Targeted Synthesis of Trimethoxyphenyltetrahydropyrimidine Analogue Designed as DNA Intercalator; *In silico*, Multi-spectroscopic, Thermodynamic, and *In vitro* Approaches

Ahmed A. Al-Karmalawy^{1,2,*}, Ayman Abo Elmaaty^{3,4}, Galal Magdy^{5,6}, Aya Saad Radwan², Radwan Alnajjar⁷, Moataz A. Shaldam⁸, Arwa Omar Al Khatib⁹, Salem Salman Almujri¹⁰, Abdullah Yahya Abdullah Alzahrani¹¹, Haytham O. Tawfik^{12,*}

*Corresponding authors:

Ahmed A. Al-Karmalawy; Email: akarmalawy@horus.edu.eg

Haytham O. Tawfik; Email: haytham.omar.mahmoud@pharm.tanta.edu.eg

¹ Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad 10023, Iraq.

² Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.

³ Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt.

⁴ Medicinal Chemistry Department, Clinical Pharmacy Program, East Port said National University, Port Said 42526, Egypt.

⁵ Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt

⁶ Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt

⁷ CADD Unit, Faculty of Pharmacy, Libyan International Medical University, Benghazi 16063, Libya.

⁸ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.

⁹ Faculty of Pharmacy, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.

¹⁰ Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia.

¹¹ Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir 61421, Saudi Arabia.

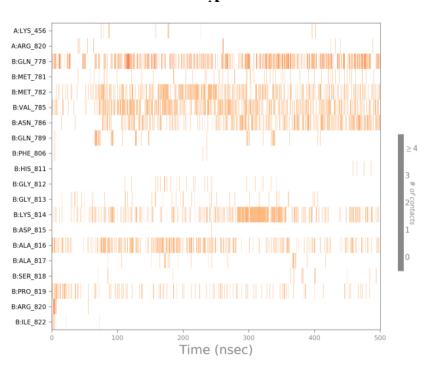
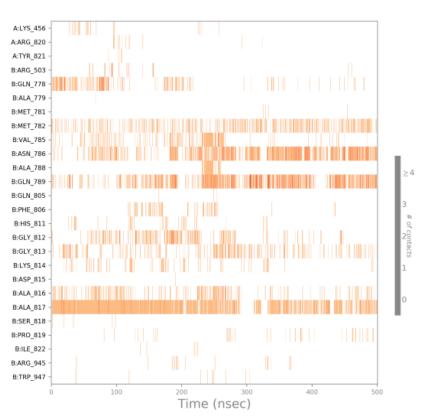

¹² Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.

Table S1. Docking scores, RMSD, and binding interactions of the theoretically designed novel substituted tetrahydropyrimidine analogues (T_{1-35}) .


Compound	Score (Kcal/mol)	RMSD (Å)	Interactions	Distance (Å)		
T1	-6.18	1.61	DC11/H-acceptor	3.18		
Т2	(15	1.55	DC11/H-acceptor	2.95		
T2	-6.15	1.55	DA12/pi-H	3.56		
Т2	-6.13	2.00	GLN778/H-acceptor	3.53		
Т3	-0.13	2.00	DC11/pi-H	4.25		
T4	-6.33	1.51	DA12/H-acceptor	3.16		
17	-0.55	1.51	MET782/pi-H	4.25		
T5	-5.81	1.96	DC11/H-acceptor	2.95		
Т6	-5.93	1.24	MET782/pi-H	3.59		
T7	-6.27	1.27	GLN778/H-acceptor	3.41		
			GLN778/H-acceptor	3.19		
Т8	-6.33	2.08	DC11/pi-H	4.27		
			DC11/pi-H	3.99		
Т8	-6.70	1.46	DA12/H-acceptor	3.17		
T8 T10 T11			MET782/pi-H	4.41		
	-6.43	1.14	MET782/pi-H	4.18		
	-6.74	1.59	DC11/H-acceptor	3.14		
T12	-6.42	1.52	MET782/pi-H	4.15		
T13	-6.43	1.66	PRO819/pi-H	3.88		
T14	-6.67	1.44	DA12/H-acceptor	3.10		
			MET782/pi-H	3.88		
T15	-6.59	1.79	MET782/pi-H	4.19		
T16	-6.19		GLN778/H-acceptor	3.37		
		1.07	DC11/pi-H	4.49		
			DC11/pi-H	4.08		
T17	-6.53	1.57	MET782/pi-H	4.58		
T18	-6.41	1.43	MET782/pi-H	4.33		
T19	-6.20	1.07	GLN 778/H-acceptor	2.93		
T20	-6.77	1.73	DC11/H-acceptor	3.18		
T21	-6.57	1.35	DC11/H-acceptor	3.18		
			MET782/pi-H	4.16		
T22	-5.73	1.11	DC11/H-acceptor	3.05		
T23	-6.29	1.28	DA12/H-acceptor	3.34		
T24	-6.61	1.42	DA12/H-acceptor	3.16		
	2.01		MET782/pi-H	4.07		
T25	-6.91	1.98	DC11/H-acceptor	3.23		
			MET782/pi-H	4.43		
T26	-6.28	1.64	MET781/H-donor	3.95		
T27	-6.09	1.84	DA/12/pi-H	3.71		
T28	-6.26	1.25	GLN778/H-acceptor	2.93		

