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Abstract: Cervical cancer (CC) is the primary cause of female cancer fatalities in low-middle-income
countries (LMICs). Persistent infections from the human papillomavirus (HPV) can result in cer-
vical cancer. However, numerous different factors influence the development and progression of
cervical cancer. Transcriptomic knowledge of the mechanisms with which HPV causes cervical
cancer pathogenesis is growing. Nonetheless, there is an existing gap hindering the development of
therapeutic approaches and the improvement of patient outcomes. Alternative splicing allows for the
production of numerous RNA transcripts and protein isoforms from a single gene, increasing the
transcriptome and protein diversity in eukaryotes. Cancer cells exhibit astounding transcriptome
modifications by expressing cancer-specific splicing isoforms. High-risk HPV uses cellular alternative
splicing events to produce viral and host splice variants and proteins that drive cancer progression
or contribute to distinct cancer hallmarks. Understanding how viruses utilize alternative splicing
to drive pathogenesis and tumorigenesis is essential. Although research into the role of miRNAs in
tumorigenesis is advancing, the function of other non-coding RNAs, including lncRNA and circRNA,
has been understudied. Through their interaction with mRNA, non-coding RNAs form a network
of competing endogenous RNAs (ceRNAs), which regulate gene expression and promote cervical
cancer development and advancement. The dysregulated expression of non-coding RNAs is an
understudied and tangled process that promotes cervical cancer development. This review will
present the role of aberrant alternative splicing and immunosuppression events in HPV-mediated
cervical tumorigenesis, and ceRNA network regulation in cervical cancer pathogenesis will also be
discussed. Furthermore, the therapeutic potential of splicing disruptor drugs in cervical cancer will
be deliberated.

Keywords: human papillomavirus (HPV); cervical cancer (CC); competing endogenous RNAs
(ceRNAs); alternative splicing (AS); immunosuppression; low middle-income countries (LMICs);
protein arginine methyltransferases (PMRTs); splicing disruptor drugs

1. Introduction

Cervical cancer was the fourth most commonly diagnosed cancer and the fourth
leading cause of cancer fatalities in women in 2020, with incidence and mortality rates of
3.1% and 3.4%, respectively. In 2020, an incidence of 604,000 and mortality of over 342,000
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was reported globally [1]. Disproportionality in mortality and incidence between countries
with high income and countries with low and middle income has earned the disease the
name "disease of disparity." Low-middle-income countries (LMICs) carry the brunt of the
disease, contributing to approximately 85% of the new cases [2,3] (Figure 1). In Sub-Saharan
Africa (SSA), cervical cancer is the second-most common cause of cancer-related death in
women. [4]. Southern Africa has one of the highest age-standardized incidence rates (ASR)
of CC in the world (43.1 per 100,000) [5].
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standardized rate (ASR) for incidence and mortality per individual country in Africa, representing 
LMICs [6]. 
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standardized rate (ASR) for incidence and mortality per individual country in Africa, representing
LMICs [6].
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To fully comprehend the disparity of cervical cancer in LMICs, one must focus on
the numerous challenges in implementing cervical cancer management strategies. Gov-
ernments in LMICs are faced with the co-prioritization of health care with other priorities,
including education, water, electricity, and infrastructure development [2,7]. Infrastructure
to prevent disease progression and advanced management may not exist nationally in
LMICs such as SSA. In the presence of infrastructure, other cultural factors, including
stigmatization, and Indigenous and religious beliefs, may hinder the sick from accessing
the necessary resources [2,8].

Several risk factors are implicated in cervical cancer. These include smoking, multi-
ple sexual partners, Human Immune deficiency Virus (HIV), and prolonged use of oral
contraceptives [8,9]. However, HPV is the leading identified cause of cervical cancer tumori-
genesis [10]. HPV infections are common in sexually active females between 18 and 30 [11].
Persistent infections from high-risk HPV are etiologically responsible for invasive cervical,
oropharyngeal [10,12], vulva [13], penile [14,15], head and neck, anal and vulvovaginal
cancers [16]. Clinical interventions used to treat cervical cancer depend on cancer’s clinical
stage. Early-stage cervical cancer is treated primarily by surgery and radiation therapy.
Surgery is reserved for early-stage malignancy, fertility retention, and smaller lesions like
stage IA, IB1, IB2, and identified IIA1 [17,18].

Stages IB3, II, III, and IVA malignancy are treated with concurrent chemoradiation with
platinum-containing chemotherapy (cisplatin alone or cisplatin/fluorouracil) [17,19]. For
more advanced malignancies, radiotherapy and systemic treatment are considered [19,20].
Distant metastatic disease (i.e., stage IVB) is frequently treated with platinum-containing
chemotherapy. In contrast, patients without distant metastases are treated with extended-
field External Beam Radiation Therapy (EBRT) with concurrent platinum-based chemother-
apy and brachytherapy [18]. Patients with a regionalized relapse of cervical cancer after
the first treatment may be candidates for radical retreatment, including radiation therapy
and/or chemotherapy and surgery [19]. The same treatment is recommended for LMICs.
However, factors such as lack of infrastructure, adequate number of trained health care
professionals, and expensive surgery affect effective treatment outcomes [19,20]. Like all
other viruses, HPV depends on cellular machinery for replication [8]. Infection by HPV
specifically subverts normal alternative splicing processes, producing isoforms impacting
cellular functions and promoting carcinogenesis, cell proliferation, avoidance of immune
response, and the inhibition of tumor suppressor proteins [8,21].

