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Background and Objectives: Flavonoids form the largest group of plant phenols and have various biological and pharma-
cological activities. In this study, we investigated the effect of a flavonoid, 3, 4’-dihydroxyflavone (3, 4’-DHF) on osteo-
genic differentiation of equine adipose-derived stromal cells (eADSCs). 
Methods and Results: Treatment of 3, 4’-DHF led to increased osteogenic differentiation of eADSCs by increasing 
phosphorylation of ERK and modulating Reactive Oxygen Species (ROS) generation. Although PD98059, an ERK in-
hibitor, suppressed osteogenic differentiation, another ERK inhibitor, U0126, apparently increased osteogenic differ-
entiation of the 3, 4’-DHF-treated eADSCs, which may indicate that the effect of U0126 on bone morphogenetic protein 
signaling is involved in the regulation of 3, 4’-DHF in osteogenic differentiation of eADSCs. We revealed that 3, 4’-DHF 
could induce osteogenic differentiation of eADSCs by suppressing ROS generation and co-treatment of 3, 4’-DHF, 
U0126, and/or N-acetyl cysteine (NAC) resulted in the additive enhancement of osteogenic differentiation of eADSCs.
Conclusions: Our results showed that co-treatment of 3, 4’-DHF, U0126, and/or NAC cumulatively regulated osteo-
genesis in eADSCs, suggesting that 3, 4’-DHF, a flavonoid, can provide a novel approach to the treatment of osteopo-
rosis and can provide potential therapeutic applications in therapeutics and regenerative medicine for human and com-
panion animals.
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Introduction 

  Bone formation and maintenance are regulated by bone 
forming cells, osteoblasts, and bone resorbing cells, osteo-
clasts (1). An imbalance between osteoblasts and osteo-
clasts leads to bone diseases or disorders such as osteopo-
rosis, osteopetrosis, and Paget’s disease (1-3). Osteoblasts 
are bone forming cells that regulate mineralization and 
synthesis of the bone matrix. Osteoblasts are important 
regulators in osteoclast differentiation and function (4). 
Osteogenic differentiation, which plays an important role 
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in osteoblast generation, is a useful therapeutic target for 
treating bone diseases (5). 
  Mesenchymal stem cells (MSCs) exist in a variety of tis-
sues, including adipose tissue, skeletal muscle, bone mar-
row, and the umbilical cord. MSCs have the capacity for 
self-renewal and differentiate into various cell types in-
cluding adipocytes, osteoblasts, and chondrocytes. Recently, 
Adipose-Derived Stromal Cells (ADSCs) have been ap-
plied in regenerative medicine to compensate the bone 
loss in various diseases (6-8). Osteogenesis from MSC is 
a complex process that is regulated by various stimuli, in-
volving signaling pathways and diverse transcription fac-
tors (9). 
  Horses are valuable in the fields of recreation and 
sports, and as companions (10, 11). Equine health man-
agement is a high-value industry, and bone, muscle, and 
tendon injuries in particular can be expensive to treat 
(10-12). Injured cartilage and ligaments, bone loss, and 
bone fractures are common problems in horses (12, 13). 
Equine adipose-derived stromal cells (eADSCs) are iso-
lated from adipose tissue, and can be differentiated into 
osteoblasts, myocytes, chondrocytes, and adipocytes (6, 8). 
Also, eADSCs are being studied for the treatment of hors-
es, including surface digital flexor tendon (SDFT) damage 
of horses (14-17).
  Flavonoids are found in fruits and vegetables, and are 
widely consumed by humans (18). Flavonoids have diphenyl 
propane (C6C3C6) skeleton, and the patterns of hydrox-
ylation in the B ring play an important role in their func-
tion (19). Flavonoids have anti-cancer, anti-oxidant, and 
anti-inflammatory properties (19-23). We have recently veri-
fied that flavonoid treatment with 3, 2’-dihydroxyflavone 
(3, 2’-DHF) up-regulated cell growth and stemness marker 
expression in embryonic stem cells (ESCs) and induced 
pluripotent stem cells (iPSCs). We also demonstrated that 
3, 2’-DHF-treated iPSCs promote functional recovery and 
regeneration when transplanted into rat nerves, which is 
associated with their neuroprotective properties (24). We 
also found that 3, 4’-DHF has anti-oxidant, anti-apoptotic, 
and cell differentiation regulatory properties (25). 
  Here, we found that treatment with 3, 4’-dihydroxyflavone 
(3, 4’-DHF) promoted osteogenic differentiation from 
eADSCs by regulating the Reactive Oxygen Species (ROS). 
Furthermore, co-treatment with 3, 4’-DHF and U0126 or 
N-acetyl cysteine (NAC) regulated osteogenesis in eADSCs. 
We propose that 3, 4’-DHF may be used to regulate osteo-
genesis for therapeutic applications in humans and animals. 

