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ABSTRACT Proteogenomics combines proteomics, genomics, and transcriptomics
and has considerably improved genome annotation in poorly investigated phyloge-
netic groups for which homology information is lacking. Furthermore, it can be ad-
vantageous when reinvestigating well-annotated genomes. Here, we applied an
advanced proteogenomics approach, combining standard proteogenomics with
peptide de novo sequencing, to refine annotation of the well-studied model fungus
Sordaria macrospora. We investigated samples from different developmental and
physiological conditions, resulting in the detection of 104 so-far hidden proteins and
annotation changes in 575 genes, including 389 splice site refinements. Significantly,
our approach provides peptide-level evidence for 113 single-amino-acid variations
and 15 C-terminal protein elongations originating from A-to-I RNA editing, a phe-
nomenon recently detected in fungi. Coexpression and phylostratigraphic analy-
sis of the refined proteome suggest that new functions in evolutionarily young
genes correlate with distinct developmental stages. In conclusion, our advanced
proteogenomics approach supports and promotes functional studies of fungal
model systems.

IMPORTANCE Next-generation sequencing techniques have considerably increased
the number of completely sequenced eukaryotic genomes. These genomes are
mostly automatically annotated, and ab initio gene prediction is commonly com-
bined with homology-based search approaches and often supported by transcrip-
tomic data. The latter in particular improve the prediction of intron splice sites and
untranslated regions. However, correct prediction of translation initiation sites (TIS),
alternative splice junctions, and protein-coding potential remains challenging. Here,
we present an advanced proteogenomics approach, namely, the combination of pro-
teogenomics and de novo peptide sequencing analysis, in conjunction with Blast2GO
and phylostratigraphy. Using the model fungus Sordaria macrospora as an example,
we provide a comprehensive view of the proteome that not only increases the func-
tional understanding of this multicellular organism at different developmental stages
but also immensely enhances the genome annotation quality.

KEYWORDS proteogenomics, peptide de novo sequencing, RNA editing, alternative
splicing, phylostratigraphy, gene ontology, alternative splice sites, fungal genome,
genomics, proteomics

Mass spectrometry (MS)-based proteomics has been established as a valuable tool
for detecting and quantifying peptides and posttranslational modifications

(PTMs) on a large scale. Here, experimental tandem MS (MS/MS) spectra are compared
with theoretical spectra derived from curated protein sequence databases. However,
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novel findings are inherently limited by the database provided. Thus, expansion of this
search strategy to the use of 6-frame translations of the reference genome, theoretically
predicted protein sequences, and transcriptome sequencing (RNA-Seq)-derived tran-
script sequences gave rise to so-called proteogenomics approaches (1, 2). This enabled
the reannotation of genomes, the correction of misannotated genes, the discovery of
novel protein-coding regions, and the detection of alternative translation initiation and
termination sites. Proteogenomics refinements are now being routinely applied to
prokaryotic genomes, and several examples are available for plant, animal, and human
experimental systems (2–6). However, particularly in the case of fungal proteogenom-
ics, investigated samples were often limited to only some developmental stages (7–10).

Although providing peptide-level evidence for coding sequences and, thus, being of
high value for genome (re-)annotation, proteogenomics analysis does not identify
peptides beyond the DNA-based coding potential, i.e., peptides modified by posttran-
scriptional changes at the RNA level. Here, we present an advanced two-enzyme
proteogenomic workflow, which was extended by de novo peptide sequencing, cura-
tion, and validation. We applied this advanced proteogenomics workflow to the
well-annotated genome sequence of the fungal model Sordaria macrospora (11, 12),
using samples from five different developmental or physiological conditions. S. mac-
rospora is used as a model organism for multicellular development during the fungal
sexual cycle (13, 14) and has been scrutinized for signaling pathways and conserved
developmental regulators governing sexual fruit-body formation (15, 16). However,
in-depth proteomics analysis has not been performed with S. macrospora, and infor-
mation about the stage-specific proteome is lacking.