Epigenetic alterations, such as dysregulation of circular RNA (circRNA), long non-
protein coding RNA (lncRNA), and microRNA (miRNA) levels, have been demonstrated to
play essential functions in cell transmutation during several stages of cervical intraepithe-
lial neoplasia and cervical cancer development [21,22]. Non-coding RNAs cross-regulate
each other, forming the competing endogenous (ceRNA) networks [23]. ceRNA networks
have, in recent years, been shown to play an essential regulatory function in promoting
the incidence, development, and prognosis of cervical cancer [24]. Cervical cancer has
ceRNA networks of circRNA, lncRNA, and miRNA that may be targeted to develop thera-
peutics or as biomarkers for screening [25,26]. For example, the combination of lncRNA
MIR205HG and miRNA 122-5p fosters ceRNA-regulated cervical tumor cell proliferation
and growth [27], and HOTAIR lncRNA by binding to miR-214-3p, may also act as a ceRNA,
promoting cell proliferation and inhibiting cell death in HPV16+ cervical cancer cells [26].
Comprehensive studies on AS events and ceRNA networks’ regulation in cervical cancer
are rare. This review will discuss ceRNA networks and splicing switches in cervical cancer
and how these regulatory mechanisms are exploited by HPV in immune suppression and
evasion in cervical cancer patients. Lastly, this review will deliberate on the therapeutic
potential of splicing disruptor drugs.

2. HPV Oncogenomics in Cervical Cancer

HPV is a small 7–8 kb, icosahedral, double-stranded, non-enveloped virus [28–30],
with over 220 genotypes, which have been categorized into five genera, alpha, beta, gamma,
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mu, and nu [31]. Persistent HPV infections are the principal cause of cervical cancer. Other
factors, including a weak immune system, multiple pregnancies, prolonged use of oral
contraceptives, chlamydia infection, human immune deficiency virus (HIV), and smoking,
can lead to cervical cancer [8–10,30,31]. HPV infections are classified as “High risk” (HPV 18
and 16) and “Low risk” (HPV 6 and 11) [10,30,32]. HPV16 causes 60% of cervical cancer, and
HPV18 causes 15% [33]. High-risk HPV16 and 18 are responsible for about 70% of cervical
cancer cases, HPV 31, 33, 45, 52, and 58~20% of the total cervical cancer cases [10,28,32–35].
The HPV genome is divided into three sections: a long non-coding area, an early region (E1,
E2, E3, E4, E5, E6, E7, and E8 genes) encoding early oncogenic proteins, and a late portion
(L1 and L2 genes) producing late proteins and viral encapsulation proteins. The E6 and
E7 open reading frames encode proteins involved in cervical cancer development [36–38].
Like other genomes, little emphasis has been placed on non-coding genomic areas.

Carcinogenesis due to HPV can be divided into four stages in cervical cancer, as
shown in Figure 2. Normal cells are infected with HPV, which in most cases is cleared
within two years by the immune system. In 10% of the cases, the viral infection might
persist, resulting in intraepithelial squamous lesions of low grade (LSIL)/CIN1, marking
the second stage, distinguished by mild dysplasia. These lesions can progress to squamous
intraepithelial lesions of high grade (HSIL)/CIN2 or in situ carcinomas (CIN3). HSIL can
develop into invasive carcinomas, marking the fourth stage if left untreated [10,28]. Chances
of spontaneous regression and clearance are common in CIN1 with a ~60% regression rate.
High spontaneous CIN2 regression rates, 63%, and progression rates into CIN3 of 15% have
been reported in young women aged 18–23. In women aged 18 to 62, 40% CIN2 regression
was observed [39,40]. The risk of developing cervical cancer increases with time, 20% after
five years and 50% after 30 years [8,28]. Cervical cancer, like other cancers, results from
dysregulation in cell growth [30]. Constant genetic and epigenetic changes in HPV-infected
cells allow for cervical cancer advancement.
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Figure 2. HPV-mediated carcinogenesis in cervical cancer. Infection with HPV mainly occurs in the
cervical epithelium’s basal layer, which is exposed through abrasion. Infections are cleared by the
immune system in 1–2 years; however, persistent infection results in the progression of infection.
During the early stages of infection, early genes are expressed (E1, E2, E4, E5, E6, and E7), and viral
replication occurs. The late genes encoding for late and viral encapsulated proteins are expressed,
and the assembling of viral particles occurs. Lesions may progress to HSIL; however, this happens in
a minority of women. If left untreated, HSIL usually leads to cervical cancer.
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3. ceRNA Networks Regulate Alternative Splicing in Cervical Cancer

For decades, non-coding RNAs were neglected, and their operational roles were not
thoroughly studied [41]. Non-coding RNAs are classified according to their sizes and
functions, including small interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs),
ribosomal RNAs (rRNAs), miRNAs (microRNAs), lncRNAs (long non-coding RNAs), small
nuclear RNAs (snRNAs) and circular RNAs (circRNAs) [21].

Several RNA molecules, genes, and proteins interact with each other, forming a molecu-
lar network that promotes cervical cancer development and progression. Non-coding RNAs
interact to create the ceRNA regulatory network [24]. The ceRNA network hypothesizes that
RNA transcripts with miRNA response elements (MREs) can sequester from other targets,
thus regulating their expression and cellular processes [42]. Recently, the ceRNA network
has been shown to play a vital regulatory role in cervical cancer pathogenesis [24]. Evidence
reveals that circRNA and lncRNA competitively bind to miRNAs and regulate downstream
gene expression, forming the ceRNA regulatory axis [26,43]. The dysregulated expression
of lncRNA, circRNA, and miRNA is involved in the processes leading to the development
of cervical cancer, i.e., initiation and progression [22], as shown in Table 1.