Materials and Methods

Chemicals and antibodies 
  3, 4’-DHF was purchased from Indofine Chemical Inc. 
(Hillsborough, NJ, USA) and dissolved in dimethyl sulf-
oxide (DMSO, Sigma Aldrich, St. Louis, MO, USA). The 
ROS scavenger, NAC, and the MEK kinase inhibitor, 
U0126, were obtained from Calbiochem (San Diego, CA, 
USA). Dexamethasone, β-glycerophosphate, ascorbic acid, 
alkaline phosphatase kits, and alizarin red s were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). The re-
agent for measuring intracellular ROS, 2’, 7’-dichlorodi-
hydrofluorescein diacetate (H2DCFDA), was obtained 
from Molecular Probes (Eugene, OR, USA). Primary anti-
bodies for β-actin, phospho-ERK, ERK, phospho-AKT, 
and AKT were purchased from Santa Cruz Biotechnology 
(Dallas, TX, USA), and the peroxidase conjugated secon-
dary antibodies, anti-mouse IgG, anti-rabbit IgG, anti-goat 
IgG, were obtained from Amersham Bioscience (Piscataway, 
NJ, USA). 

Cell culture and osteogenic differentiation 
  eADSCs were provided by Kyungpook National University 
(Daegu, Korea) by Prof. Jeong. eADSCs were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, 
Carlsbad, CA, USA), supplemented with 10% Fetal Bovine 
Serum (FBS; GE Healthcare, Chicago, IL, USA) and 0.1% 
penicillin-streptomycin (Sigma Aldrich, St. Louis, MO, 
USA). Osteogenesis was induced by osteogenic differentia-
tion media containing 0.1 μM dexamethasone (Sigma 
Aldrich, St. Louis, MO, USA), 10 mM β-glycerophosphate 
(Sigma-Aldrich, St. Louis, MO, USA), and 50 μg/ml as-
corbic acid-2-phosphate (Sigma-Aldrich, St. Louis, MO, 
USA) for 2 weeks. 

Alizarin red S staining
  The cells were fixed with 4% paraformaldehyde for 20 
min and stained with 2% alizarin red s solution for 10 
min. Stained cells were rinsed twice with distilled water 
and once with Dulbecco’s Phosphate-Buffered Saline 
(DPBS). Staining was confirmed using a light microscope. 
The Alizarin red stain was then removed in 10% acetic 
acid for 30 min and neutralized with 10% ammonium 
hydroxide. The absorbance was measured at 405 nm using 
an xMarkTM Microplate Absorbance Spectrophotometer 
(Bio-Rad Laboratories, Hercules, CA, USA).

Detection of intracellular ROS
  Intracellular ROS was measured using H2DCFDA 
(Molecular Probes, Eugene, OR, USA). Cells were scraped 
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and centrifuged at 3,000 rpm for 1 min. Then cell pellets 
were washed with DPBS, and stained in the dark with 
10 μM H2DCFDA for 30 min. H2DCFDA fluorescence 
was detected using a flow cytometer (FACS Calibur, 
Becton Dickinson, Heidelberg, Germany), and data were 
analyzed using Cell Quest pro software 5.