Applying the advanced proteogenomics approach to five S. macrospora samples not
only increased the number of annotated protein-coding genes but also provided
evidence for alternatively spliced gene variants, extensions, fissions, and fusions. Most
importantly, the combination with peptide de novo sequencing led to the discovery of
so-far undetectable peptides originating from A-to-I editing at the mRNA level. Our
approach provides quantitative data about stage-specific protein abundances, leading
to new predictions for the biological role of certain proteins at distinct developmental
stages, and will enable further applications, such as evolutionary genetic investigations.

RESULTS
Annotation refinements by proteogenomics. We previously sequenced the ge-

nome of the S. macrospora wild-type strain (termed genome version 1 [v1]) and later
refined the genome annotation by implementing RNA-Seq data (genome v2) (11, 12).
Regeneration of the sequenced strain by several sexual crosses led to ascospore
progeny showing vigorous growth and robust fruiting body development. We chose
ascospore isolate R19027 for Illumina sequencing and performed annotation based on
genome v2 and RNA-Seq data (12, 17, 18). Locus tags were transferred from genome
v2, followed by manual refinement of about 1,000 genes (genome v3). However, to add
peptide-level evidence for annotated features and to elucidate hidden coding poten-
tial, we also applied a combination of proteogenomics with peptide de novo sequenc-
ing.

A prerequisite for any proteogenomics study is deep coverage of the target pro-
teome. To trigger divergent gene expression, Sordaria macrospora was grown for 3 days
on three culture media with different nutrient compositions (Biomalz-Mais-Medium
[BMM], complete medium [CM], and Sordaria Westergaard’s medium [SWG]). Further-
more, BMM cultures were harvested at three time points (2 days of shaking culture and
3 and 7 days of surface culture), leading to five different conditions in total. While only
vegetative cells were present in 2-day shaking cultures, 3- and 7-day surface cultures
contained immature and subsequently mature fruiting bodies. To achieve high cover-
age of proteins and identify splice site-specific peptides, samples were digested with
two endoproteinases of complementary specificity, i.e., trypsin and Glu-C, and were
subjected to fractionation by high-pH reversed-phased chromatography prior to liquid
chromatography MS/MS (LC-MS/MS) analysis. The total data set comprised 4,027
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million MS/MS spectra acquired with high resolution from a total of 128 LC-MS runs (see
Table S1 in the supplemental material).

Spectra were analyzed via a multistep proteogenomics analysis workflow (Fig. 1) and
subjected to database searches against an S. macrospora protein database generated
from genome v3, a 6-frame genome translation, and unbiased de novo peptide
sequencing, followed by thorough filtering and manual annotation refinement in
conjunction with RNA-Seq data (12). In total, 6,223 proteins were identified with a 1%
false discovery rate threshold (FDR) (protein level), representing 62% of the total S.
macrospora proteome, reaching an average sequence coverage of 45%. Four hundred
ten proteins were exclusively identified in the 7-day sample, representing the growth
condition with the largest contribution to total proteome coverage. Translation initia-
tion sites (TIS) of 2,006 proteins were validated by identifying N-terminally acetylated
peptides. A total of 13,075 peptides were identified as exon spanning, providing
peptide-level evidence for 4,723 splice junctions, 659 of which were exclusively iden-
tified by Glu-C-derived peptides. Overall, 45% of all possible splice junctions within the
identified proteome were covered.