T29	-6.47	1.63	MET782/pi-H	4.61
			ALA817/H-donor	3.35
T30	7.06	1.50	MET782/H-donor	4.07
130	-7.06	1.56	DC11/H-acceptor	3.24
			DA12/pi-H	3.76
T31	-6.10	1.69	SER818/pi-H	4.92
131	-0.10	1.09	SER818/pi-H	4.35
			DC11/H-acceptor	3.23
Т32	-6.21	1.64	MET782/pi-H	4.16
			MET782/pi-H	4.24
Т33	5 92	-5.83 1.05 DA12	DA12/H-donor	3.40
133	-3.63	1.03	GLN778/H-acceptor	3.48
T34	-6.38	2.06	DC11/H-acceptor	3.23
134	-0.36	2.00	MET782/pi-H	4.49
T35	-6.07	1.17	DC11/H-acceptor	2.83
Dox	7 44	1 50	GLN778/H-donor	3.12
Dux	-/.44	-7.44 1.58 DA	DA12/H-acceptor	3.85
Co-Cryst ligand	-7.45	1.57	MET782/H-acceptor	2.94
(EVP)	-7.43	1.37	DA12/H-donor	2.96

A

B

 \mathbf{C}

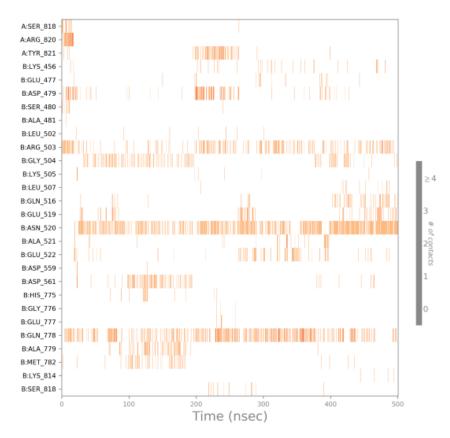


Figure S1. Heat map showing the total number of hybrid DNA and Topo-II target receptor-ligand interactions all over the simulation time of 500 ns for (A) T₃₀, (B) Dox, and (C) EVP.

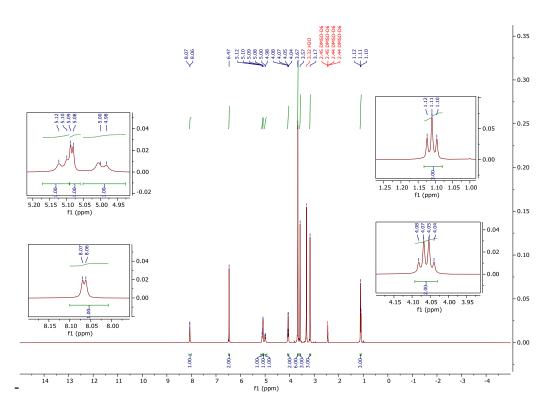


Figure S2. ¹H NMR spectrum (500 MHz, DMSO-*d*₆) of the compound T₃₀.

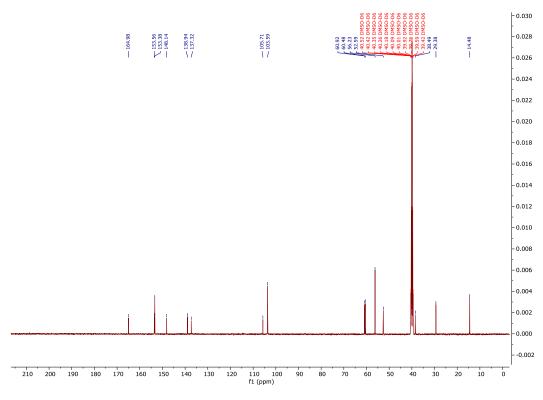


Figure S3. ¹³C NMR spectrum (126 MHz, DMSO-*d*₆) of the compound T₃₀.