RNA isolation, cDNA synthesis, and real time RT-PCR 
analysis 
  Total RNA was isolated from eADSCs at 4-time points 
(2, 5, 8, 11 days) during osteogenic induction using Trizol 
(Sigma-Aldrich, St. Louis, MO, USA). Reverse transcrip-
tion was carried out with 2 μg of total RNA using M- 
MLV reverse transcriptase (Promega, Madison, WI, USA), 
and quantitative PCR was performed using Fast SYBR 
Green Master Mix (Applied Biosystems, Stockholm, Sweden). 
Primers were designed using Primer3 (ver. 4.0) as follows: 
Equine ALP, F 5’-GACAAGAAGCCCTTCACTGC-3’, R 
5’-TGGGGGATGTAGTTCTGCTC-3’; equine OCN, F 5’- 
GTGCAGAGTCTGGCAGAGGT-3’, R 5’-TCGTCACAGT 
CTGGGTTGAG-3’, equine OPN, F 5’-CCATGAGGATGA 
CCAGGACT-3’, R 5’-AACGTCGGTGGAAAAATCAG-3’; 
equine RUNX2, F 5’-TTACTTACACCCCGCCAGTC-3’, 
R 5’-GCAGCATTCTGGAAGGAGAC-3’; equine SOD1, F 
5’-GATTCCACGTCCACGAGTTT-3’, R 5’-ATGCTTTCC 
CGAGAGTGAGA-3’; equine SOD2, F 5’-CCCCGACTTG 
CAGTATGATT-3’, R 5’-TGCAGAGCAATCTGAGCTGT-3’; 
equine Catalase, F 5’-TACCCGTGAACTGTCCCTTC-3’, 
R 5’-GGAGAGCACTGGCTTTTACG-3’; equine NOX1, F 
5’-TGATCGCAAGCTCAAAACAC-3’, R 5’-AGGATGTCA 
GTGGCCTTGTC-3’; equine NOX4, F 5’-TTTAGACACC 
CACCCTCCTG-3’, R 5’-CAGAAAGCCAAAGCCAAGTC-3’, 
and equine GAPDH, F 5’-ATCACTGCCACCCAGAAGAC-3’, 
R 5’-GTGAGCTTCCCATTCAGCTC-3’. 

Western blotting
  Control and differentiated eADSCs were scraped and 
washed with DPBS. Cell pellets were resuspended in 
ice-cold lysis buffer, containing 10% glycerol (Junsei 
Chemical, Tokyo, Japan), 100 mM Tris–HCl pH 7.5 
(Sigma-Aldrich, St. Louis, MO, USA), 0,1% Triton X-100 
(Amresco, CV, USA), 10 mM NaCl (Sigma-Aldrich, St. 
Louis, MO, USA), 1 mM sodium orthovanadate (Sigma- 
Aldrich, St. Louis, MO, USA), 50 mM sodium fluoride 
(Sigma-Aldrich, St. Louis, MO, USA), 1 mM phenyl-
methylsulfonyl fluoride (Sigma-Aldrich, St. Louis, MO, 
USA) and 1 mM p-nitrophenyl phosphate (Sigma-Aldrich, 
St. Louis, MO, USA). The protein concentration was de-
termined using the Bradford assay reagent (Bio-Rad 
Laboratories, Hercules, CA, USA). An equal amount of 

each protein sample was separated on a 10% SDS PAGE 
gel. Proteins were then electrophoretically transferred onto 
a nitrocellulose membrane (Whatman International Limited, 
Kent, UK) and blocked with 5% non-fat milk powder 
(Amresco, Solon, OH, USA) dissolved in Tris-buffered sal-
ine (Sigma-Aldrich, St. Louis, MO, USA). Proteins were 
detected using the appropriate primary and secondary an-
tibodies, and enhanced chemiluminescence (ECL; Amersham 
Bioscience, Piscataway, NJ, USA).

Statistical analysis
  All experiments were repeated at least three times, and 
data are presented as the mean±standard deviation (±SD). 
All statistical comparisons were performed using ANOVA 
(analysis of variance) or Student’s t-test in MS Excel 2013 
(Microsoft, Redmond, WA, USA). Differences between 
groups were considered to be statistically significant at *p＜ 

0.05. 