Comparing the complete data set with S. macrospora genome v3, we identified
7,803 novel peptides, representing 4% of all detected peptides. While class-specific FDR
(known and novel peptides) was accounted for in the refinement process by the
stepped search strategy against predicted proteins and the genome, we also wanted to
assess the quality of the identifications after the final refinement. Comparison of
peptide class-specific identifications with known false-positive decoy hits above the
threshold showed no significant difference between the classes with regard to average
peptide length, mass deviation, or posterior error probability (PEP) (Fig. 2A to C and
Fig. S1 and S2A). We further compared the chromatographic retention behavior of the
novel identifications with the predicted peptide hydrophobicity index (HI). Observed
chromatographic retention times strongly correlated with SSRCalc-predicted HI values

MS/MS
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database search unmatched
spectra

known protein
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database search
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genome
assembly
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FIG 1 Schematic representation of the data analysis pipeline. Generated MS/MS spectra were subjected
to subsequent database searches against the known S. macrospora protein sequences and a 6-frame
translation of the S. macrospora genome as well as an independent de novo peptide sequencing method.
Putative novel peptide identifications were clustered, filtered, converted to a genome browser readable
format, and analyzed in conjunction with RNA-Seq data. Final curation of the genome annotation was
performed manually.
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(19) for both known and novel peptides, whereas known false-positive decoy peptides
showed a scattered distribution (Fig. 2D and Fig. S2B).

Based on the proteogenomic refinements, we newly annotated 575 genes, corre-
sponding to 6.7% of all protein-coding genes (Table 1 and Data Set S1). Correction of
splice sites was most frequent, accounting for one-third of all refinement operations. A
further 25% of refinement operations led to the correction of annotated TIS or the
addition of alternative TIS, up- or downstream relative to the annotated TIS.

Distinct GO terms are enriched in defined growth phases. Following functional
annotation with Blast2GO, gene ontology (GO) enrichment analysis was performed on
proteins identified uniquely in a single culture condition to deepen insights into fungal
development and metabolism, as well as to cross-validate our results (Fig. S3A and B).
While unique proteins identified for S. macrospora grown on BMM, SWG, or CM medium
for 3 days did not reveal statistically significantly enriched terms, the 410 proteins
identified uniquely in the 7-day BMM sample uncovered 38 significantly enriched GO
terms (adjusted P value of �0.05). The cellular compartment ontology was populated
mainly by terms related to vacuole, endoplasmic reticulum (ER), and membrane func-
tions (Fig. S3C). Accordingly, metabolic process terms related to cell wall organization
and transmembrane transport were enriched along with those for secondary metab-
olites and steroid biosynthesis. In contrast, the 115 unique identifications in the 2-day
BMM sample overrepresented proteins related to sphingolipid biosynthesis (Fig. S3D).

Discovering hidden proteins. Besides annotation modifications of known genes,
our data provide evidence for 104 hidden protein-coding genes not accounted for in
genome v3 (Table 1). We distinguished two classes. Class I proteins were identified by
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FIG 2 Evaluation of peptide identifications, classified as known and novel, in the 2-day data set. All peptide spectrum matches (PSMs) belonging to the
respective class were compared to known false-positive decoy hits. (A) Normalized density plot of observed precursor mass deviation indicates no difference
in distribution of identified known and novel PSMs. (B) Distribution of posterior error probability (PEP) shows clear distinction between decoy PSMs and known
PSMs but almost overlapping distribution of known and novel hits. (C) Length of identified peptides of both classes, but not between classes, differs from decoy
identifications. AA, amino acids. (D) Observed retention time shows tight correlation to predicted hydrophobicity index (HI) by SSRCalc for both classes, while
retention times of known false positives only weakly correlate. In all cases, all decoy PSMs with a q value of �0.01 were plotted as a reference. See Fig. S1 and
S2 for additional data sets.
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2 or more unique, unmodified peptides longer than 8 amino acids. Furthermore,
annotation was based on sufficient RNA-Seq coverage. For class II proteins, only one
unmodified unique peptide was found, and their genes had insufficient RNA-Seq
coverage. Ninety genes were categorized as class I, while 14 were categorized as class
II. Twenty-three of those hidden genes are located at contig borders and, thus, were
only partially annotated, with translation sequences lacking the mature protein C
and/or N terminus. For 27 novel proteins, annotated TIS were verified by detecting
N-terminally acetylated peptides. Remarkably, 18 of the hidden proteins were exclu-
sively identified in the 7-day sample, i.e., the final stage of the reproduction cycle of S.
macrospora when the fungus produces mature fruiting bodies. For those for which we
could identify homologous proteins, functional associations to cell wall and cytoskel-
eton organization or stress responses were observed. Using Blast2GO analysis, we
assigned one or more GO terms to 65 of those hidden proteins. Among those, proteins
showing resemblance to S-adenosyl-L-methionine-dependent methyltransferases are
clearly overrepresented, with 12 novel annotations, followed by 8 heterokaryon incom-
patibility (HET-E) protein homologues (Data Set S1).