Table 1. CeRNA regulatory axis in cervical cancer.

ceRNA Regulatory Axis Role in Cervical Cancer Ref

circRNA 400029 miR-1285-3p/TLN1 Aggressive behaviors of cervical cancer [44]

circCLK3 MiR-320a/Fox M1 Cervical cancer progression [43]

hsa_circ_0001038 miR-337-3p/cyclin-M3 Promotes cell growth, migration, and invasion [45]

hsa_circRNA_101996 miR-8075/TPX2 Promotes cell growth and invasion [45]

hsa_circ_0023404 miR-136/TFCP2 Cervical cancer development and progression [25]

circ-EIF4G2 miR-218/HOXA1 Modulates malignant biological behaviors [46]

Hsa_circ_0000301 miR-1228-3p/IRF4 Cancer progression [47]

miR-532-5p LINC01410/FASN Tumour metastasis [48]

LncRNA XIST miR-200a/Fus Cancer progression [43]

LncRNA XIST miR-140-5p/ORC1 Cell proliferation and increased expression of Bcl-2 [49]

LncRNA HOTAIR miR-206/MKL1 Migration and invasion [50]

LncRNA HOTAIR miR-143-3p/BCL2 Inhibit tumor suppression [51]

LncRNA HOTAIR miR-148a/human
leucocyteantigen-G (HLA-G) Proliferation, migration, and invasion of cervical cancer cells [52]

LncRNA NEAT1 miR-133a/Sox4 Cell proliferation, migration, and invasion [53]

LncRNA LINC01128 miR-383-5p/SFN Inhibits apoptosisproliferation, migration, and invasion of
cervical cancer cells [54]

LncRNA MALAT1 miR-124/RBG2 Proliferation, migration, and invasion [55]

lncRNA OIP5-AS1 miR-143-3p/ROCK1 Inhibit apoptosis and promotes cell proliferation [56]

LncRNA RNA POU3F3 miR-127-5p/FOXD1 Promoted the proliferation and invasion [57]

LncRNA RP11-552M11.4 miR-3941/ATF1 Cell proliferation [58]

SNHG4 miR-148a-3p/c-Met Improve cell viability and inhibit apoptosis [59]

SNHG12 miR-125b/STAT3 Proliferation and invasion of cervical cancer [59]

lncRNA SU1P2 let-7a/IGF1R, let-7a/N-myc, and
let-7a/EphA4 Promotes tumorigenesis [55]

LncRNA SNHG20 miR-140-5p-ADAM10 Promote cervical cancer cells proliferation and invasion [60]

ZNF667-AS1 microRNA-93-3p/PEG3 Decreases tumor invasion and metastasis [61]

Based on current studies, ceRNAs play essential roles in alternative splicing regula-
tion [21]. CeRNAs can control alternative splicing in a myriad of ways. One is by binding
to cis-acting elements [62]. ncRNAs, acting as natural antisense transcripts (NATs), interact
with pre-mRNA cis-acting elements via RNA-RNA base pairing. These interactions can
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influence splice site selection and splicing factor recruitment, consequently controlling
alternatively spliced isoform expression in cancer [21]. Based on the origins of ncRNA, their
interactions with cis-acting elements can be divided into cis-natural antisense transcript
(NAT) and trans-NAT forms. Cis-NAT ncRNAs are transcribed from the complementary
strand of DNA that codes for the target mRNA. Trans-NAT genes are transcribed from
a divergent locus than the target mRNA [21,62]. Other mechanisms with which ceRNAs
regulate alternative splicing are through regulating the mRNA expression of splicing factors
(SFs), thus affecting the splicing isoform, controlling the posttranslational modifications of
splicing factors (phosphorylation), rearranging chromatin, and influencing transcription
via interacting with Polymerase ll and regulating DNA methylation [21].

Emerging evidence has revealed the involvement of ceRNAs (miRNA-mRNA-lncRNA)
in chemotherapeutic drug response in cervical cancer. Two possible mechanisms have been
suggested; miRNA can act either as a promoter or an inhibitor of drug resistance. miRNA
can bind to MRE in mRNA, thereby degrading or stopping mRNA’s translation, which may
result in altered drug response due to the silencing of gene expression [62,63]. Inhibition
of drug resistance occurs when increased levels of tumor suppressor miRNA expression
downregulate or degrade the mRNA coding for an anti-oncogenic protein or a protein that
inhibits drug resistance or increases sensitivity to the drug. This results in higher amounts
of binding to the mRNA MRE and suppression of its translation. lncRNA and circRNA
compete with mRNA for miRNA binding, preventing the degradation of drug resistance
inhibitor mRNA [62]. These ceRNA networks may similarly promote or inhibit cervical
tumorigenesis by inhibiting or upregulating oncogenic splice variants. As an oncogenic
virus, HPV also encodes its own miRNAs that control the virus and host gene expression
in favor of tumorigenesis, as shown in Figure 3.
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down-regulation of miRNAs may promote protein translation from various transcripts (lncRNA,
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3.1. LncRNAs Role in ceRNA Networks Regulation and AS in Cervical Cancer

LncRNAs are regulatory transcripts longer than 200 nucleotides in length [9]. Numer-
ous lncRNAs regulate the transcription of nearby genes, DNA repair, and the response
to DNA damage, while some are involved in regulatory and structural functions, in-
cluding splicing, epigenetics, signaling pathways as well as turnover and translation of
mRNA [9,21,23]. lncRNA are thought to regulate downstream genes via competitively bind-
ing to miRNA at the post-transcriptional level; for instance, HOTAIR can control the miR-
143-3p/BCL2 and miR-20a-5p/HMGA2 axis promoting cell growth and metastasis [26]. Li
et al. [59] revealed an interaction between lncRNA SNHG4, c-Met, and miR-148a-3p, where
SNHG4 upregulated c-Met through targeting miR-148a-3p and promoted cervical cancer
development. In HPV 16 positive cervical cancer, Growth factor receptor-bound protein
2 (GRB2), responsible for cell communication, is highly expressed. MALAT1 is reported
to indirectly influence GRB2 expression by interacting with miR-124 [55]. Several other
ceRNA regulatory axes promote cervical cancer have been reported, as shown in Table 1.