Results

Effects of 3, 4’-DHF on eADSCs during osteogenic 
differentiation
  To investigate effect of 3, 4’-DHF, we treated 3, 4’-DHF 
during osteogenic differentiation for 2 weeks in eADSCs. 
After osteogenic differentiation, we analyzed ALP activity, 
a well-known osteogenesis marker in differentiated eADSCs. 
ALP activity was significantly increased in eADSCs differ-
entiated with 3, 4’-DHF than in the control (Fig. 1A). In 
addition, we assessed the extracellular matrix mineraliza-
tion using alizarin red S staining, and found that 3, 
4’-DHF-treated eADSCs had higher amounts of alizarin 
red S staining compared to that of the control group (Fig. 
1B). Next, we measured the calcium content in eADSCs 
and 3, 4’-DHF exposed-eADSCs during osteogenic differ-
entiation and confirmed that the calcium level also in-
creased in 3, 4’-DHF-treated eADSCs (Fig. 1C). The ex-
pression of Osteocalcin (OCN), Osteopontin (OPN), RUNX2, 
and ALP, which are osteogenic differentiation markers, in-
creased in differentiated eADSCs treated with 3, 4’-DHF 
compared to that of the control (Fig. 1D). 

ERK phosphorylation increased with 3, 4’-DHF 
treatment during osteogenic differentiation
  AKT and ERK signaling activated during osteogenic 
differentiation in MSCs. So, we investigated the phosphor-
ylation level of AKT and ERK proteins during osteogenic 
differentiation with or without 3, 4’-DHF treatment. The 
phosphorylation level of AKT and ERK increased upon 
osteogenic differentiation (Fig. 2A). However, AKT phos-
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Fig. 1. 3, 4-’dihydroxyflavone (3, 4’-DHF) enhanced osteogenesis in equine Adipose-Derived Stromal Cells (eADSCs). (A, B) Osteogenic 
differentiation marker staining of 3, 4’-DHF-treated eADSCs with osteogenic differentiation at day 14 (A) Alkaline phosphatase (ALP) and 
(B) Alizarin red s. (C) Calcium content ration of 3, 4’-DHF-treated eADSCs with osteogenic differentiation. (D) qRT-PCR analysis of osteo-
genesis markers (Osteocalcin (OCN), Osteopontin (OPN), RUNX2, and ALP) in eADSCs and 3, 4’-DHF eADSCs. Error bars represent±SD
from at least three independent experiments (*p＜0.05).

phorylation was a slightly higher than control differ-
entiation group in 3, 4’-DHF treated eADSCs. In contrast, 
ERK was significantly phosphorylated in 3, 4’-DHF treat-

ed eADSCs during osteogenic differentiation (Fig. 2A). To 
confirm that ERK is associated with osteogenic differ-
entiation of eADSCs, we treated PD98059, an ERK in-
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Fig. 2. 3, 4’-DHF induced ERK activation during osteogenic differentiation. (A) Western blot analysis of ERK and AKT phosphorylation 
during osteogenic differentiation in the presence or absence of 3, 4’-DHF. (B) Expression level of phosphorylated ERK in the presence 
or absence of PD98059 or 3, 4’-DHF. (C) qRT-PCR analysis of osteogenic differentiation markers ALP and OPN in eADSCs with or without 
3, 4’-DHF-treatment in the presence or absence of PD98059. Each experiment was repeated in triplicate and data are presented as 
means±standard deviation (p＜0.05, denoted by*).

hibitor, in eADSCs and 3, 4’-DHF-treated eADSCs. We 
confirmed that phosphorylated ERK levels are decreased 
by treatment of PD98059 in eADSCs and 3, 4’-DHF-treat-
ed eADSCs (Fig. 2B). Next, we measured the expression 
of osteogenic differentiation marker genes, ALP and OPN, 
in eADSCs and 3, 4’-DHF-treated eADSCs with PD98059 
(Fig. 2C). Pre-treatment with PD98059 resulted in re-
duced expression levels in osteogenic related genes in 
eADSCs and 3, 4’-DHF-treated eADSCs. 