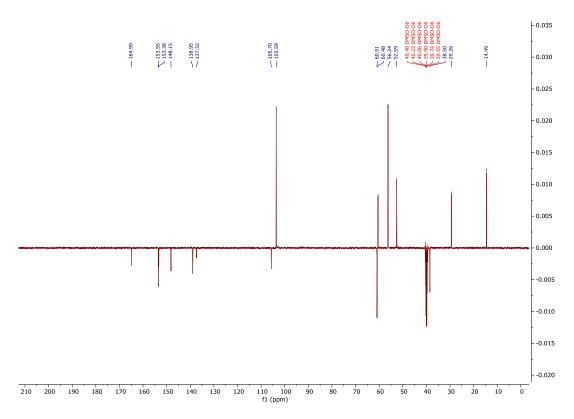


Figure S4. DEPTQ-¹³C NMR spectrum (126 MHz, DMSO-d₆) of the compound T₃₀.

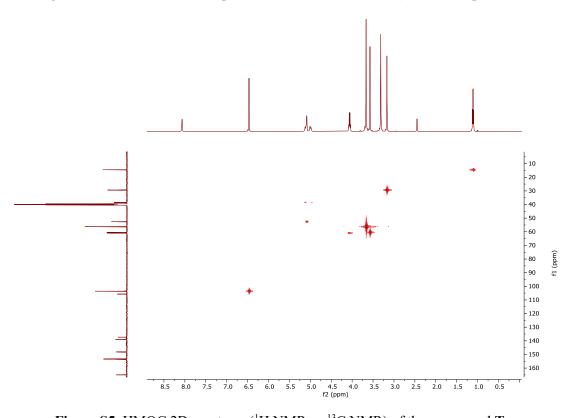


Figure S5. HMQC 2D spectrum (¹H NMR vs ¹³C NMR) of the compound T₃₀.

