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Osteosarcoma is one of the most common bone tumors that occurs in adolescents. Doctors often use magnetic resonance imaging
(MRI) through biosensors to diagnose and predict osteosarcoma. However, a number of osteosarcoma MRI images have the
problem of the tumor shape boundary being vague, complex, or irregular, which causes doctors to encounter difficulties in
diagnosis and also makes some deep learning methods lose segmentation details as well as fail to locate the region of the
osteosarcoma. In this article, we propose a novel boundary-aware grid contextual attention net (BA-GCA Net) to solve the
problem of insufficient accuracy in osteosarcoma MRI image segmentation. First, a novel grid contextual attention (GCA) is
designed to better capture the texture details of the tumor area. +en the statistical texture learning block (STLB) and the spatial
transformer block (STB) are integrated into the network to improve its ability to extract statistical texture features and locate
tumor areas. Over 80,000 MRI images of osteosarcoma from the Second Xiangya Hospital are adopted as a dataset for training,
testing, and ablation studies. Results show that our proposed method achieves higher segmentation accuracy than existing
methods with only a slight increase in the number of parameters and computational complexity.

1. Introduction

Osteosarcoma is the most common malignant bone tumor
which occurs most frequently in children and adolescents
between the ages of 10 and 30 years, with the highest in-
cidence during the adolescent growth spurt [1]. In the past
few years, neoadjuvant chemotherapy and biosensors have
greatly developed, making the treatment of osteosarcoma
easier. Nevertheless, without an early diagnosis, patients
with advanced osteosarcoma will develop metastasis and
recurrence disease, whose 5-year survival rate still keeps less
than 20% [2, 3]. +erefore, how to clearly and accurately
diagnose osteosarcoma has become the key to prevention
and treatment.

Magnetic resonance imaging (MRI) can display the
structure of soft tissue clearly and has higher contrast as well
as resolution than other imaging methods [4], which makes
the tumor area easier to distinguish. It is considered to be the
best imaging method to evaluate the relationship between
the primary osteosarcoma lesion and its surrounding areas
[5]. Traditionally, the diagnosis of osteosarcoma is based on
manual histopathological analysis with biosensors on MRI
images by doctors. However, it has great disadvantages. In
developing countries where the medical level is relatively
backward, the doctor-patient ratio remains low, with each
doctor handling the diagnosis and treatment of about 60
patients per day on average [6–8]. In addition, one patient
will produce more than 600 MRI images during one
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diagnosis with biosensors, making analysis laborious and
time-consuming [9–14]. To make matters worse, doctors’
high-intensity work makes their manual judgments sus-
ceptible to inter- and intra-observer variations and results in
inaccurate segmentation of osteosarcoma areas [15–17].
Furthermore, due to the heterogeneity of osteosarcoma [1],
sophisticated diagnoses using MRI biosensors often require
experienced radiologists, which is extraordinarily chal-
lenging for some developing countries with backward al-
location of medical resources [18–20].

In order to solve the problems of manually segmenting
lesions by doctors, researchers have designed a variety of
automatic segmentation models and applied them to
medical image segmentation to help doctors diagnose dis-
eases and predict lesion areas, thus reducing the pressure on
medical resources in developing countries and enabling
diagnosis of diseases to achieve high accuracy at low
computational costs. A fully convolutional network (FCN)
[21] uses skip layers to achieve end-to-end and joint learning
of semantic as well as location. It is the most classic model in
medical image segmentation. U-Net [22] crops the output
feature maps from shallow layers and concatenates them to
the ones from deep layers to fuse and exploit the low-level
and high-level features, improving the network’s perfor-
mance on neural structure and cell segmentation. In the
specific field of osteosarcoma segmentation, [23] uses a
recurrent convolutional neural network (RCNN) combining
CNN andGRU and achieves better performance with a small
number of histopathological osteosarcoma images. MSFCN
[24] and MSRN [25] add multiple supervised structures to
the network to promote learning and improve the overall
osteosarcoma segmentation accuracy.

Considerable progress has been made in the research on
osteosarcoma segmentation models. However, a few seg-
mentation problems in MRI images using biosensors have
unfortunately been overlooked: (i) +e boundaries between
osteosarcoma and normal tissues in some images are not
clear enough and the lesion area is indistinguishable from
other soft tissues. +erefore, the low-contrast boundaries
may be blurred during convolution operations, resulting in
segmentation failure. (ii) In transverse section images, the
osteosarcoma area is often small, and the model is prone to
spatial shift in the process of down-sampling and up-
sampling, which leads to difficulty in localization and de-
crease in accuracy. (iii) Some osteosarcoma images have
complicated and irregular shape boundaries, and the model
cannot identify small gaps between osteosarcoma and
normal tissues, causing the identification of the entire region
as a lesion area and the loss of segmentation details. +ese
problems contribute to poor performance on a number of
difficult tasks with vague foreground-background bound-
aries or small and complex osteosarcoma regions, which
have become a significant factor that affects the accuracy of
segmentation.