U0126 induces osteogenic differentiation via BMP 
signaling despite EKR inactivation in eADSCs
  To confirm ERK inactivation repress osteogenic differ-
entiation in eADSCs, we treated U0126, another ERK in-
hibitor, during osteogenic differentiation. Surprisingly, 
U0126 showed slightly increased osteogenic marker ex-
pression although inhibited ERK phosphorylation (Fig. 
3A and 3B). Recent studies have demonstrated that U0126 
increases expression of osteogenic-associated genes by acti-
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Fig. 3. Treatment with the ERK inhibitor U0126, led to an increase in osteogenesis in eADSCs and 3, 4’-DHF eADSCs via BMP signaling. 
(A) Western blot analysis of phosphorylated ERK in eADSCs and 3, 4’-DHF eADSCs in the presence or absence of U0126. (B) qRT-PCR 
of osteogenesis marker gene expression in eADSCs and 3, 4’-DHF eADSCs treated with U0126. (C) qRT-PCR analysis of BMP2 and BMP4 
gene expression in the presence or absence of U0126 and PD98059 in eADSCs and 3, 4’-DHF eADSCs. Error bars represent±SD from 
at least three independent experiments (*p＜0.05).
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Fig. 4. 3, 4’-DHF regulates osteogenic differentiation by modulation of Reactive Oxygen Species (ROS) signaling. (A) Intracellular ROS 
level according to 2’, 7’-dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescence by flow cytometry. (B) The intensity of H2DCFDA 
fluorescence in N-acetyl cysteine (NAC) treated eADSCs and 3, 4’-DHF eADSCs. (C) Expression of osteogenesis marker genes in NAC 
treated or untreated eADSCs and 3, 4’-DHF eADSCs according to qRT-PCR analysis. (D) Expression of ROS-related genes in eADSCs and 
3, 4ʹ-DHF eADSCs in the presence or absence of NAC treatment. Error bars represent±SD from the mean of three independent experiments 
(*p＜0.05).



Kwonwoo Song, et al: Modulation of Osteogenic Differentiation of Adipose-Derived Stromal Cells  341

vating BMP signaling pathway transduction despite re-
duced ERK phosphorylation (26). Similarly, in eADSCs, 
treatment with U0126 has been shown to induce differ-
entiation through activation of the BMP signaling path-
way (Fig. 3C). Therefore, treatment of 3, 4’-DHF during 
osteogenic differentiation in eADSC induces ERK phos-
phorylation, but ERK phosphorylation does not induce 
differentiation absolutely. And U0126 increases osteogenic 
differentiation through BMP signaling despite inhibiting 
ERK phosphorylation.

3, 4’-DHF regulates osteogenic differentiation by 
modulation of ROS signaling
  Previously, we demonstrated that 3, 4’-DHF inhibit adi-
pogenic differentiation by modulation of ROS signaling in 
eADSCs (27). So, we measured the intracellular ROS lev-
els in osteogenic differentiated eADSCs and in 3, 
4’-DHF-treated eADSCs. During osteogenesis, 3, 4’-DHF- 
treated eADSCs further decreased H2DCFDA fluo-
rescence intensity than control differentiation groups (Fig. 
4A). To investigate the role of ROS, we pre-treated both 
eADSCs and 3, 4’-DHF-treated eADSCs with a ROS scav-
enger, NAC. Pre-treatment with NAC suppressed ROS 
generation during osteogenic differentiation (Fig. 4B). 
Moreover, NAC or 3, 4’-DHF treatment significantly ele-
vated the expression of osteogenesis markers (Fig. 4C). We 
also measured the expression of ROS-related genes in 
NAC or 3, 4’-DHF treated eADSCs. We found that NAC 
or 3, 4’-DHF modulate the expression of ROS-related 
genes, including SOD1 (Cu/Zn superoxide dismutase), 
SOD2 (Mn superoxide dismutase), NOX1 (superoxide- 
generating NADPH oxidase enzymes), NOX, and catalase 
(hydrogen peroxide-decomposing enzyme) (Fig. 4D). 
Interestingly, SOD2 and catalase expression increased, 
while NOX1 and NOX4 expression decreased slightly after 
treatment with NAC or 3, 4’-DHF. SOD1 expression in-
creased immediately after treatment with NAC. In sum-
mary, 3, 4’-DHF treatment resulted in ROS modulation 
via differential regulation of the expression levels of 
ROS-related genes during osteogenic differentiation.