LncRNAs play an essential role in regulating alternative splicing. LncRNAs influence
alternative splicing by interacting with splicing factors. However, they can hijack splicing
factors, causing dysregulation of alternative splicing. For example, Metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1), which is excessively expressed in cancer
tissues and cervical cancer cells infected with “high risk” HPV [64], interacts with several
serine-arginine proteins, namely SRSF1, SRSF2, SRSF3 and SRSF5 [65]. MALAT1 regu-
lates serine-arginine proteins’ phosphorylation/dephosphorylation ratio, thus affecting
their transportation and distribution to transcription sites and between nuclear speckle
domains [45,65]. The mechanism for the phosphorylation of serine proteins by MALAT1
is still unclear; however, it might happen via interaction with PP1/2A phosphatases [66].
Studies demonstrate that MALAT1 can upregulate SRSF1-mediated splicing events that
promote carcinogenesis (e.g., angiogenesis) [67]. In CaSki (HPV 16+) cervical cancer cells,
MALAT1 encourages cell proliferation, migration, and cell cycle progression [68]. Other
lncRNAs, such as MIR205HG, promote cervical cancer progression by targeting SRSF1 and
regulating KRT17 [69].

LncRNAs can drive alternative splicing by interacting with cis-acting elements in pre-
mRNA via RNA-RNA base pairing [21]. Interactions of the lncRNA (Saf) with cis-acting
elements have been shown to promote exon skipping of Fas 6 through the recruitment of
SPF45 to Fas pre-mRNA, causing the expression of soluble Fas. Soluble Fas promotes cancer
progression by impeding Fas-FasL moderated apoptosis in numerous cancers, including
cervical cancer [21,65].

3.2. miRNAs Role in ceRNA Network Regulation and AS in CC

miRNAs are a type of single-stranded RNA that is 20–22 nucleotides long and regulates
gene expression by binding to sequence motifs found in the three ′ untranslated regions
(UTR) of mRNA transcripts [22,23,70]. MiRNAs play a pivotal role in influencing gene
expression and the development and growth of tumors [71]. Free circulating miRNAs are
sponged by lncRNAs and circRNA, preventing them from interfering with transcription and
obtaining the goal of gene expression [47]. Most often, miRNAs are tumour suppressers that
target mRNAs that encode viral proteins and are involved in altered molecular functions
in tumors [48]. MiR-124, a tumor suppressor, is reportedly low in cervical cancer due to
being sponged up by MALAT1. The sponging up of miR-124 causes the upregulation of
RBG2, resulting in cancer proliferation and invasion [55]. Many other miRNA including
miR-1285-3p, miR-320a/, miR-337-3p, miR-8075, miR-136, miR-218, miR-1228-3p, miR-
532-5p, miR-200a, miR-140-5p, miR-206, miR-143-3p, miR-148a, miR-383-5p, miR-143-3p,
miR-127-5p, miR-3941, miR-148a-3p, miR-125b, miR-140-5p and microRNA-93 are sponged
by lncRNA, and circRNA thus promoting cervical cancer development, invasion and
metastasis, as shown in Table 1. Shang et al. 2022 [48] revealed downregulation of miR-532-
5p, resulting in nodal metastasis.
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Studies have reported on the role of miRNAs in alternative splicing [21,62]. MiRNAs
can regulate alternative splicing in multiple ways. Other miRNA functions as NATs,
causing aberrant splice site selection in cancer. miRNAs also rearrange chromatin structure,
affecting splicing factor recruitment, interact with Polymerase III, and influence histone
modification and DNA methylation [62].

miRNAs are involved in regulating the expression of splicing factors. Splicing Factor
expression can be inhibited by miRNAs through complete or partial complementarity to the
target sequences of mRNA coding for SFs, leading to mRNA degeneration or translation
downregulation [21]. Multiple miRNA-related influences on splicing factors have been
discovered in many cancers, including cervical cancer. MiR-7, for example, inhibits SF
SRSF1 mRNA translation in HeLa cells via partial complementarity with its 3’UTR, sup-
pressing cancer cell survival. MiR-221, miR-222, and miR-17-92 are also known to influence
SRSF1. SRSF1 is involved in the expression of various cancer-promoting genes, including
pro-apoptotic Bcl-x, R.O.N., and MCL-1 isoforms [62] and activating SRSF1 through its
kinase SRPK1 is activated by HPCV infection [72]. MiR-802 is shown to target SRSF9
and cause apoptosis in cervical cancer [73]. CircRNAs and lncRNAs have increased SF
expression in cancers, including cervical cancer, by regulating alternative splicing [21].

3.3. circRNAs Role in ceRNA Network Regulation and AS in Cervical Cancer

There is a growing concern among researchers on the role played by circRNA in
cancer, including cervical cancer [74]. Studies have implicated circRNAs in cervical can-
cer development, aggression and progression not only through deregulating chromatin
modifications but additionally through competitively binding to miRNA to regulate the
expression of genes [44]. CircRNA such as circRNA_400029 and circEPSTI1 promote cancer
growth, invasion and inhibits cell death via regulating the miR-1285-3p/TLN1 and miR-
375/409-3P/515-5p-SLC7A11 axis, respectively [44,74]. CircSLC26A4 encourages cervical
cancer growth by regulating the miR-1287-5p/HOXA7 axis [74]. These studies suggest
that circRNAs regulate cancer development and progression through downregulating
miRNAs. Song et al. 2020 [75], revealed that circRNA-101996 downregulates miR-8075
and upregulates TPX2 expression. Furthermore, it was suggested that a single circRNA
could sponge several miRNAs. For example, circRNA_101996 could sponge miR-8075 and
miR-1236-3p. Various other circRNA have been shown to play a regulatory role in cervical
cancer, as shown in Table 1.

The functions of circRNA are unknown; however, studies have shown that they are
generated through back splicing of mRNA [76]. CircRNAs play a critical role in regulating
alternative splicing. Furthermore, circRNA can enlist or inhibit particular proteins from
acting as scaffolds to aid protein-enzyme reactions. circRNA have been observed to
encourage splicing Factor expression by sponging miRNAs, thus regulating alternative
splicing in malignancies [21]. Moreover, circRNA are involved in RNA splicing and mRNA
by acting as a sponge for ribonucleoprotein [77]. It has been observed in glioblastoma
multiforme that circRNAs like circRNA cir-c SMARCA5 are able to regulate the expression
of VEGF-Axxxa pre-mRNA through binding to the SF SRSF1 [21]. However, there is limited
literature on the involvement of circRNAs in alternative splicing in cervical cancer.