In order to solve the problems mentioned above, we
propose a novel boundary-aware grid contextual attention
network (BA-GCA Net), which effectively improves the
performance of the network on MRI images with blurred
osteosarcoma boundaries and complex foreground

structure. First, we propose a plug-and-play grid contextual
attention structure. +e structure splits the input feature
map into patches, exploits the local contextual information
to learn the positional features inside the image patches, and
enhances the network’s capability to capture the details of
osteosarcoma boundaries and texture. For the problem that
certain osteosarcoma MRI images using biosensors have
intricate shape boundaries or fuzzy tumor texture, a sta-
tistical texture learning block (STLB) is integrated into the
network. STLB learns the low-level features and applies them
to the task. +e texture enhancement module (TEM) in the
STLB first enhances the texture in the low-level feature map
and produces a clearer texture map, which is conducive to
more accurate segmentation of the osteosarcoma region.
+en the pyramid texture feature extraction module
(PTFEM) is used in the STLB to further extract and utilize
the enhanced texture. Due to the small tumor areas in some
osteosarcoma MRI images, the subtle spatial shift of the
prediction map will lead to poor segmentation performance.
To this end, we use a spatial transformer block (STB) in the
network to make it invariant to spatial shifts. STB localizes
and regresses the input feature map, learns an affine
transformationmatrix, and applies the transformation to the
feature map. It spatially adjusts the prediction map so that
the positioning of osteosarcoma areas is more accurate.

In general, our contributions can be summarized as
follows:

(1) We propose a novel BA-GCA Net, which can better
learn detailed features in the input image and fully
exploit texture features in a spatially invariant way to
improve the segmentation accuracy of osteosarcoma
MRI images.

(2) In order to pay more attention to local details in the
input image, we propose a plug-and-play grid
contextual attention (GCA) structure, which re-
shapes the image into patches and applies local and
global contextual attention to them to enhance the
perception of local details in osteosarcoma areas.

(3) Inspired by U-Net, low-level features in the input
image have rich texture details and therefore a sta-
tistical texture learning block (STLB) is used to learn
texture features in the low-level feature map and
utilize them in deeper layers of the network, im-
proving the segmentation accuracy in tasks where
the tumor area has blurred boundaries or small gaps.

(4) To improve the model’s ability in locating the os-
teosarcoma lesion area, we use an STB in the network
to learn an affine transformation matrix and adjust
the prediction map. Moreover, a boundary loss is
designed in the loss function to facilitate STB to learn
positional boundary information, which promotes
the segmentation performance on images where the
region of osteosarcoma is small.

(5) Over 80,000 MRI images of osteosarcoma output by
biosensors from the Second Xiangya Hospital are
adopted as a dataset for experiments. Results show
that our proposedmethod outperforms othermodels
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on accuracy with only a slight increase in the number
of parameters and computational complexity com-
pared with the backbone network and achieves a
balance in terms of accuracy and computational
efficiency, which is helpful to doctors in judging the
osteosarcoma lesion area and reducing workload.

2. Related Works

2.1. Osteosarcoma Image Segmentation. Accurate diagnosis
and prediction of osteosarcoma are the keys to increasing the
survival rate of the patients and making precise follow-up
treatment plans. Numerous researchers have studied in
osteosarcoma image segmentation before. Reference [26]
uses similarity mapping and slope value to analyze the time-
intensity curves of regions of interest (ROI) and fuses the
anatomic information of traditional MRI sequences with the
numerical information of dynamic MRI sequences to obtain
a better description of osteosarcoma regions. Reference [27]
proposes a dynamic clustering algorithm DCHS based on
Harmony Search (HS) and Fuzzy C-means (FCM) to au-
tomatically segment osteosarcoma MRI images, using a
subset of Haralick texture features and pixel intensity values
as a feature space to DCHS to delineate tumor volume,
achieving a Dice measurement of an average of 0.72.

With the rapid development of deep learning and
computer vision [28], a great number of deep learning-based
models have been designed by researchers in the segmen-
tation of osteosarcoma images as auxiliary diagnosis
methods. Multiple supervised fully convolutional network
(MSFCN) [24] adds supervision layers to the output layers of
different sizes in the VGG model and uses the output in-
formation of the multiple supervision layers to produce the
prediction map. Multiple supervised residual network
(MSRN) [25] integrates residual structure into the network
on the basis of multiple supervised structure, which im-
proves the performance of a deep neural network on os-
teosarcoma image segmentation tasks. Wnet++ [29] uses
two cascaded U-Nets and dense skip connections to realize
automatic segmentation of tumor areas. In addition,
Wnet++ adopts multi-scale input to alleviate information
loss caused by down-sampling and introduces an attention
mechanism to better represent tumor features, which in-
creases the accuracy of segmentation. In osteosarcoma MRI
image segmentation, there are often blurred foreground-
background boundaries or small and complex segmentation
regions. +erefore, the local semantic details and boundary
information are of particular importance. Different from the
above methods, we design BA-GCA Net, which embeds
modules into the semantic segmentation framework to
enhance the model’s ability to extract rich local semantic,
texture statistics, and boundary information and improves
the model in performance on intricate segmentation tasks.

2.2. Boundary Prediction Enhancement Methods. In osteo-
sarcoma MRI image segmentation, the prediction of
boundaries is crucial to the model’s performance. Previ-
ously, a great number of researchers in the field of medical

image segmentation have devoted to solving the problem of
segmentation boundaries [23–28]. Structure boundary
preserving segmentation [30] obtains the structured
boundary information of an image through a key point
selection algorithm, a boundary preserving block, and a
shape boundary-aware evaluator. BFP [31] utilizes a
boundary-aware feature propagation module to transfer
low-level boundary information. InverseForm [32] enables
boundary loss function to learn spatial transformation
distance through a pretrained inverse transformation net-
work. Some other works [33–35] have improved the
boundary loss function and achieved good results.