Co-treatments 3, 4’-DHF, U0126 and NAC enhances 
osteogenic differentiation in eADSCs
  We investigated the effect of U0126 on the intracellular 
ROS level in eADSCs and 3, 4’-DHF-treated eADSCs dur-
ing osteogenic differentiation (Fig. 5A). Inhibition of ERK 
activity by U0126 treatment did not result in a significant 
difference in ROS generation in eADSCs and 3, 4’-DHF- 
treated eADSCs during osteogenic differentiation. To 
characterize the influence of both of ROS and ERK signal-

ing on the osteogenic differentiation of eADSCs and 3, 
4’-DHF-treated eADSCs, we treated the cells with NAC 
and U0126. Intracellular ROS levels decreased in NAC- 
treated cells, while U0126 had no effect on intracellular 
ROS levels (Fig. 5B). We previously observed that the ex-
pression level of osteogenic differentiation markers in-
creased during treatment with either 3, 4’-DHF, U0126, 
or NAC. Co-treatment with 3, 4’-DHF, U0126, and/or 
NAC led to larger increases in the expression levels of os-
teogenic differentiation markers than treatment with in-
dividual compounds (Fig. 5C). We illustrated our results 
in one representative schematic that shows the link be-
tween ERK and ROS signaling during 3, 4’-DHF-en-
hanced osteogenic expression, and their effects on the ex-
pression levels of osteogenic differentiation markers (Fig. 
6). Combined treatment with 3, 4’-DHF, U0126, and/or 
NAC resulted in additive enhancement of the expression 
of osteogenic differentiation markers.

Discussion

  Flavonoids form the largest group of plant phenols and 
are found in fruits, vegetables, bark, roots, and grains (28). 
Flavonoids play a role in controlling various biological 
and pharmacological activities such as antioxidant, an-
ti-inflammation, antiviral properties (24). Antioxidant ac-
tivity is the most common function of flavonoids and reg-
ulates cell function and differentiation (29). The beneficial 
function of flavonoids is increasingly used for the pre-
vention and treatment of infections, allergic, inflammatory, 
and degenerative diseases. In the future, there will be in-
creased interest in the development and application of fla-
vonoid-related drugs, and it can be effectively used for 
treating diseases. Treatment with 3, 4’-DHF resulted in 
increased osteogenic differentiation of eADSCs. The in-
verse relationship between adipogenesis and osteogenesis 
in ADSCs has been previously reported (9, 30). Osteogenesis 
is an important process for osteoblast generation, which 
can be used to treat bone metabolic diseases. Bone con-
tains two distinct cell lineages: osteoblasts and osteoclasts, 
which are responsible for bone generation and resorption, 
respectively. Bone maintenance is regulated by these cell 
lineages, and imbalances between them leads to bone met-
abolic diseases such as osteoporosis. Osteoporosis is a dis-
order characterized by a decrease in bone density and 
bone mass caused by osteoclasts. As osteogenesis plays an 
important role in osteoblast generation and bone for-
mation, many studies have suggested that osteogenesis is 
a useful therapeutic strategy for treating osteoporosis (5). 
Several studies have revealed the relationship between fla-
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Fig. 5. Co-treatment with 3, 4’-DHF, U0126, and NAC regulated osteogenic differentiation. (A) ROS levels were determined by measuring 
H2DCFDA fluorescence using a flow cytometer, with or without U0126 treatment in eADSCs or 3, 4’-DHF-treated eADSCs during osteogenic 
differentiation. (B) Intracellular ROS levels were measured following treatment with U0126 or NAC in eADSCs and 3, 4’-DHF eADSCs. 
(C) qRT-PCR analysis of osteogenic differentiation marker gene expressions in eADSCs and 3, 4’-DHF eADSCs, in the presence or absence 
with U0126 or NAC. Each experiment was repeated in triplicate and data are presented as means±SD (*p＜0.05).