Although we could categorize the majority of hidden proteins with Blast2GO
analyses, the function of some gene products remained elusive. Quantification at
multiple growth stages facilitates functional coexpression analysis by placing these
hidden proteins into a quantitative context with well-annotated proteins, potentially
allowing for functional connection. Therefore, we conducted one-dimensional LC-MS
measurements for label-free quantification. In addition to the samples described above,
we added a 5-day BMM sample to better reflect fungal development over time. We
quantified a total of 3,592 proteins (1% FDR), comprising 42 (40%) of the newly
identified proteins. In 25 cases the highest expression levels were found in either the
2- or 7-day samples, further demonstrating the usefulness of disparate growth condi-
tions in the context of proteogenomics reannotation.

Coexpression analysis also provided a putative function for the newly identified
protein SMAC_12925.3, which displayed no homology to known proteins or known
protein domains. SMAC_12925.3 was assigned to module 2, which had an expression
profile that strongly correlates with fungal sexual development. Subclusters of module
2 were enriched in proteins associated with vacuolar proteolysis, suggesting a putative
vacuolar role for SMAC_12925.3. Detailed coexpression analysis methods and results
are provided as supplemental material (Text S1 and Fig. S4).

Uncovering alternative splice sites. Our proteogenomics data set led to 389 splice
site refinements. We detected a total of 45 alternative splicing (AS) events, caused by
intron retention (20), alternative 5= donor sites (5), alternative 3= acceptor sites (5),
mutually exclusive exons (5), and exon skipping (2). For 21 out of 45 AS events, we
identified uniquely matching peptides for both protein isoforms. These results confirm
the AS events originally seen in the RNA-Seq analysis and further illustrate that the
alternative mRNAs are translated into the protein isoforms. BLAST homology searches
confirmed that 80% of these events are conserved in other fungal species.

We were able to quantify 17 AS events in five cases in an isoform-specific manner.
As illustrated in Fig. 3, AS was observed for the mek2 transcript, which encodes a

TABLE 1 Classification of all annotation refinements performed in this study

Type of refinement
Total no. of
refinements

No. of refinements
with two variants

Splice site (3’ or 5’ splicing site) 389 45
TIS 283 101
Annotation extension (up- or

downstream of annotation)
237

Frame shift 116
Annotation fission 13
Annotation fusion 7
Novel annotation 104
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mitogen-activated kinase (MAPK) with homology to MAPKs of the yeast pheromone
signaling pathway (21). The alternatively spliced variant of mek2 in S. macrospora
revealed by our proteogenomics search strategy results in translation into an alterna-
tive protein C terminus. Label-free quantification further revealed differential regulation
patterns of the two variants: while expression of the short variant remained stable
under all conditions, the alternatively spliced variant was strongly downregulated at
later stages of the fungal reproduction cycle (Fig. 3C). This analysis demonstrates again
that the expression of isoforms is linked to specific developmental stages.

RNA editing. Beyond using proteogenomics analysis to refine known genes and to
identify hidden genes, the data were mined for peptide sequence variations caused by
putative changes at the RNA level, i.e., RNA editing. RNA editing is found in all domains
of life, and A-to-I mRNA editing has recently been described in filamentous ascomy-
cetes, where editing frequencies have been linked to sexual development (22–25).