Unfortunately, the above methods neither take full ad-
vantage of the rich low-level statistical boundary texture
features of the input image nor solve the problem of spatial
shift of the prediction boundary that may exist in small
osteosarcoma lesion areas. Unlike the abovemethods, we use
a statistical texture learning block (STLB) [36] to quantify
and count the low-level texture information output by the
shallow layers in the network. Due to the segmentation of
some small tumor areas in the osteosarcoma MRI images,
spatial shifts may occur during down-sampling and up-
sampling. +erefore, we integrate the STB [37] into the deep
layer of the network to enhance the spatial transformation
invariance. Combined with the boundary loss function, STB
will automatically learn the spatial shift of the prediction
map and adjust it adaptively.

2.3. Attention Mechanisms. Attention mechanism has been
proved to raise the model’s capability of giving more weight
to useful features to improve semantic analysis and has
achieved good results in a variety of computer vision tasks
[38–42].

SENet [38] compresses feature maps in spatial dimen-
sion and generates a channel-wise attention. Based on
SENet, CBAM [39] additionally introduces a spatial atten-
tion through channel pooling and large-scale convolution
and has certain improvements in classification and detec-
tion. SANet [40] divides the segmentation task into two
subtasks that are pixel-level prediction and pixel grouping
and combines multi-scale prediction and pixel-grouping
spatial attention to improve performance. OCR [41] learns
the relationship between pixel and object region features
based on coarse segmentation maps and enhances the de-
scription of pixel features. Coordinate attention (CA) [42]
rethinks the attention mechanism and produces the atten-
tion map with positional information by compressing the
spatial features of the image into attention weights in
horizontal and vertical directions.

+e above methods can extract image context in an
efficient way, but cannot pay extra attention to the local
details of the image that are indispensable for pixel-to-pixel
osteosarcoma MRI image segmentation. Different from the
above methods, our proposed grid contextual attention
(GCA) combines local and global contextual attention,
which can exploit the global contextual features of the
feature map and learn local contextual features in the
meantime.
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3. Methods

As is mentioned above, the shortage of medical resources and
the backwardmedical level in some developing countries make
diagnosis of osteosarcoma more formidable. Moreover, the
blurred and low-contrast tumor areas as well as small and
intricate structural boundariesmay lead to fuzzy or even wrong
prediction of the lesion region from automatic segmentation
models and influence clinical diagnoses. To this end, we add
GCA, STLB, and STB to the network to reduce segmentation
errors in osteosarcoma MRI images using biosensors while
keeping the number of parameters and computational com-
plexity at a low level to ensure low diagnostic cost. +e overall
structure of the network is shown in Figure 1.

For an osteosarcoma image generated by MRI biosen-
sors, it is first fed into the backbone to extract high-level and
low-level features. We integrate GCA at the top of the
ResNet building blocks after the first two layers to improve
the feature extraction ability of the model. +e low-level
features produced by the first two layers are fed into STLB to
enhance and analyze texture statistics. +e output of STLB is
concatenated in channel dimension with the high-level
features from the backbone added with GCA.+en the fused
output is fed into STB to perform an affine transformation to
the prediction map and produce the final output. Canny [43]
operator is applied to the prediction result and ground truth
to extract the boundaries. Segmentation loss and boundary
loss are calculated using segmentation masks and bound-
aries, respectively, to form the compound loss function.

3.1. Grid Contextual Attention. In the pixel-wise osteosar-
coma MRI image segmentation, understanding the local
details in the image often helps in more accurate segmen-
tation as well as less uncertain prediction. +erefore, we
design a grid contextual attention (GCA) structure based on
both local and global contextual features. +e structure is
shown in Figure 2.

For an input feature map X ∈ RC×H×W, its global con-
textual information is obtained by:

A
h

� Excit Avgw(X)( ,

A
w

� Excit Avgh(X)( ,
(1)

where A
h ∈ RC×H×1, A

w ∈ RC×1×W, Avgh, and Avgw denote
average pooling of the feature map in height and width
directions, respectively, and Excit denotes the activation
transformation of the input as:

Excit(x) � ConvSigmoid ConvRELU(x)( . (2)

In the part of local attention, GCA splits the feature map
into patches, each of which is denoted as Pi,j ∈ RC×Ph×Pw ,
where Ph and Pw represent the patch size in height and width
directions and i ∈ 1, 2, . . . , (H/Ph) , j ∈ 1, 2, . . . , (W/Pw) .

Each patch Pi,j is passed through average pooling in the
width and the height directions respectively to get local
attention Ah

i,j ∈ RC×Ph×1 and Aw
i,j ∈ RC×1×Pw . +en the patches

are concatenated by:

A
h
j � Concat A

h
1,j, A

h
2,j, . . . , A

h
H/Ph,j ,

A
w
i � Concat A

w
i,1, A

w
i,2, . . . , A

w
i,W/Pw

 ,
(3)

where i ∈ 1, 2, . . . , (H/Ph) , j ∈ 1, 2, . . . , (W/Pw) ,
Ah

j ∈ RC×H×1, and Aw
i ∈ RC×1×W.

In order to enable localized patches to get global con-
textual information, each Ah

j and Aw
i are performed element-

wise product with A
h and A

w, respectively, to get A
h

j and A
w

i .
After getting the global contextual information, com-

pression and expansion are applied to A
h

j and A
w

i , where
compression uses a shared ConvNorm− RELU to fuse attention
maps in height and width directions and expansion applies
ConvSigmoid to A

h

j and A
w

i separately to extract contextual

features. +en A
h

j and A
w

i are divided into patches again to

obtain A
h

i,j and A
w

i,j, which are subsequently multiplied to get
the attention maps Am

i,j ∈ RC×Ph×Pw . Specifically, Am
i,j is

written as:

A
m
i,j � A

h

i,j × A
w

i,j, (4)

where × denotes matrix multiplication in spatial dimension.
Finally, Am

i,j and Pi,j are applied element-wise product to
get the reweighted patches and the patches are concatenated,
obtaining the output feature map Xout ∈ RC×H×W.