PRMTs are overexpressed in several cancers, including cervical cancer [50,78,79].
Alternative splicing of PRMT genes produces novel circRNAs implicated in several cancers,
for example, splicing of the PRMT1 gene in breast cancer [80] and circPRMT5 in non-small
cell lung cancer and bladder cancer [81]. Functional cooperation exists between PRMTs
and ncRNAs resulting in a net upregulation of PRMTs in cancers [82].

Small RNA expression profiling in cervical neoplasia revealed upregulated “oncogenic”
miRNAs like miR-19, miR-146a, miR-21, and miR-10a, as well as down-regulated “tumor-
suppressive” miRNAs like miR-29a, miR-218, miR-214, and miR-372, which are involved
in cell proliferation, neoplastic transformation, cell migration, and invasion [22]. The
HPV genome encodes the HPV-16-miR-H1-1 and HPV-16-miR-H2-1, capable of targeting
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essential cell genes such as those governing cell cycle progression, migration, and immune
response, in addition to being required for viral infection and upkeep [83].

LncRNAs can bind mRNAs, proteins, or miRNAs and are entangled in several biolog-
ical functions. The deregulation of lncRNA expression has been linked to cardiovascular
and neurodegenerative diseases and cancer development. Multiple lncRNAs such as HO-
TAIR, H19, MALAT1, CCAT2, SPRY4-IT1, GAS5, CCHE1, MEG3, LET, EBIC and PVT1
are thought to play essential roles in cervical cancer growth, invasion and metastasis, and
radio-resistance [22]. CircRNAs, like lncRNA, act as a sponge for miRNA competing for
mRNA binding. Circ-0018289 has been shown to sponge miR-497 and contribute to the
dysregulation of target genes [22,84]. Viral agents encode for circE7, which overexpresses
the E7 oncoprotein, thus driving cell transformation [22]. The generation of lncRNAs is part
of the process of alternative splicing of the human genome [65]. For instance, in lung ade-
nocarcinoma, breast cancer, and colorectal adenocarcinoma, it has been observed that the
splicing factor hnRNPE1 binds to the PNUTS 5′ pre-mRNA exon 12 splicing site, promoting
the production of PNUT mRNA. The dissociation of hnRNPE1 induces the formation of
lncRNA PNUTs isoforms, which are implicated in epithelial-to-mesenchymal transition
(EMT), resulting in tumor progression. The lncRNA PNUTS acts as competitive sponges
for miR-205, inhibiting miR-205 binding to the ZEB1 gene, thus causing an upregulation of
ZEB1. The upregulation of ZEB1 inhibits the expression of E-cadherin, thereby inducing
Epithelial-mesenchymal transitions (EMT) and tumor progression [65,85]. Despite the
fact that Farzanehpour et al. [86] revealed an upregulation of Snail1 and ZEB1 levels and
reduced expression levels of E-cadherin in cervical cancer samples, a link between this
upregulation and the ceRNA has not been reported

4. Role of AS and ceRNA Networks in HPV Immune Suppression and Evasion in
Cervical Cancer

During infection by a virus, modulation of alternative splicing could be activated by
cells as a defense strategy to impede the virus or caused by viral proteins and RNA [87].
Furthermore, tumors can avoid detection by the immune system through the alternative
splicing of apoptosis-related genes, particularly the Bcl2 family and many caspases, forming
transcripts supportive of cancer development or progression [88]. Even though reported
by several studies, the exact mechanisms by which oncoviruses, especially HPV in cervical
cancer, exploit the host splicing machinery remain largely to be elucidated. RNA molecules
forming the ceRNA network have gradually been demonstrated to play an essential func-
tion in the tumor immunosuppressive environment (TIE) [89]. In the last few years, several
studies have revealed that ncRNAs can directly or indirectly affect the TIE in cervical cancer.
For example, lncRNA 00518 and lncRNA SNHG14 are shown to activate the JAK2/STAT3
signaling pathway [89,90] and lncRNA UICC upregulates IL-6 and activates the STAT3
signaling pathway inducing immunosuppression [91].

It has also been reported that ncRNAs can target elements of the TGFβ- signaling
pathway or directly regulate TGFβ-target gene transcription in various tumors, thereby im-
peding antitumor immune responses [89]. In addition, miR-21 regulates Smad7 expression,
decreasing sensitivity to chemotherapy in cervical cancer [92]. However, the dysregulation
of miR-21 promotes immune escape [92]. Additionally, LOC105374902 lncRNA was found
to promote the cancerous behavior of cervical cancer cells by sponging up for miR-1285-3p,
which is behind the inhibition of cell proliferation, invasion and migration, when induced
by TNF-α. This multifunctional cytokine can regulate inflammation and immunity in
cancer [93,94].

A recent study demonstrates that tumor cells may increase the expression of HLA
molecules, including HLA-G, to escape immunosurveillance. HLA-G binding to inhibitory
receptors on varied immune cells leads to inhibitory immune responses, like the down-
regulation of CD8+ T cell and NK cell cytotoxicity [95]. HOTAIR, a lncRNA, could signif-
icantly alter the expression of HLA-G in cancer cells by binding to miR-152 or miR-148a
competitively. The increased HOTAIR expression was connected with more enhanced
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clinical features and substantially shorter survival in patients with cervical cancer [96].
Although ceRNA networks are involved in tumor immune escape, immune-related ceRNA
networks and splicing switches are rarely reported in cervical cancer.

5. Clinical Significance: ceRNA Networks Regulation and mRNA Splicing Switches in
Cervical Cancer

Mainstream cancer treatments are only efficacious in a subset of patients with an
increased chance of resistance [97]. Cancer transcriptomes differ significantly from normal
cells, as do ceRNA profiles in malignancies [98]. Studies show that ceRNA expression is
deregulated in cancers [99,100], and ceRNAs are comparably stable and can be detected in
bodily fluids [101]. The ceRNA network has proven to be an efficient means of identifying
potential diagnostic and prognostic biomarkers in several cancers [70,102]. The discovery
of efficient drug-specific targets that target cancer cells without harming healthy cells will
thus aid in improving the clinical outcome of cervical cancer.