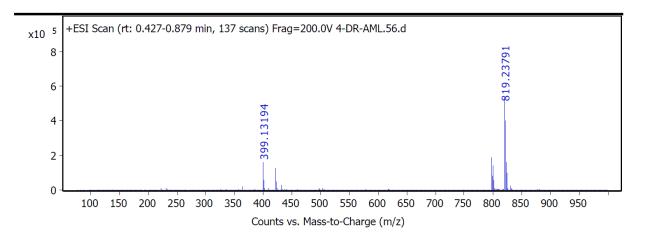
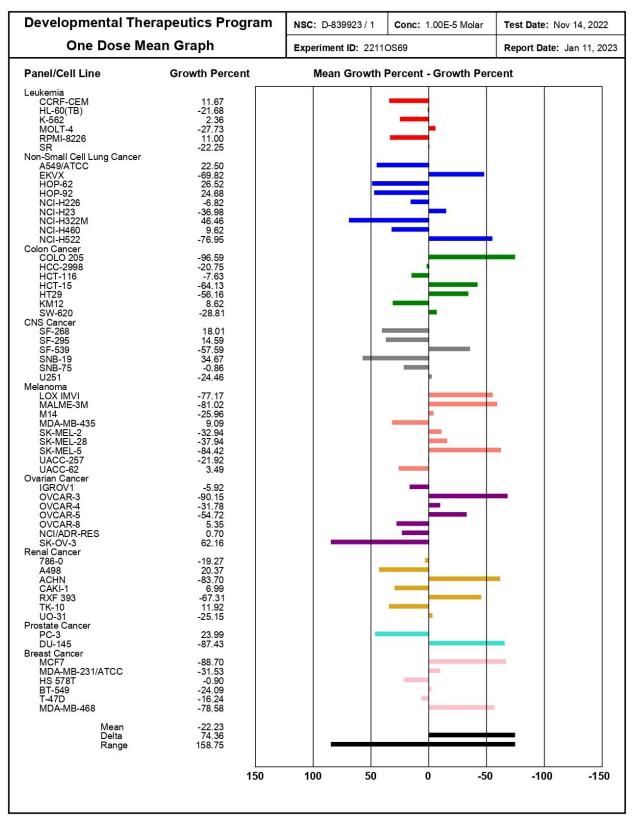
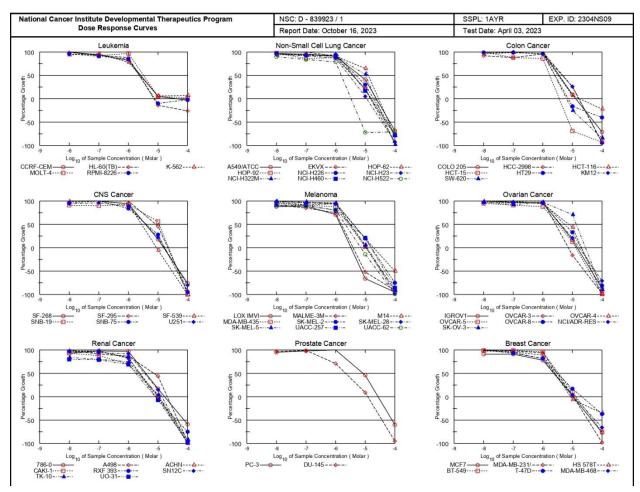
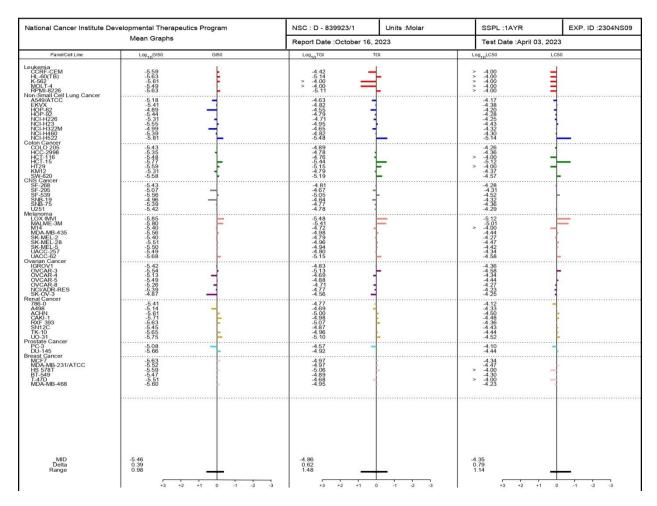



Figure S6. HRMS spectrum of the compound T_{30} .

```
Acq. Operator
               : SYSTEM
Sample Operator : SYSTEM
Acq. Instrument : HPLC
                                                   Location : Vial 10
Injection Date : 3/30/2024 1:51:59 PM
                                                Inj Volume : 10.000 μl
               : C:\CHEM32\1\METHODS\PURITY2022.M
               : 3/30/2024 2:30:41 PM by SYSTEM
Last changed
                  (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M14-6-22 water 40 ACN 60.M
Last changed
               : 3/30/2024 2:48:43 PM by SYSTEM
                  (modified after loading)
Sample Info
                : 60 ACN: 40 water, Flow 1.50 mL/min, 254 nm, 10 ul injection
        VWD1 A, Wavelength=254 nm (HAYTHAM\4-015.D)
   mAU
    600
    500
    400
    300
    200
    100
```


Figure S7. HPLC spectrum of the compound T₃₀.


Figure S8. One dose mean graph for compound T_{30} (NSC 839923) at 10 μ M.