Compared with coordinate attention (CA) [42], GCA can
better learn the local detailed features in the osteosarcomaMRI
images while maintaining the global semantic features, which
improves the segmentation accuracy in some blurred tumor
images. In addition, to flexibly adjust the patch size and
compensate for the loss of information between patches by
using different patch sizes, padding-crop operation is designed
in GCA.+rough adaptive padding, the input feature map can
be divided into patches of any size and be cropped back to the
original input size after the attention operation.

3.2. Statistical Texture Learning Block. In osteosarcoma
segmentation tasks, the rich contextual information con-
tained in low-level features plays a crucial role in segmen-
tation performance. To solve the problem of blurred
boundaries as well as complex and irregular tumor shapes in
osteosarcoma MRI images using biosensors, we use statistical
texture learning block (STLB) [36] to fully exploit and utilize
the texture features and combine the rich low-level features
with the high-level features in the deeper layer of the network.

SFNet can combine low-level and high-level features
with semantic flow. At the same time, STLB can explore
the statistical features of osteosarcoma image texture [44,
45]. It not only learns the structural texture information,
but also learns the global statistical information of the
image, which is helpful for osteosarcoma segmentation.
In this section, the 1d and 2d quantization and counting
operator (QCO) are first introduced for statistical de-
scription of the texture information. +en two modules in
STLB are introduced: the texture enhancement module
(TEM) based on 1d-QCO to enhance the osteosarcoma
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texture features and the pyramid texture feature ex-
traction module (PTFEM) based on 2d-QCO to further
exploit the texture features.

3.2.1. 1d-QCO. +e structure of 1d-QCO is shown in
Figure 3.

For an input feature map X ∈ RC×H×W, 1d-QCO applies
global average pooling to X to get the average feature
a ∈ RC×1×1. +en the cosine similarity between each pixel
Xi,j in X and a is calculated to get S ∈ R1×H×W, where
i ∈ 1, 2, . . . , H{ } and j ∈ 1, 2, . . . , W{ }. Each position Si,j is
denoted as:

Si,j �
a · Xi,j

‖a‖2 · Xi,j

�����

�����2

. (5)

+en S is reshaped to S ∈ RHW and quantized to obtain
the N levels L � [L1, L2, . . . , LN]. +e nth level Ln is written
as:

Ln �
n

N
(max(S) − min(S)) + min(S), (6)

where N is a hyperparameter and n ∈ 1, 2, . . . , N{ }.
For the similarity Si ∈ R of each pixel in the feature map,

we encode it to Ei ∈ RN, where i ∈ 1, 2, . . . , HW{ } and each
dimension n ∈ 1, 2, . . . , N{ } of Ei is calculated by:

GCA
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Figure 2: +e structure of grid contextual attention (GCA).
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Ei,n �

1 − Ln − Si,


 −
0.5
N
≤ Ln − Si <

0.5
N

,

0, other.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

+e encoding map E ∈ RN×HW consists of each pixel’s
encoded value. Compared with one-hot encoding or argmax
operation, the quantization encoding is smoother and robust
to gradient vanishing.

1d-QCO then applies counting operation to the
encoding map E to get the counting map M ∈ RN×2.
Concretely, M is calculated by:

M � Concat L,


HW
i�1 Ei,n


N
n�1 

HW
i�1 Ei,n

⎛⎝ ⎞⎠, (8)

where Concat denotes concatenate operation in channel
dimension.

+ereafter, the average feature a is up-sampled to
a ∈ RN×C and concatenated to the up-sampled M to produce
P ∈ RN×C1 , which is calculated by:

P � Concat(Up(M), a). (9)

+e output of 1d-QCO includes the encoding map E as
well as the statistical texture information P of osteosarcoma.

3.2.2. 2d-QCO. 1d-QCO contains the statistical texture
features of the osteosarcoma images. However, it cannot
learn positional relationships between pixels. +erefore, a
2d-QCO is proposed.

Similar to 1d-QCO, 2d-QCO calculates cosine similarity
and level encoding of the input feature map X ∈ RC×H×W to
get the encoding map E ∈ RN×HW and quantization levels L.
+en E is reshaped to E ∈ RN×1×H×W. For the encoding of

each adjacent pixel pair Ei,j ∈ RN×1 and Ei,j+1 ∈ RN×1, the
encoded value Ei,j ∈ RN×N that carries adjacent information
is calculated by:

Ei,j � Ei,j × E
T
i,j+1, (10)

where T and × denote matrix transpose and multiplication,
respectively. +en we get the encoding map E∈ RN×N×H×W

that contains adjacent features of the input.
In the counting process, the counting map M ∈ RN×N×3

is produced by:

M � Concat L,


H
i�1 

W
j�1

Em,n,i,j


N
m�1 

N
n�1 

H
i�1 

W
j�1

Em,n,i,j

⎛⎝ ⎞⎠, (11)

where L∈ RN×N×2 represents the pairwise combination of all
the quantization levels and Lm,n � [Lm, Ln].

In 2d-QCO, the average feature is written as a ∈ RN×N×C

and the final output P ∈ RN×N×C1 is obtained by:

P � Concat(Up(M), a). (12)

3.2.3. Texture Enhancement Module. +e low-level texture
such as structural boundaries in osteosarcoma images are
often blurred and of low contrast. To this end, a texture
enhancement module (TEM) is employed to sharpening
the structural texture and make the low-level features
easier to learn. +e structure of TEM is shown in
Figure 4.

