimize confounding and 

misclassification.
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There is significant epidemiological evidence supporting an association between arsenic 

exposure and increased T2D risk. A systematic review of experimental and epidemiological 

evidence by Navas-Acien et al. demonstrated associations with arsenic exposure and 

increased T2D risk in highly exposed regions, but concluded that further evidence 

was needed in low-to-moderately exposed populations (Navas-Acien et al., 2006). Since 

then, additional studies have demonstrated associations between low-to-moderate arsenic 

exposure and T2D within both cross-sectional and prospective cohorts (Grau-Perez et al., 

2017, Gribble et al., 2012, Coronado-Gonzalez et al., 2007, Currier et al., 2014, Weiss et al., 

2022).

However, the epidemiological evidence for the impact of arsenic metabolism on diabetes 

status and traits is conflicting. Studies conducted in Bangladesh found a positive association 

between arsenic metabolism and T2D with a higher proportion of DMA as the primary 

metabolite associated with disease prevalence (Kuo et al., 2017). Our study found an 

association between DMA% and increased insulin resistance but only in the setting of 

reduced MMA%, whereas MMA% was associated with reduced insulin resistance in 

the setting of either decreased DMA% or decreased iAs%. Additionally, other studies 

conducted in Bangladesh have found no association between arsenic metabolism and 

diabetes prevalence (Nizam et al., 2013). Furthermore, a study in the United States from the 

Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort used Mendelian 

randomization to evaluate arsenic metabolism and diabetes-related traits and found no 

significant associations (Scannell Bryan et al., 2019). On the other hand, studies conducted 

in Mexico found that individuals with polymorphisms in arsenic metabolism genes and 

higher levels of urinary DMA had higher rates of diabetes (Drobna et al., 2013). Despite 

this, another study using exfoliated urothelial cells to measure arsenic exposure found a 

positive association between trivalent arsenic (iAsIII and MMAIII) with diabetes prevalence 

and a negative association between DMA and diabetes prevalence (Currier et al., 2014). 

Multiethnic studies within the United States using both NHANES and the Strong Heart 

Study have found associations between arsenic methylation and diabetes. Evidence from 

the Strong Heart Family Study found strong cross-sectional and prospective associations 

between arsenic methylation with both increased diabetes incidence and HOMA-IR, driven 

by a lower proportion of MMA (Grau-Perez et al., 2017, Kuo et al., 2015).

In addition to these studies, there have been several studies examining the 

pathophysiological effects of arsenic and arsenic metabolites with respect to cancer and 

cardiovascular disease. Many mechanisms of toxicity have been posited to explain arsenic’s 

impact on cellular proliferation, and these pathways consistently overlap with insulin 

signaling. In metabolic tissues, insulin triggers a signaling cascade that, among other events, 

results in the stimulation of PI3-kinase phosphorylation of Akt, activation of mammalian 

target of rapamycin (mTOR), and glucose transporter 4 (GLUT4) translocation to the 

cell membrane (Stump et al., 2003). Laboratory-based studies have shown that during 

oncogenesis arsenic induces PI3-kinase and other proteins in the Akt pathway, including 

mTOR (Souza et al., 2001, Wang et al., 2013, Altman and Platanias, 2008). Furthermore, 

another study using 3T3-L1 adipocytes showed that arsenite exhibited insulin-like effects 

with increased translocation of GLUT4 glucose transporters and increased uptake of 

extracellular glucose (Bazuine et al., 2003).
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While these studies suggest that arsenic may exert insulin-like effects or promote signaling 

through intermediates of the insulin signaling pathway, there is also strong evidence to 

support the opposite as well as additional adverse mechanisms by which arsenic can 

modulate insulin-glucose homeostasis. Studies have shown that inorganic arsenic inhibits 

glucose-induced insulin secretion and impairs β-cell functioning in both in vivo and in 
vitro models (Dover et al., 2018, Liu et al., 2014, Wei et al., 2020). Furthermore, other 

experimental studies have found that arsenic induces glucose intolerance and contributes 

to insulin resistance (Jia et al., 2020, Kirkley et al., 2018, Sargis, 2014). There are few 

experimental studies that have looked at the impact of arsenic metabolites on diabetes 

pathophysiology. Of the few studies that have been done, trivalent forms of arsenic 

were found to impair insulin-stimulated glucose uptake in 3T3-L1 adipocytes and glucose-

induced insulin secretion in mice islets (Walton et al., 2004, Douillet et al., 2013). Given the 

complexities of these findings, this current work contributes to the growing understanding 

of how arsenic and its metabolites modulate glucose homeostasis across tissues and over the 

diverse spectrum of human exposures.

The impact of arsenic methylation is further complicated when considering all potential 

mediators and confounders. There is evidence that arsenic metabolism varies by both 

sex, age, diet, smoking status, genetic polymorphisms, and the gut microbiome. Women, 

never smokers, and those with higher B vitamin intake methylate arsenic more efficiently, 

resulting in higher levels of DMA% (Tseng, 2009). There is also data that polymorphisms 

in arsenic metabolizing genes, AS3MT, and genes associated with one-carbon metabolism 

are associated with increased methylation efficiency and modify the relationship between 

arsenic metabolism and disease (Pierce et al., 2012, Spratlen et al., 2018, Pierce et al., 2013). 