Approximately 46% and 10% of cervical cancer patients are diagnosed with early-stage,
and late-stage disease, respectively, and cervical cancer incidences are increasing [103].
It is therefore imperative to identify biomarkers specific and sensitive to cervical cancer.
Through bioinformatic analysis, Li et al. showed that 129 lncRNAs, 8 miRNAs, and 298 mR-
NAs are linked with cervical squamous cell carcinoma and endocervical adenocarcinoma
prognosis [101]. lncRNA GIHCG, highly expressed in cervical cancer, can distinguish
cervical cancer patients from healthy controls with a sensitivity and specificity of 88.75 and
87.50%, respectively, making it a possible diagnostic biomarker [104]. Another probable
diagnostic lncRNA is lnc-PVT1 [105], transcribed from the 8q24 chromosome [106]. Due
to its high serum expression in cervical cancer, it predicts and gives the prognosis of the
disease, making it an accurate diagnostic biomarker [105].

Other lncRNA with diagnostic potential include AC126474 and C5orf66-AS1, which
predict cervical cancer metastasis. LncRNAs GHET1 and SOX21-AS1, both linked to lymph
node metastasis, poor histological grade, and advanced clinical stage, can be used to esti-
mate cervical cancer survival rate [103]. HOTAIR, GAS5, TUSC8, and lncRNA-LET may
be valuable biomarkers for predicting cervical cancer prognosis, as they are associated
with invasion and metastasis [107,108]. The inhibition of miR-143-5p by lncRNA-TCONS
00026907 acts as a prognostic indicator in cervical cancer [69]. Aberrantly expressed cir-
cRNAs are abundant in cervical cancer and promote cancer progression [109]. CircRNAs
circulate freely in human saliva, urine, and blood, elevating their potential as non-invasive
biomarkers with diagnostic value [110]. Wang et al. detected 80,000 circRNAs in cervical
tumors and healthy tissue, with 25,000 circRNA expressed differently [45]. Upregulated
hsa_circ_0018289 and circ_0067934 were revealed to favour neoplastic growth in vivo.
The elevated expression of circRNA8924 and circ_0067934 corresponded with myome-
trial invasion and poor overall survival, respectively, serving as biomarkers for cervical
cancer [109,111]. Based on the Kaplan–Meier curve analysis, hsa_circ_0023404 can act as
a prognostic marker as its overexpression in patients with cervical cancer foretold poor
prognosis [112]. Jiang et al. showed that miRNAs could be biomarkers in diagnosing
CIN and cervical cancer [113]. Moreover, miRNAs distinguish between CIN patients and
healthy individuals with great diagnostic performance [113]. Since miRNAs are stable in
the circulating system and are shown to possess greater efficacy than cervical tissues due to
the invasiveness when harvesting samples. The upregulation of serum miR-−25, −200a,
−21, −29a, and −486-5p presents the miRNAs as non-invasive, accurate biomarkers for
cervical cancer [114].

According to growing evidence, alternative splicing isoforms have surfaced as valuable
biomarkers in carcinomas’ development, growth, and outcome, potentially providing new
treatment targets for malignant tumors, including cervical cancer [115,116]. Five genes
(HNRNAP1, PLAU, HNRNPAB, FES, and POMGNT1) with aberrant splicing events were
prognostic in cervical cancer [117]. Furthermore, aberrant alternative splicing of PRMT1
has been reported in various cancers, including cervical cancer [118,119]. PRMT splicing
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switches are emerging as essential role players in tumorigenesis, with PRMT5, 6, and
8 overexpressed in cervical cancer [120]. The elevated expression of PRMT5 suggests that
PRMT5 may be a possible biomarker for numerous cancers, including cervical cancer [121].
PRMT regulation occurs in either the nucleus or the cytoplasm., making it arduous to use
PRMT expression as biomarkers before acquiring tissue samples [78]. Further research is
required to determine whether other PRMTs can be used in the diagnosis and prognosis of
cervical cancer.

6. Epigenomics of PRMTs and Alternative Splicing

PRMTs are reportedly overexpressed in several cancers, including cervical cancer, and
play a vital role in controlling splicing switches [78,122]. PRMTs are enzymes behind the
posttranslational modification of proteins. i.e., Arginine methylation [119]. The human
genome encodes for nine PRMTs, PRMT1 to PRMT9 [123,124], further categorized into
three types based on the final methyl-arginine residue [118,125]. Type I includes PRMT
1,2,3,4,6 and 8, responsible for the generation of ω-NG-mono- methyl-arginine (MMA)
and ω-NG, NG-asymmetric dimethylarginine (ADMA); type II includes PRMT5 and 9,
involved in catalyzing the generation of ω-NG-mono- methyl-arginine (MMA) and ω-
NG, NG-symmetric dimethylarginine (SDMA); and type III has PRMT7 responsible for
catalyzing the formation ofω-NG-mono- methyl-arginine [125,126]. The most common is
PRMT1, accounting for >90% of the methylated proteins in mammalian cells [127].

Due to the significance of arginine methylation to protein functionality, PRMTs are
revealed as participants in transcriptional and post-transcriptional regulation, cell cycle
checkpoints, phase separation, DNA damage repair [123,125], mRNA metabolism, and
intracellular signaling during cancer development and progression [126]. Notably, the
methylation of several protein substrates catalyzed by PRMTs is involved in numerous
cancer processes, including initiation, progression, and metastasis [82]. Evidence also
suggests that arginine methylation drives the aggressiveness of cancer [118]. However,
each enzyme’s specific roles in carcinogenesis are not understood [3]. Alterations in PRMTs
are rare; however, upregulation of PRMTs has been linked to cancer, making them targets
for therapeutic intervention [127].