Inspired by the histogram quantization method in tra-
ditional image processing algorithms, the statistical infor-
mation in each quantization level is treated as a node in the
graph adjacency matrix. Unlike the traditional method of
defining a diagonal matrix artificially, TEM uses graph
reasoning to construct the adjacency matrix and reconstruct
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features

Cosine
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Figure 3: +e structure of 1d-QCO.
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the quantization level L to get L′. Concretely, the process can
be written as:

G � Softmax Conv P
T

  × Conv(P) ,

L′ � Conv(P) × G.
(13)

Finally, the output O ∈ RC2×H×W is obtained using the
reconstructed quantization levels L′ and the encoding map
E. O ∈ RC2×H×W is denoted as:

O � Reshape L′ × E( , (14)

where Reshape represents reshaping the output to
O ∈ RC2×H×W.

3.2.4. Pyramid Texture Feature Extraction Module. +e
features of statistical texture in osteosarcoma MRI images
are effectively enhanced through TEM. +en a pyramid
texture feature extraction module (PTFEM) is proposed to
extract and exploit rich texture features of the boundaries.
+e structure of PTFEM is shown in Figure 5.

Inspired by the conventional gray-level co-occurrence
matrix algorithm, the input feature map of osteosarcoma is
first passed through 2d-QCO to get the statistical co-oc-
current features P ∈ RC×N×N and then the texture features
T ∈ RC′ is calculated using a MLP and a level-wise average
operation. Specifically, the process is denoted as:

P′ � MLP(P), P′ ∈ R
C′×N×N

,

T �


N
m�1 

N
n�1 Pk,m,n
′

N × N
, k ∈ 1, 2, . . . , C′ .

(15)

Some previous works such as FPN [46] and DeepLabV3+
[47] found that the employment of multi-scale structure can
improve the model’s performance. Inspired by these works,
PTFEM integrates 2d-QCO with different scales into the
structure to better extract and utilize the osteosarcoma
texture features.

3.3. Spatial Transformer Block. Due to the small and com-
plicated osteosarcoma lesion areas in some MRI images
produced by biosensors, even a slight spatial shift of the

prediction map can produce poor results, which in turn lead
to wrong diagnosis. To this end, we use an STB [37] to make
the backbone invariant to spatial transformation and more
robust to the osteosarcoma images with small and intricate
tumor regions.

For the high-resolution segmentation map of osteosar-
coma, we assume that the error of the map to the ground
truth can be reduced by homography transformation.
+erefore, we use STB to learn this spatial transformation.
+e structure of STB is shown in Figure 6.

For an input feature map X ∈ RC×H×W, STB uses a set of
down-sampling convolutions Fdown− sample and fully con-
nected layers Fregression to produce an affine transformation
matrix Maffine ∈ R2×3. Concretely, Maffine is denoted as:

Maffine � Fregression Fdown− sample(X) . (16)

Simultaneously, the input feature map is applied a 1× 1
convolution as well as a softmax activation in another
branch to get the initial prediction map pred ∈ R2×H×W,
which can be described as:

pred � Softmax(Conv(X)). (17)

We denote the affine matrix as Maffine �
a11 a12 a13
a21 a22 a23

 .

For the coordinates (xs
n, ys

n) of each pixel in the initial
prediction map pred and the coordinates (xt

n, yt
n) of each

pixel in the final prediction map pred′ ∈ R2×H×W, where
n ∈ 1, 2, . . . , HW{ }, the affine transformation is defined as:

x
s
n

y
s
n

  � Maffine

x
t
n

y
t
n

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

a11 a12 a13

a21 a22 a23
 

x
t
n

y
t
n

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (18)

In order to apply spatial transformation to the initial
prediction map, STB samples each (xs

n, ys
n) to obtain the

final output pred′. Specifically, the process can be repre-
sented as:

predc,n
′ �  H

i�1 
W

j�1predc,i,j × I x
s
n − j;Φx(  × I y

s
n − i;Φy ,

(19)
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Figure 4: +e structure of the texture enhancement module.
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where I denotes to bilinear interpolation, Φx and Φy denote
sampling parameters, and c ∈ 1, 2, . . . , C{ } represents the
channel index of the feature map.

3.4. Compound Loss Function. To improve both the pre-
diction accuracy and the boundary perception ability of the
model for osteosarcoma, we design a compound loss
function based on focal loss [48]. +e loss function consists
of a segmentation loss as well as a boundary loss.

3.4.1. Weighted Segmentation Focal Loss. For the prediction
map ypred and the ground truth ygt, the weighted seg-
mentation focal loss is defined as:

FLseg � − αygt 1 − ypred 
c
log ypred 

· (1 − α) 1 − ygt y
c

predlog 1 − ypred ,
(20)

where α and c represent the balance weight and the ex-
ponential hyperparameter, respectively.

3.4.2. Weighted Boundary Focal Loss. In osteosarcoma MRI
image segmentation, the boundary plays an essential role in
improving the segmentation performance. +erefore, we

introduce a weighted boundary focal loss to facilitate the
model to learn boundary information.