Lastly, there is evidence to suggest that arsenic alters the microbiome, and that specific 

microbiota reciprocally alter arsenic metabolism (Yang et al., 2021). Collectively, these 

data suggest that clarifying arsenic’s impact on glucose homeostasis will require careful 

consideration of these and likely other additional factors.

This study has many strengths. Primarily, this study evaluated the association between 

arsenic metabolism and diabetes prevalence using a robust Mendelian randomization 

approach to minimize confounding and misclassification bias. Furthermore, to increase the 

robustness and elucidate potential mechanisms of arsenic’s metabolic toxicity, we evaluated 

the association between arsenic methylation with both dynamic and steady-state measures 

of insulin resistance among individuals without diabetes. This study was performed in 

a known high-risk, commonly underserved, minority population with known elevated 

groundwater arsenic levels. Additionally, we conducted robust confounding control for 

fish consumption and other sources of organic arsenic exposure, and we utilized well-

established, advanced statistical modeling methods to assess the associations of arsenic 

metabolism and disease. Lastly, our results are consistent with previous studies, supporting 

evidence that more efficient arsenic methylation is associated with increased T2D risk. 

Despite these strengths, this study has several limitations. First, the use of Mendelian 

Randomization relies upon several assumptions: (1) the genetic variant, rs9527, is associated 

with the exposure, specifically arsenic methylation; (2) the relationship of rs9527 with 

diabetes is not confounded; and (3) there is exclusive mediation between rs9527 with 

diabetes through arsenic methylation. We tested the first assumption by showing that the 
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rs9527 genotype is associated with a higher proportion of MMA. This is also biologically 

plausible since rs9527 has been identified as an intronic variant in the gene encoding 

the enzyme arsenic methyltransferase, which methylates arsenic. The second assumption 

is more difficult to test since unmeasured confounding remains a risk; however, we took 

steps to assess the robustness of our associations using a stepwise adjustment approach 

for several known predictors of T2D. Furthermore, it is possible that people do not 

choose their partners at random but rather based on particular characteristics that are 

reflective of underlying genotype. This non-random mating would violate the independence 

assumption of MR. Lastly, the final MR assumption is not fully testable, but we note the 

robust use of this variant across the literature for the effects of arsenic metabolism that 

generate similar findings (DiGiovanni et al., 2020, Scannell Bryan et al., 2019). In addition 

to the assumptions of MR, this is a cross-sectional cohort study with limited evidence 

of temporality, which therefore limits inference of causality for the assessment of the 

individual arsenic metabolites. Another limitation is the use of single spot urinary arsenic 

measurements as they only represent short-term exposure. Finally, as a consequence of the 

observational nature of this study and despite thorough control of measured confounders, 

there is potential risk for residual confounding due to unmeasured dietary differences and 

potential misclassification of measured confounders due to participant self-reporting.

Conclusion

In a study of a richly phenotyped Mexican American cohort, enhanced capacity to fully 

metabolize arsenic via its methylation, as reflected by lower proportions of MMA or higher 

proportions of DMA, was associated with increased prevalence of T2D and with increased 

steady-state and dynamic measures of insulin resistance among individuals without diabetes. 

These findings support existing epidemiological studies of arsenic metabolism that have 

concluded that a higher methylation capacity for arsenic may be diabetogenic. Further work 

is now required to evaluate potential confounding, mediation, and interdependence by diet, 

supplements, and microbiome in order to fully understand how this complex and ubiquitous 

chemical influences diabetes risk.
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Fig. 1. 
Causal diagram for the relationship between rs9527 genotype, arsenic methylation, and 

diabetes prevalence. This relationship between the genetic variant with arsenic methylation 

is indicative of the use of this variant as a instrumental variable for mendelian randomization 

analysis.
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Fig. 2. 
Diagram depicting relationship between study subsamples.
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Fig. 3. 
Mendelian randomization results for prevalent type 2 diabetes per increase in monomethyl 

arsenic (MMA %) and minor T allele of rs9527 genotype. Among those with high total 

arsenic exposure, both having higher MMA % and having the T allele of rs9527 in the gene 

encoding arsenic methyl transferase (AS3MT) are associated with a lower prevalence of type 

2 diabetes across multiple levels of confounding control. Model 1: base model. Model 2: 

further adjusted for age and gender. Model 3: further adjusted for smoking and body mass 

index.
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Table 1

Selected participant characteristics.