Multiple studies show that alternative PRMT isoforms are upregulated in several
cancers (non-small cell lung, cervical, prostate, and breast cancer) [118,128,129]. Studies
revealed that PRMT5, PRMT6, and PRMT8 mRNA and proteins are overexpressed in
cervical cancer and are linked to poor survival in cancer patients [78,120]. However, the
mechanism with which they aid cancer progression is poorly studied [120]. Inhibition of
PRMTs causes changes in alternative splicing [126] and reduces protein translation [125].
The precise role of HPV-mediated tumorigenesis in cervical cancer by the overexpression of
PMRTs remains to be elucidated. Still, the fact that arginine methyl transferase inhibitor acts
by reducing PRMT5 to inhibit cervical cancer growth suggests that specific mechanisms
exist [79]. PRMTs are concerned with the splicing of genes responsible for cell survival,
differentiation, and proliferation. PRMTs are revealed to influence alternative splicing in
a methylation-dependent manner [130]. The functions of PRMT2-4, 6, and 8 in splicing
remain unclear [124].

However, other PRMTs are shown to regulate elements involved in RNA splicing,
as shown in Figure 4. PRMT1 regulates the function and localization of RNA binding
proteins (RBPs). PRMT5 is responsible for maturing small nuclear ribonucleoproteins and
upholding splicing precision. Maturation of snRNPs is facilitated by the symmetrical di-
methylation of RG/RGG motifs in Sm proteins (snRNBP, snRPB, snRPD1, snRPD3), which
leads to their identification by the Tudor domain of the survival motor neuron (SMN). The
Tudor domain binds the Sm proteins and snRNA, aggregating them into fully developed
snRNPs [127].
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Figure 4. PMRT enzymes and alternative splicing. PRMTs regulate alternative splicing through
the methylation of multiple components of the splicing machinery. The aberrant expression of
PRMTs results in aberrant splicing, driving the development of cervical cancer. PRMT5, 6 and 8
are reportedly overexpressed in cervical cancer. A cross-regulatory relationship between miRNAs
and PRMTs promotes cancer development and progression. miRNAs target the 3-UTRs of PRMTs
for degradation, and PRMTs methylate histones in the miRNA promoter, leading to the silencing
of miRNAs.

In the cytoplasm, the spliceosome-associated protein SF3B2 (also named protein 145) is
monomethylated and di-methylated by PRMT9, facilitating its binding to the S.M.N. Tudor
domain, thus regulating alternative splicing [126,131,132]. In the nucleus, PRMT4 (CARM1)
controls AS via the methylation of splicing factors, co-regulators, RNA polymerase II,
and transcription factors and promotes exon skipping [127,131]. CARM1 methylates
various proteins associated with pre-mRNA processing and enables splicing reporter and
endogenous CD44 gene skipping [130]. CARM1 asymmetrically di-methylates splicing
factors, namely SAP49, U1 snRNP, and transcription factor CA150. CARM1, like PRMT5,
can symmetrically methylate Sm proteins [131]. CARM1 promotes the proliferation of
MFC-7 breast cancer cells [127]. The role of PRMTs in alternative splicing is a relatively new
field of research; therefore, the role of PRMTs in promoting cervical cancer pathogenesis
is understudied. There is, therefore, no conclusive proof that PRMTs are involved in the
alternative splicing of cervical cancer.

While ceRNA network regulation can hinder or promote aberrant splicing switches
that may promote tumorigenesis, there is a lack of reports in this area. PRMTs may
potentially impede the tumorigenic effects of ceRNAs networks by disrupting the oncogenic
splicing switches. The virus and the host produce distinct mRNA transcripts and ceRNA
networks. However, how these RNA molecules interact with PMRTs in cervical cancer
remains mysterious.

Furthermore, studies have recently shown that there is a mutual regulation between
miRNAs and PRMTs which results in harmonized control of many facets of cancer pro-
gression, such as altered gene expression, cell migration, invasion, and cell stemness
maintenance. PRMTs regulate miRNAs by methylating histones in miRNA promoter
regions, such as H3R8me2s, H4R3me2s, and others, resulting in the silencing of these
miRNAs’ transcription. MiRNAs, on the other hand, regulate PRMTs at various levels,
such as targeting the 3′-untranslated regions (3-UTRs) of multiple PRMTs for degradation
or obliquely via silencing of PRMT interactome proteins. This co-regulation results in the
upregulation of PRMTs that encourage cancer development [82]. Although the mutual
regulatory effect of ceRNA and PRMTs have been reported in several cancers, as discussed
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below, their impact on cervical cancer is yet to be studied. CircRNAs such as circ-PRMT5
(hsa_circ_0031242) produced by the PRMT5 gene promote bladder cancer development
by regulating EMT through sponging up miR-30c [133]. The tumor-promoting effect of
circ-PRMT5 was also established in lung cancer [134] and gastric cancer via sponging
up miR-145 and miR-1304 [135]. In non-small-cell lung cancer (NSCLC), an upregula-
tion of circ-PRMT5 and a down-regulation of miR-4458 suggests that circ-PRMT5 is a
ceRNA for miR-4458. This inverse regulation confers chemoresistance to NSCLC [136]. Ma
et al. [137] demonstrated that in breast cancer, circ-0039960 positively mediates PRMT7
expression through targeting miR-1178, thus regulating cell growth and the Warburg effect.
The regulatory impact of PRMTs and the ceRNA network in cervical cancer has not been
elucidated. However, since PRMT5 is upregulated in cervical cancer [120], this could
suggest overexpression of circ-PRMT5, which possibly drives cervical cancer progression
by sponging miRNAs such as miR-145. Even though there are currently limited studies
to fully demonstrate and comprehend PRMTs’ role in cervical cancer aberrant splicing
switches, this review highlights a research gap that needs to be filled in comprehending
this phenomenon.