First, the segmentation head and the ground truth are
applied Canny [43] operator to produce the prediction and
ground truth boundary bpred and bgt. +en we perform edge
sharpening on the normalized bgt with a threshold of 0.5 and
obtain a clear ground truth boundary bgt

′ . +e weighted
boundary focal loss is calculated using bpred and bgt

′ as:

FLboundary � − αbgt
′ 1 − bpred 

c
log bpred 

− (1 − α) 1 − bgt
′ b

c

predlog 1 − bpred .
(21)

+e compound loss function is defined as:

Loss � FLseg + βFLboundary, (22)

where β is the hyperparameter of weight. After experiments,
one of the suitable values of β is 0.2, which is used in this article.

+e compound loss function enables the model aware of
the boundaries of osteosarcoma and also promotes STB to
learn the spatial transformation between the prediction
output and the ground truth, which in turn makes the model
more robust to tumor segmentation. BA-GCANet is trained
in combination of compound loss function, enhancing the
model’s ability to boundary localization. As a method to

STB
Localization

Conv2d
MaxPool2d
LayerNorm

ReLU

Repeat×N

C×H×W
2×H×W

MLP
Maffine

0.9460 −0.0012 0.0074

−0.0023 0.9348 −0.0044

2×H×W

Affine
transformation AConv1×1

Input X pred pred’

Figure 6: +e structure of spatial transformer block (STB).
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PTFEM
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MLP+avg
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C
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Figure 5: +e structure of pyramid texture feature extraction module.
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assist doctors in diagnosis, it reduces the doctors’ workload
and improves the accuracy of diagnosis.

4. Experiments

In this section, we employ over 80,000 MRI images of os-
teosarcoma output by biosensors from 204 cases as the
dataset for experiments to evaluate the model and perform
ablation studies, which are provided by the Ministry of
Education Mobile Health Information-China Mobile Joint
Laboratory and the Second Xiangya Hospital of Central
South University [49].

4.1. Dataset. We have collected statistics about patients and
the results are shown in Table 1. We randomly select 80% of
the images for training and the remaining 20% for evalu-
ation. To be specific, there are a total of 204 case samples, of
which 164 are in the training set and 40 are in the test set.

Due to the confidentiality of data between hospitals and
the privacy of patients, the dataset is relatively hard to
obtain, which leads to the overfitting problem of the model.
To promote the robustness of the model to new data, we
perform data augmentation on the training set. We rotate
the images at 3 angles (0, 90, and 180), flip the image on
different axes (no flip, up-down, and left-right), perform
Gaussian blurring, add Gaussian noise (using different
variances), and apply salt and pepper noise (using different
proportions) to augment the training set.

4.2. Evaluation Metrics. In order to evaluate the perfor-
mance of the model on osteosarcoma MRI image seg-
mentation, in this section, we introduce accuracy, precision,

recall, F1-score, Dice similarity coefficient (DSC) [50], and
Intersection of Union (IOU) as the evaluation metrics and
the confusion matrix with true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) to explain
the performance of the model [51]. +e evaluation metrics
are defined as follows:

Accuracy (Acc) is used to evaluate the proportion of the
model’s right prediction and it is denoted as [52]:

accuracy �
TP + TN

TP + TN + FP + FN
. (23)

precision (Pre) is to calculate the percentage of true
osteosarcoma areas among the prediction areas [53]. Pre-
cision can be written as:

precision �
TP

TP + FP
. (24)

recall (Rec) evaluates the percentage of the prediction
osteosarcoma areas among the true areas [54]. Concretely,
recall is denoted as:

recall �
TP

TP + FN
. (25)

F1 indicates the robustness of segmentation and is de-
fined as [55]:

F1 �
2∗ precision∗ recall
precision + recall

. (26)

For a simpler description of DSC as well as IOU, we
denote the prediction of tumor area as ypred and the ground
truth as ygt.

DSC represents the similarity between ypred and ygt.
DSC can be written as

DSC �
2 ypred ∩ygt





ypred



 + ygt




. (27)

IOU measures the degree of overlap between the model’s
prediction map and the ground truth and it is denoted as [56]

Table 1: Patient statistics.

Characteristics Total Training set Test set
Age

<15 48 (23.5%) 38 (23.2%) 10 (25.0%)
15–25 131 (64.2%) 107 (65.2%) 24 (60.0%)
>25 25 (12.3%) 19 (11.6%) 6 (15.0%)

Sex
Female 92 (45.1%) 69 (42.1%) 23 (57.5%)
Male 112 (54.9%) 95 (57.9%) 17 (42.5%)

Marital status
Married 32 (15.7%) 19 (11.6%) 13 (32.5%)
Unmarried 172 (84.3%) 145 (88.4%) 27 (67.5%)

SES
Low SES 78 (38.2%) 66 (40.2%) 12 (30.0%)
High SES 126 (61.8%) 98 (59.8%) 28 (70.0%)

Surgery
Yes 181 (88.8%) 146 (89.0%) 35 (87.5%)
No 23 (11.2%) 18 (11.0%) 5 (12.5%)

Grade
Low grade 41 (20.1%) 15 (9.1%) 26 (65.0%)
High grade 163 (79.9%) 149 (90.9%) 14 (35.0%)

Location
Axial 29 (14.2%) 21 (12.8%) 8 (20.0%)
Extremity 138 (67.7%) 109 (66.5%) 29 (72.5%)
Other 37 (18.1%) 34 (20.7%) 3 (7.5%)

Table 2: Hyperparameters of the model.

stage Hyperparameter Value
GCA block Strategy Residual

ST block

Weight Zero
Bias [1, 0, 0, 0, 1, 0]

Interpolation
method Bilinear

STL block num_levels 128

Loss
function

α Based on ratios in batch
β 0.2
c 1.25

Training

Initializer kaiming_uniform
Epochs 200

Base learning rate 0.0001
Optimizer Adam

Learning rate decay (1 − (epoch/total epochs))0.9

Up-sampling Bilinear
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IOU �
ypred ∩ygt

ypred ∪ygt

. (28)

Furthermore, we adopt #params as the number of
parameters of the model and use floating point operations
(FLOPs) to evaluate the computational complexity [57,
58].