NSC : D - 839923 / 1						In-Vitro Testing Results Experiment ID: 2304NS09						Test Type : 08		Units : Molar	
Report Date : October 16, 2023			Test Date : April 03, 2023							,,	MC :				
COMI : 30CH3_CI			Stai	Stain Reagent : SRB Dual-Pass Related						SSPL	: 1AYR				
					1	Lo	og10 Con	centration	9			1			
Panel/Cell Line Leukemia	Time Zero	Ctrl	-8.0	Mear -7.0	Optical -6.0	Densiti -5.0	es -4.0	-8.0	-7.0	ercent 0 -6.0	-5.0	-4.0	GI50	TGI	LC50
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226	0.479 0.992 0.165 0.638 1.038	2.380 3.087 1.740 2.876 2.987	2.404 3.071 1.645 2.917 2.912	2.262 2.932 1.671 2.701 2.821	2.036 2.833 1.393 2.814 2.688	0.568 0.851 0.254 0.742 0.932	0.463 0.738 0.272 0.681 1.020	101 99 94 102 96	94 93 96 92 91	82 88 78 97 85	5 -14 6 5 -10	-3 -26 7 2 -2	2.59E-6 2.35E-6 2.44E-6 3.24E-6 2.32E-6	3.77E-5 7.26E-6 > 1.00E-4 > 1.00E-4 7.80E-6	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H460 NCI-H522	Cancer 0.381 0.712 0.651 1.626 0.748 0.689 0.905 0.251 0.929	2.494 1.733 2.170 2.446 2.155 1.983 2.345 2.783 2.127	2.426 1.787 2.085 2.433 2.107 1.921 2.283 3.067 2.013	2.389 1.757 2.112 2.328 2.059 1.883 2.239 3.097 1.938	2.313 1.646 2.040 2.344 2.074 1.819 2.218 2.829 1.872	1.242 0.925 1.641 1.797 1.177 0.753 1.655 0.673 0.262	0.122 0.048 0.140 0.364 0.177 0.059 0.022 0.055 0.272	97 105 94 98 97 95 96 111	95 102 96 86 93 92 93 112 84	91 91 91 88 94 87 91 102	41 21 65 21 30 5 52 17	-68 -93 -79 -78 -76 -92 -98 -78	6.57E-6 3.87E-6 1.27E-5 3.66E-6 4.94E-6 2.84E-6 1.03E-5 4.06E-6 1.55E-6	2.37E-5 1.52E-5 2.84E-5 1.63E-5 1.93E-5 1.12E-5 2.23E-5 1.50E-5 3.33E-6	6.83E-5 4.18E-5 6.33E-5 5.24E-5 5.66E-5 3.71E-5 4.81E-5 5.05E-5 7.16E-6
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.402 0.766 0.379 0.224 0.231 0.593 0.316	1.837 2.515 3.025 1.848 1.769 2.862 2.228	1.888 2.373 2.911 1.850 1.762 2.938 2.242	1.842 2.303 3.008 1.658 1.754 2.986 2.371	1.907 2.437 2.929 1.626 1.702 2.940 2.311	0.527 1.219 0.569 0.071 0.194 1.178 0.238	0.118 0.054 0.295 0.015 0.139 0.032 0.050	104 92 96 100 99 103 101	100 88 99 88 99 105 107	105 96 96 86 96 103 104	9 26 7 -69 -16 26 -25	-71 -93 -22 -93 -40 -95 -84	3.72E-6 4.51E-6 3.31E-6 1.72E-6 2.56E-6 4.87E-6 2.64E-6	1.29E-5 1.65E-5 1.76E-5 3.61E-6 7.16E-6 1.64E-5 6.44E-6	5.49E-5 4.35E-5 > 1.00E-4 7.59E-6 > 1.00E-4 4.26E-5 2.66E-5
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.591 0.706 0.766 0.698 1.302 0.358	2.008 2.733 2.244 2.040 2.389 1.905	2.167 2.724 2.229 1.917 2.344 1.815	2.724 2.261 1.910 2.409	1.916 2.814 2.151 1.952 2.213 1.728	0.840 1.631 0.731 1.451 1.607 0.705	0.140 0.049 0.003 0.002 0.069 0.072	111 100 99 91 96 94	105 100 101 90 102 96	94 104 94 93 84 89	18 46 -5 56 28 22	-76 -93 -100 -100 -95 -80	3.74E-6 8.42E-6 2.78E-6 1.09E-5 4.03E-6 3.83E-6	1.54E-5 2.13E-5 8.98E-6 2.29E-5 1.69E-5 1.66E-5	5.24E-5 4.89E-5 3.00E-5 4.79E-5 4.32E-5 5.10E-5
Welanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.194 0.550 0.556 0.519 0.954 0.555 0.759 0.920 0.916	1.387 1.832 2.447 2.545 2.504 1.832 3.155 2.409 2.728	1.242 1.722 2.419 2.440 2.458 1.825 3.124 2.272 2.586	1.251 1.639 2.389 2.359 2.374 1.783 3.103 2.274 2.522	1.044 1.510 2.375 2.304 2.419 1.751 3.007 2.116 2.381	0.065 0.266 0.931 0.554 1.260 0.610 0.905 1.239 0.788	0.009 0.049 0.280 0.045 0.237 0.012 0.072 0.128 0.012	88 91 99 95 97 99 99	89 85 97 91 92 96 98 91 89	71 75 96 88 94 94 94 80 81	-66 -52 20 2 20 4 6 21 -14	-95 -91 -50 -91 -75 -98 -91 -86 -99	1.43E-6 1.57E-6 4.02E-6 2.76E-6 3.94E-6 3.08E-6 3.16E-6 3.27E-6 2.11E-6	3.29E-6 3.91E-6 1.93E-5 1.04E-5 1.61E-5 1.10E-5 1.16E-5 1.58E-5 7.11E-6	7.59E-6 9.71E-6 > 1.00E-4 3.59E-5 5.43E-5 3.40E-5 3.80E-5 4.61E-5 2.66E-5
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.632 0.572 0.977 0.522 0.514 0.536 0.770	2.527 1.883 2.375 1.654 2.385 1.907 1.868	2.567 1.957 2.367 1.596 2.328 1.902 1.842	2.468 2.321 2.388 1.557 2.309 1.886 1.777	2.447 1.958 2.297 1.523 2.338 1.832 1.830	0.964 0.483 1.587 0.669 1.132 0.830 1.552	0.081 0.010 0.014 0.006 0.100 0.154 0.077	102 106 99 95 97 100 98	97 133 101 91 96 98 92	96 106 94 88 97 95 97	17 -16 44 13 33 21 71	-87 -98 -99 -99 -81 -71	3.84E-6 2.88E-6 7.49E-6 3.23E-6 5.45E-6 4.07E-6 1.35E-5	1.47E-5 7.43E-6 2.03E-5 1.31E-5 1.95E-5 1.70E-5 2.77E-5	4.41E-5 2.61E-5 4.55E-5 3.66E-5 5.37E-5 5.89E-5 5.65E-5
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.598 1.211 0.387 0.422 1.092 0.584 1.023 0.850	2.684 2.157 1.716 1.747 1.830 2.235 2.205 2.171	2.545 2.174 1.690 1.648 1.808 2.176 2.013 1.906	2.646 2.072 1.688 1.585 1.812 2.139 1.974 1.900	1.346 1.710 2.105 1.904	1.625 0.392 0.450 1.019 0.835 1.072	0.244 0.043 -0.001 0.007 0.276 0.007 0.078 0.029	93 102 98 93 97 96 84 80	98 91 98 88 97 94 80 79	97 87 82 70 84 92 75 69	17 44 0 2 -7 15 4	-59 -96 -100 -98 -75 -99 -92 -97	3.90E-6 7.20E-6 2.47E-6 1.96E-6 2.36E-6 3.53E-6 2.23E-6 1.78E-6	1.68E-5 2.05E-5 1.01E-5 1.05E-5 8.42E-6 1.36E-5 1.10E-5 8.01E-6	7.58E-5 4.66E-5 3.17E-5 3.30E-5 4.33E-5 3.73E-5 3.64E-5 3.00E-5
Prostate Cancer PC-3 DU-145	0.726 0.246	2.696 1.140	2.595 1.115	2.661 1.131	2.713 0.885	1.624 0.323	0.287 0.012	95 97	98 99	101 71	46 9	-60 -95	8.32E-6 2.20E-6	2.69E-5 1.21E-5	7.97E-5 3.66E-5
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	0.428 0.842 1.190 1.278 0.723 0.843	2.430 2.346 2.174 2.369 1.914 2.070	2.244 2.364 2.159 2.357 1.914 2.102		1.992 2.249 2.065 2.325 1.696 1.841	0.472 0.892 1.122 1.383 0.930 0.890	0.098 0.021 0.771 0.316 0.457 0.288	91 101 98 99 100 103	91 98 96 99 93 95	78 94 89 96 82 81	2 3 -6 10 17 4	-77 -98 -35 -75 -37 -66	2.34E-6 3.04E-6 2.58E-6 3.40E-6 3.11E-6 2.53E-6	1.07E-5 1.08E-5 8.70E-6 1.30E-5 2.09E-5 1.13E-5	4.54E-5 3.38E-5 > 1.00E-4 5.04E-5 > 1.00E-4 5.91E-5