vonoids and bone development and demonstrated the po-
tential of flavonoids for the treatment of osteoporosis (31, 
32). Some flavonoids including genistein, daidzein, icariin, 
quercetin, rutin, luteolin, kaempferol and naringin, have 
been investigated for their potential use in the prevention 
and treatment of osteoporosis. The antioxidant, anti-in-
flammatory, and bone-conserving properties of flavonoids 
have recently confirmed to help prevent age-related bone 

loss and osteoporosis (33).
  During osteogenic differentiation, ERK phosphor-
ylation increases (26). IGF-I, EGF, and FGF can regulate 
osteogenesis via the ERK signaling pathway (34-36). In 
eADSCs, we observed that ERK activated during osteo-
genic differentiation. ERK phosphorylation also signifi-
cantly increased in the presence of 3, 4’-DHF. Pre-treat-
ment with ERK pathway inhibitors, PD98059 and U0126, 
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Fig. 6. Schematic representation of the 3, 4’-DHF, U0126, and NAC modulation of osteogenesis in eADSCs. 

significantly suppressed ERK phosphorylation during os-
teogenic differentiation (Figs. 2 and 3). PD98059 treat-
ment of eADSCs and 3, 4’-DHF-treated eADSCs reduced 
the amount of ERK phosphorylation levels and the ex-
pression of osteogenic differentiation marker genes (Fig. 
2). In contrast, although U0126 reduced ERK phosphor-
ylation levels, led to an increase in osteogenic differ-
entiation via BMP signaling pathway (Fig. 3) (26). 
  Oxidative stress is caused by high levels of ROS pro-
duction and is associated with apoptosis and damage in 
a variety of pathological conditions, including aging, neu-
rodegeneration, cancer, and osteoporosis. ROS affect DNA 
and proteins, cell proliferation, metabolism, and differ-
entiation regulation (1, 37). Previous studies have con-
firmed that the regulation of ROS production is important 
for osteogenic differentiation (37). During osteogenesis, 
ROS levels are down-regulated in a time-dependent man-
ner (Fig. 4A). In the present study, we have shown that 
ROS levels decreased slightly during osteogenic differ-
entiation, and in cells treated with the ROS inhibitor 
NAC, we observed an increase in the expression of osteo-
genic differentiation marker genes (Fig. 4C). Treatment 
with 3, 4’-DHF resulted in a decrease in intracellular ROS 
levels during osteogenesis. We also investigated the ex-
pression level of the ROS-regulating genes SOD1, SOD2, 
NOX1, NOX4, and catalase in eADSCs, and found that 
treatment with NAC or 3, 4’-DHF resulted in differential 
regulation of gene expression (Fig. 4D), indicating that 3, 
4’-DHF modulates ROS-regulating gene expression in 

eADSCs. When pre-treating with the ERK pathway in-
hibitor U0126, 3, 4’-DHF-mediated regulation of intra-
cellular ROS generation plays an important role in the 3, 
4’-DHF-specific modulation of ERK pathway during os-
teogenic differentiation. The differential regulation of the 
ROS-ERK signaling pathway therefore plays an important 
role in 3, 4’-DHF-mediated differential modulation of os-
teogenic differentiation in eADSCs (Fig. 5). We inves-
tigated the expression of osteogenesis markers during 
co-treatment of U0126 and NAC with 3, 4’-DHF. We con-
firmed that 3, 4’-DHF, U0126, and NAC increase the ex-
pression of osteogenesis markers, while PD98059 sup-
presses the expression of osteogenic markers. The highest 
expression of osteogenic markers was observed with 
co-treatment with 3, 4’-DHF, U0126, and NAC simulta-
neously (Fig. 5).
  In conclusions, In this study, treatment of 3, 4’-DHF 
led to enhanced osteogenic differentiation of eADSCs and 
activation of ERK. ERK inhibitor, U0126, stimulated dif-
ferentiation by BMP-mediated signaling despite PD98059 
inhibited differentiation via ERK inactivation. In addi-
tion, 3, 4’-DHF regulated ROS-related genes during osteo-
genic differentiation. Co-treatment with 3, 4’-DHF, U0126, 
and NAC cumulatively enhanced osteogenesis in eADSCs. 
The effect of 3, 4’-DHF treatment during osteogenesis in 
eADSCs may be important for bone formation in the 
equine industry. In addition, 3, 4’-DHF and combination 
with U0126 and NAC may represent a new approach for 
the treatment of osteoporosis, and for potential ther-
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apeutic applications in horse regenerative medicine. Our 
study findings need to be confirmed using in vivo model 
in further study.
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