4.2.1. Training Details. +e Dilated ResNet-D-22(DRN-D-
22) [52] is chosen as the backbone and BA-GCA Net is
designed based on it. Note that osteosarcoma MRI images
often have large individual differences, and the relationship
between pixels in one image plays a more crucial role than
that among images. To this end, we replace batch norm in

the backbone to layer norm. Other hyperparameters of the
model are shown in Table 2.

4.3. Comparison with Other Methods. Figure 7 shows the
performance of each model on osteosarcoma MRI image
segmentation. Column (A) represents the original image,
columns (B)-(K) are the prediction output of each model, and
column (L) is the ground truth. Note that BA-GCA Net
outperforms other models in some difficult tasks, such as the
second image that has low contrast and blurred boundaries,
the fourth image of transverse section with small and com-
plicated tumor area, and the last image that contains small
gaps in the region of osteosarcoma. Results show that our
proposed BA-GCA Net has better performance than some

Original image FCN-8 s FCN-16 s FPN MSFCN MSRN Unet OCR DeepLabV3 UNet++ Ours (GCA net) Ground truth

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L)

DSC 0.9257 0.8835 0.9801 0.8787 0.9573 0.9811 0.8984 0.9732 0.9415 0.9927

DSC 0.8513 0.8724 0.9748 0.8942 0.8852 0.9765 0.9726 0.9684 0.9681 0.9924

DSC 0.9372 0.9261 0.8137 0.8908 0.9227 0.8769 0.9549 0.8321 0.9532 0.9620

DSC 0.8609 0.8124 0.7545 0.7940 0.8344 0.8249 0.9296 0.7447 0.8224 0.9346

DSC 0.8390 0.8157 0.9428 0.8493 0.9187 0.9566 0.9514 0.9236 0.9271 0.9682

Figure 7: +e segmentation effects of models on some osteosarcoma MRI images.

Table 3: Performance of models.

Model Pre Rec F1 DSC IOU #params FLOPs
FCN-16s [21] 0.922 0.882 0.900 0.859 0.824 134.3M 190.35G
FCN-8s [21] 0.892 0.914 0.902 0.875 0.831 134.3M 190.08G
MSFCN [24] 0.881 0.936 0.906 0.874 0.841 23.38M 1524.34G
MSRN [25] 0.893 0.945 0.918 0.887 0.853 14.27M 1461.23G
FPN [46] 0.914 0.924 0.919 0.888 0.852 48.20M 141.45G
U-Net [22] 0.922 0.924 0.923 0.892 0.867 17.26M 160.16G
OCR [41] 0.897 0.908 0.901 0.891 0.827 27.35M 125.67G
DeepLabV3 [4] 0.926 0.925 0.925 0.909 0.870 39.63M 170.45G
UNet++ [59] 0.924 0.924 0.924 0.908 0.868 18.16M 165.23G
SVM [60] 0.756 0.764 0.760 0.734 0.702 — —
DRN [50] 0.916 0.922 0.917 0.909 0.843 17.66M 76.93G
DRN+CA [42] 0.918 0.923 0.919 0.910 0.851 18.06M 77.21G
Ours (DRN+GCA) 0.927 0.924 0.925 0.913 0.866 18.11M 77.34G
Ours (DRN+GCA+ STLB) 0.925 0.934 0.929 0.916 0.873 18.47M 82.67G
Ours (DRN+GCA+ STLB+ STB) 0.938 0.937 0.937 0.927 0.880 19.88M 149.70G
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latest methods such as DeepLabV3 and UNet++ in capturing
boundary details and recognizing blurred osteosarcoma le-
sion areas. Furthermore, BA-GCA Net is more robust to
segmentation and DSC of its prediction remains above 0.93 in
difficult segmentation tasks. Compared with other models,
BA-GCA Net shows an advantage in processing the low-
contrast and complex osteosarcoma images and localizing the
small tumor regions, which is helpful for clinical diagnosis.

+e quantitative evaluation results of BA-GCA Net and
other comparative models on the test set are shown in Table 3.

From the results we know that BA-GCA Net achieves higher
precision, F1-score, DSC, and IOU than latest methods, which
means our proposed method performs better overall on the
test set. By integrating GCA, STLB, and STB into the back-
bone, the DSC of the model has increased by 0.004, 0.003, and
0.011 and the IOU of the model has increased by 0.023, 0.007,
and 0.007, respectively. It is proved that the three blocks
effectively strengthen the backbone with an increase of DSC
by 0.018 and increase of IOU by 0.037. More detailed analysis
will be introduced in the Ablation Study section.
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Figure 8: Comparison of #params and DSC between models.
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Figure 9: Comparison of FLOPs and DSC between models.
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+e relationship between the number of parameters and
DSC of different models is shown in Figure 8. It shows that
BA-GCA Net achieves the highest DSC among all the
models. Compared with UNet++, BA-GCA Net has a 0.019
higher DSC with only a slight increase in the number of
parameters by 0.19M. Moreover, BA-GCA Net outperforms
the DRN added with coordinate attention (CA) [42] on DSC
increasing by 0.017 and has only an increase in the number
of parameters by 1.82M.