Figure S9. Values of log molar concentration of response parameters (log_{10} GI₅₀, log_{10} TGI & log_{10} LC₅₀) for compound T_{30} .

Figure S10. Dose-response curves (% growth versus sample concentration) for all cell lines with different subpanel obtained from the NCI's *in vitro* disease-oriented human cancer cells line for compound T₃₀ on nine types of cancer.

Figure S11. Mean Graphs of the log₁₀ values (Molar) of GI₅₀, TGI, and LC₅₀ obtained from the NCI 60 cell line experiments for compound T₃₀.

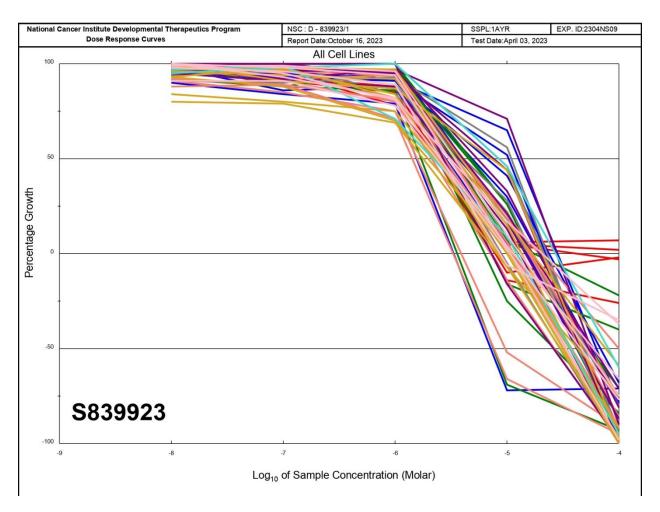


Figure S12. Dose-response curves for all cell lines in the NCI 60 panel exposed compound T_{30} with tissue-originated colors and shapes.

SI1. Molecular dynamics simulations

The molecular dynamics simulations were carried out using the Desmond simulation package of Schrödinger LLC.¹⁻³ The NPγT ensemble with the temperature 300 K and a pressure 1.01 bar was applied in all runs. The simulation length was 500 ns with a relaxation time of 1 ps. The OPLS4 force field parameters were used in all simulations.⁴ The cutoff radius in Coulomb interactions was 9.0 Å. The orthorhombic periodic box boundaries were set 10 Å away from the protein atoms. The water molecules were explicitly described using the transferable intermolecular potential with the three points (TIP3P) model.⁵ Salt concentration was set to 0.15 M NaCl and was built using the System Builder utility of Desmond. The Martyna–Tuckerman–Klein chain coupling scheme with a coupling constant of 2.0 ps was used for the pressure control and the Nosé–Hoover chain coupling scheme for the temperature control.^{6,7} Nonbonded forces were calculated using a RESPA integrator where the short-range forces were updated every step, and the long-range forces were updated every three steps. The trajectories were saved at 300 ps intervals for analysis. The behavior and interactions between the ligands and protein were analyzed using the Simulation Interaction Diagram tool implemented in the Desmond MD package. The stability of MD simulations was monitored by looking at the RMSD of the ligand and protein atom positions as a function of simulation time.

SI2. MD trajectory analysis and prime MM-GBSA calculations

Simulation interactions diagram panel of Maestro software was used to monitoring interactions contribution in the ligand-protein stability. The molecular mechanics generalized born/solvent accessibility (MM – GBSA) was performed to calculate the ligand binding free energies and ligand strain energies for docked compounds over the last 50 ns with thermal_mmgbsa.py python script provided by Schrodinger which takes a Desmond trajectory file, splits it into individual snapshots, runs the MM-GBSA calculations on each frame, and outputs the average computed binding energy.

References

- 1. K. J. Bowers, D. E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan and D. E. Shaw, 2006.
- 2. M. H. El-Shershaby, A. Ghiaty, A. H. Bayoumi, A. A. Al-Karmalawy, E. M. Husseiny, M. S. El-Zoghbi and H. S. Abulkhair, *Bioorganic & Medicinal Chemistry*, 2021, **42**, 116266.
- 3. D. E. S. Research, *Journal*, 2021.
- 4. E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. W. Kaus, D. S. Cerutti, G. Krilov, W. L. Jorgensen, R. Abel and R. A. Friesner, *Journal of Chemical Theory and Computation*, 2016, **12**, 281-296.
- 5. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, *Journal of Chemical Physics*, 1983, **79**, 926-935.
- 6. G. J. Martyna, M. L. Klein and M. Tuckerman, *Journal of Chemical Physics*, 1992, **97**, 2635-2643.
- 7. G. J. Martyna, D. J. Tobias and M. L. Klein, *Journal of Chemical Physics*, 1994, **101**, 4177-4189.