Characteristic Genotyped
Participants
(N=475)

Diabetes Free
Participants
(N=414)

OGTT
Participants
(n=257)

Age, mean ± SD 51 ± 10 47 ± 9 46 ± 10

Gender, n (%)

 Male 138 (29) 99 (24) 60 (24)

 Female 337 (71) 315 (76) 197 (76)

BMI, mean ± SD 32 ± 6 32 ± 7 31 ± 7

Employment Status, n (%)

 Full time 258 (55) 252 (61) 169 (66)

 Part time 106 (22) 98 (24) 68 (27)

 Not working 54 (11) 42 (10) 6 (2)

 Retired 50 (11) 18 (4) 14 (6)

 Disabled 5 (1) 4 (1) 0 (0)

Education years, mean ± SD 10 ± 4 10 ± 4 10 ± 4

Pack years, mean ± SD 4 ± 11 3 ± 9 3 ± 9

Smoking status, n (%)

 Current 80 (17) 67 (16) 45 (17)

 Former 77 (16) 52 (13) 30 (12)

 Never 318 (67) 295 (71) 182 (71)

Alcohol drinking, n (%)

 Yes 140 (30) 137 (33) 77 (30)

 No 334 (30) 277 (67) 180 (70)

Environ Adv. Author manuscript; available in PMC 2023 July 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Weiss et al. Page 20

Table 2

Distribution of Arsenic Metabolite Proportions.

Arsenic
Measure Mean
(SD)

Genotyped
Participants
(N=475)

Diabetes Free
Participants
(N=414)

OGTT
Participants
(N=257)

Σ species, ug/g creatinine 5.65 (3.41) 5.46 (3.40) 5.89 (3.60)

MMA, % 0.12 (0.08) 0.12 (0.06) 0.11 (0.06)

DMA, % 0.84 (0.40) 0.82 (0.10) 0.83 (0.09)

iAs, % 0.06 (0.05) 0.06 (0.04) 0.05 (0.03)
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Table 4

Percent difference (95% CI) of HOMA-IR in relation to quartile of urinary arsenic species (N = 414).

Q1 Q2 Q3 Q4 P for
trend

Multivariable adjusted modela

MMA % ref −7.57 (−20.93, 8.06) −17.56 (−29.33, −3.82) −22.26 (−33.53, −9.07) 0.001

DMA % ref 4.40 (−10.62, 21.93) 8.24 (−7.40, 26.53) 14.56 (−2.14, 34.10) 0.082

iAs % ref −0.83 (−15.50, 16.38) −0.07 (−14.25, 16.44) −1.24 (−15.48, 15.40) 0.903

Leave one out method

MMA %

 Per decrease in DMA ref −14.18 (−27.95, 2.21) −26.79 (−38.82, −12.39) −34.24 (−46.10, −19.75) <0.0001

 Per decrease in iAs ref −17.87 (−33.35, 1.22) −34.37 (−49.00, −15.55) −42.62 (−57.27, −22.94) 0.0002

DMA %

 Per decrease in MMA ref 16.79 (−5.05, 43.66) 33.66 (5.49, 69.36) 67.48 (23.01, 128.02) 0.0012

 Per decrease in iAs ref −8.00 (−23.07, 10.02) −19.56 (−36.17, 1.37) −29.53 (−47.54, −5.34) 0.0183

Inorganic

 Arsenic %

 Per decrease in MMA ref 19.42 (−3.79, 48.23) 35.93 (5.59, 75.00) 52.88 (13.05, 106.74) 0.0055

 Per decrease in DMA ref 12.23 (−5.95, 33.93) 21.10 (1.51, 44.48) 28.90 (6.13, 56.55) 0.0089

a
Adjusted for total arsenic, age, sex, education, employment, smoking status, pack year smoking history, body mass index, and alcohol 

consumption
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Table 5

Percent difference (95% CI) of Matsuda index in relation to quartile of urinary arsenic species (N = 257).

Q1 Q2 Q3 Q4 P for
trend

Traditional multivariable adjusted modela

MMA % ref 14.94 (−6.13, 40.74) 37.61 (12.90, 67.72) 56.66 (28.27, 91.32) <0.0001

DMA % ref −18.95 (−33.41, −1.36) −15.85 (−31.35, 3.13) −25.65 (−39.25, −9.00) 0.010

iAs % ref 25.95 (2.72, 54.42) 7.43 (−11.43, 30.32) 21.10 (−0.52, 47.41) 0.144

Leave one out method

MMA %

 Per decrease in DMA ref 19.81 (−4.71, 50.63) 45.41 (14.43, 84.79) 75.74 (35.41, 128.07) <0.0001

 Per decrease in iAs ref 41.77 (7.25, 87.41) 94.46 (41.00, 168.19) 134.34 (61.61, 239.81) <0.0001

DMA %

 Per decrease in MMA ref −30.43 (−46.49, −9.55) −34.06 (−52.01, −9.40) −40.21 (−59.65, −11.38) 0.0175

 Per decrease in iAs ref 1.84 (−19.17, 28.29) 24.32 (−6.05, 64.51) 56.76 (8.26, 126.98) 0.011

Inorganic

 Arsenic %

 Per decrease in MMA ref 15.67 (−11.63, 51.39) −9.31 (−33.33, 23.35) −21.12 (−46.33, 15.95) 0.115

 Per decrease in DMA ref 4.23 (−17.05, 30.98) −13.73 (−30.76, 7.50) −15.36 (−33.92, 8.41) 0.070

a
Adjusted for total arsenic, age, sex, education, employment, smoking status, pack year smoking history, body mass index, and alcohol 

consumption
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