+e comparison of FLOPs and DSC between models is
shown in Figure 9. We can know from the results that the
computational cost of our proposed method is higher than
DRN added with CA by 72.49GFLOPs and lower thanU-Net
by 10.46GFLOPs, which achieves a good balance between
the accuracy and the computational complexity.

5. Ablation Study

In this section, ablation studies on the three blocks are
introduced respectively in order to better analyze the role as
well as the necessity of each block in BA-GCA Net. By

comparing the performance of the model with and without
the block, and visualizing the outputs in the middle layers,
we can check out whether a block plays the role as expected.

5.1. Ablation of GCA. Attention mechanism is able to cal-
ibrate the input feature map so that the model can focus on
the regions of interest. To illustrate that GCA can learn this
calibration more precisely, in this section, we employ Seg-
Grad-CAM [61] to visualize GCA as well as CA [42]. By
summing the partial derivatives of the output target region
with respect to the feature maps before and after the last
GCA block (or CA block), respectively, and taking the mean
of the derivatives for each channel as the weight of the
feature map, we can visualize the influence of the attention
block.+e visualization results of GCA and CA are shown in
Figure 10. Yellow and red indicate that the model gives
higher weight to the region, while green and blue are the
opposite. +e visualization only computes the partial de-
rivatives of the osteosarcoma region in the ground truth.+e
images show that GCA is more sensitive to the osteosarcoma
areas and locates the tumor regions more precisely.

Original image Before GCA Before CAAfter GCA After CA Ground truth

Figure 10: Visualization results of GCA and CA.
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Compared with CA, our proposed structure can better
observe the tumor details and calibrate the feature map.

+e DSC and IOU indicators and number of parameters
of DRN, DRN with CA, and DRN with GCA are shown in
Table 4, respectively. Compared with CA, the number of
parameters of GCA is only 0.05M more, but the DSC and
IOU have increased by 0.003 and 0.015, respectively.

5.2.AblationofSTLB. STLB provides an effectivemethod for
better extracting and utilizing low-level texture features of
the input images. A key role in STLB is the texture en-
hancement module (TEM). To analyze what TEM learns
during training, we visualize the input and output feature
maps of the TEM, mapping the grayscale values to colors
from blue to red, which is shown in Figure 11. Note that
through quantization, counting, and texture enhancement,
the boundaries and some texture of the tissues such as bones,
muscles, and osteosarcomas are exploited and sharpened to
produce clearer feature maps, which is helpful for PTFEM to
extract the spatial correlation features between pixels.

Table 5 shows the changes of DSC, IOU, and number of
parameters of the model before and after adding STLB.
Compared with DRN-D-22, the DRN added with STLB
achieves an increase in DSC and IOU by 0.005 and 0.019,
respectively, and the number of parameters increases by only
0.35M. STLB enhances and utilizes the texture details and
statistical features of osteosarcoma images, thereby im-
proving the performance on low-contrast and blurred tumor
segmentation tasks.

5.3. Ablation of STB. As is mentioned above, STB learns to
perform affine transformation on the prediction map to
better locate the tumor area. In this section, we examine the
segmentation effect before and after affine transformation,
as shown in Figure 12. Column (D) shows the comparison
of boundaries before and after STB. Canny filter is used to
extract the boundary. +e red one is the output boundary
before STB, and the blue one is the opposite. From the
changes of DSC, we can conclude that STB performs
beneficial spatial transformation on the input feature map,

Table 4: Performance of backbone with GCA and CA.

Model param add (M) #params (M) DSC IOU
DRN-D-22 — 17.66 0.909 0.843
+CA +0.4 18.06 0.910 (+0.001) 0.851 (+0.008)
+GCA +0.45 18.11 0.913 (+0.004) 0.866 (+0.023)

Original image Before TEM After TEM

Figure 11: Visualization of feature maps before and after TEM.

Table 5: Comparison of performance before and after using STLB.

Model Param Add (M) #params (M) DSC IOU
DRN-D-22 — 17.66 0.909 0.843
+STLB +0.35 18.01 0.914 (+0.005) 0.862 (+0.019)
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making the prediction area more accurate. By integrating
STB into the model, the spatial shift and deformation
caused by down-sampling and up-sampling are corrected,
and the DSC and IOU has increased by 0.011 and 0.007,
respectively.

6. Conclusion

In this article, we use a novel GCA, STLB, and STB to
improve the model’s segmentation performance on some
difficult tasks such as complex osteosarcoma boundaries,
small tumor areas, and low-contrast images produced by
MRI biosensors. We propose a BA-GCA Net with the three
blocks and employ over 80,000 MRI images of osteosarcoma
from the Second Xiangya Hospital in China to train and test
the model. In order to check out the function of each block,
we conduct ablation studies.+e visual analysis of the results
helps us understand how each block works and its effec-
tiveness. +e test results show that out proposed BA-GCA
Net achieves 0.927 DSC and 0.880 IOU, which is better than
other existing models. +e number of parameters and
computational cost are only 19.88M and 149.70GFLOPs,
respectively, which means the model reaches a balance
between accuracy and computational consumption. +e
model can assist doctors in judging the area of osteosarcoma
at a relatively low cost, reduce the workload of doctors, and
improve the efficiency of diagnosis.

In the future, in view of the difficulty in obtaining the
clinical data of osteosarcoma, we will introduce few-shot
learning into our method, so that the model can use fewer
samples to obtain similar results. It will solve the problem of
insufficient generalization of hospital self-trained models

due to the data incompatibility between hospitals, improve
the robustness of the model, and reduce training costs.
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