7. PRMT Inhibitor Drugs’ Therapeutic Potential

The implication of PRMT dysregulation in cancer development and progression has
prompted their use as therapeutic targets in anticancer drug development [122,126]. Conse-
quently, the focus has been shifted to developing effective and selective PRMT inhibitors
because each isoform has its distinct function [3,122]. In recent years, there has been grow-
ing curiosity about the mechanisms that support using PRMTs in cancer therapy [138].
Several small molecule inhibitors targeting PRMTs have been identified, and several are in
the pre-clinical trial stage. Inhibitors developed to date are highly effective against type I
compared to type II PRMTs [132], particularly CRAM1, PRMT1, and PRMT5.

Mutations in RNA splicing factors often cause dysregulation in alternative splicing,
and inhibition of type I PRMT1 and PRMT5 by splicing disruptor drugs is shown to occur
in cells with RNA splicing factor mutations, both in vitro and in vivo [138]. The first type I
PRMT inhibitor to be discovered was AMI-1, revealed to inhibit solid tumors in cervical
cancer by targeting PRMT 5. The discovery of AMI-1 prompted the need for more specific
inhibitors, leading to the developing of more potent drugs, including GSK3368715 and
MS023. MS023 inhibits methylation of ADMA and increases MMA and SDMA methylation
in mantle cell lymphoma [131]. Inhibition of PRMT1 affects the methylation of RNA
binding proteins and the assembling of spliceosomes, making it a therapeutically effective
strategy [132]. Treating pancreatic cells with PRMT inhibitors is shown to cause significant
aberrations in splicing, with exon skipping as the most frequent alteration affecting essential
pathways such as the cell cycle and mitosis [139,140].

Several studies have shown the antitumor activity of PF-0639999, a type II inhibitor, ra-
tionalizing its use in treating splicing dysregulation in lung cancer [141]. Combination treat-
ment has been revealed to be more effective in killing tumor cells. In pancreatic cancer cells,
the combination of GSK3203591 and GSK3368715 is more effective as increased concentra-
tions of each drug enhance the potency of the other. Moreover, cytotoxicity against the cell
lines increased at concentrations where each drug was cytostatic [140]. PMRT5 inhibitors
can be synergized with other anticancer therapies; for example, GSK3326595 can assist
palbociclib (CDK4/6 inhibitor) in overcoming resistance in patients with melanoma [142].
Although PRMTs are overexpressed in cervical cancer [120], limited literature examining
the sensitivity of cervical cancer to PRMT inhibitors exists. Including PRMT inhibitors
in clinical trials opens an exciting research area in the arginine methylation field. Under-
standing the downstream pathways regulated by PRMTs will open opportunities to exploit
vulnerabilities in cancer cells, especially in cancers with a viral etiology such as cervical
cancer [118]. Figure 5 demonstrates the therapeutic potential of PRMT inhibitor drugs,
used to target alternative splicing (AS) and can also be used to enhance the efficacy of other
anticancer therapeutics.
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8. Limitations and Challenges

Despite cervical cancer being the fourth most prevalent cancer globally and its causative
agent, HPV, using alternative splicing to advance latency, limited research exists exam-
ining how alternative splicing aids immunosuppression. The literature does not clearly
define the connection between ceRNAs and alternative splicing in cervical cancer. The
implication of PRMT dysregulation in cancer development and progression has prompted
their potential use as therapeutic targets in anticancer drug development. Several small
inhibitor molecules targeting PRMTs have been used in clinical trial phases of breast, colon,
pancreatic, and kidney cancer. However, despite PRMTs being reportedly overexpressed
in cervical cancer, limited research studies have reported the use of PRMT inhibitors in
cervical cancer. Improving cervical cancer research can increase the understanding of how
HPV drives pathogenesis, especially in cohorts with HIV and identify potential biomarkers
which would be beneficial for LMICs, where HIV infection and cervical cancer are colliding
with public health burdens. While PMRT small molecule inhibitors are emerging as splicing
disruptor drugs in solid tumors, there is still a lack of evidence to define the precise roles
of these drugs in viral-induced cancers, especially in HPV viral oncogenomics in cervical
cancer. HPV encodes for few proteins; however, its immune system evasion ability through
exploiting the host splicing machinery and lack of HPV-targeted small molecule inhibitors
warrants innovative approaches.

9. Conclusions

Cervical cancer is a challenge in LMICs. While HPV is the number one cause of cervical
malignancy, other factors, including smoking, oral contraceptives, and HIV, contribute to
the progression of the disease. HPV is reported to advance latency through alternative
viral and host mRNA splicing. This article discussed the role of HPV immunosuppressive
effects in cervical cancer by exploiting the splicing machinery. HPV dysregulates alternative
splicing resulting in the formation of isoforms that help the virus evade detection by the
immune system. The role of alternative splicing in immunosuppression is an understudied
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area and closing this gap in the research would aid in understanding how viruses utilize this
process. CeRNAs regulate splicing through binding to cis-acting elements and regulating
the expression of splicing factors. Dysregulation in the expression of Splicing Factors
promotes cancer cell survival. Additionally, ceRNAs networks’ regulation in HPV-mediated
immunosuppression in cervical cancer is underreported, and this RNA cohort can be further
studied to fully comprehend HPV pathogenesis in cervical cancer. Like ceRNAs, PRMTs
control components involved in splicing and are upregulated in cervical cancer. The role of
most PRMTs in mRNA splicing remains to be elucidated. However, emerging reports show
they can be potential targets for therapeutic interventions.

Although PMRT inhibitors have been developed, more potent and specific PRMT
inhibitors are needed. These will target each specific PRMT, thereby increasing their effec-
tiveness. This review discussed the underreported research areas of the role played by AS
in immunosuppression in cervical cancer, regulatory roles of AS and ceRNA networks in
HPV-induced cervical cancer pathogenesis, PMRT roles in cervical cancer, and the therapeu-
tic potential of inhibitors of PMRTs, which may be used cancers with a viral etiology such as
cervical cancer. The HPV–host transcriptome landscape is broad, resulting in a knowledge
gap that warrants further elucidation to favor cervical cancer patients’ outcomes.
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