To identify A-to-I editing events leading to single-amino-acid variants (SAAVs), we
implemented a de novo peptide sequencing approach, followed by thorough filtering
and refinement steps and additional class-specific database searches with individual
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FDR calculation for SAAV peptides. Table 2 shows type and frequency of identified
SAAVs and the respective mass shift caused by the altered amino acid for 12 amino-acid
substitutions that can be caused by A-to-I editing. We identified a total of 113 SAAVs
in 102 distinct proteins. Lysine-to-glutamic acid (K¡E) exchange was the most preva-
lent event, found at 34 different sites, while isoleucine-to-methionine (I¡M) exchange
was only identified once. We predominantly identified both canonical and edited
peptide variants, indicating either substoichiometric or context-specific editing of
transcripts. In most cases, a single SAAV per protein was detected, with the exception
of putative ubiquitin hydrolase SMAC_02643, containing three SAAVs (K192E, R556G,
and S1034G).

To validate these findings, parallel reaction monitoring (PRM) LC-MS runs were
conducted to monitor peptide sequence-specific transitions throughout the chromato-
graphic elution profile. Seventeen RNA editing-specific peptides were chosen to rep-
resent 10 classes of amino acid substitutions. We then monitored the corresponding
nonedited peptide and one proteotypic peptide for every protein, resulting in a total
of 51 peptides obtained from fungal protein extracts harvested at four different time
points (2 days, 3 days, 5 days, and 7 days). In 16 cases, we detected the edited peptide
only in the 5- and 7-day samples, while in the case of SMAC_02363 K43R, the indicative
peptide YRPGTVALR was found in all four samples (Fig. S5 and Data Set S2). Figure 4
shows initially identified spectra, transitions, and retention times for edited and
nonedited peptides, indicative of SMAC_03693 T255A, caused by RNA editing.

In addition to nonsynonymous recoding events, data were mined for stop-loss
editing (UAG to UGG), leading to translation beyond the intrinsic stop codon and
potentially generating novel protein C termini. Using de novo peptide sequencing and
data obtained by searches against genome 6-frame translation, followed by class-
specific FDR calculation, we were able to identify peptide sequences indicative of
stop-loss editing events in 15 different transcripts. Remarkably, four of these were
exclusively identified based on de novo peptide sequencing data (Data Set S2). Of the
15 stop-loss editing events, 73% and 20% are conserved in the filamentous fungi
Neurospora crassa and Fusarium graminearum (22, 24, 26), respectively. As a represen-
tative example, peptide-level evidence for the stop-loss RNA editing event of the white
collar 1 transcript (SMAC_03527.3) reveals a C-terminal 131-amino-acid extension
(Fig. 5). First detected in N. crassa, white collar 1 is a blue-light photoreceptor involved
in circadian clock and developmental processes (27). Domain prediction by CD-Search
(20) revealed a putative N-terminal class IIa histone deacetylase domain (E value of
7.3e�04) along with a dimer interface within the novel C terminus. This example
indicates diversification of protein functions by mRNA editing in fungi.

TABLE 2 Classification of identified SAAVs by typea

SAAVb Mass shift (Da) No. of observations Edited and nonedited detected (%) Median PROVEAN score Predicted deleterious (%)

K¡E 0.94763 32 53 �1.2565 21.9
I¡V �14.01565 19 95 �0.689 0
S¡G �30.01057 14 100 �1.8475 28.6
R¡G �99.07965 11 90 �3.349 63.6
K¡R 28.00615 10 70 �1.1875 10.0
T¡A �30.01057 7 100 �0.792 42.9
Q¡R 28.04253 6 100 �0.797 16.7
Y¡C �60.05414 5 100 �6.16 80.0
M¡V �31.97208 5 75 �1.047 20.0
E¡G �72.02113 2 100 �2.833 50.0
N¡S �27.0109 1 100 �2.053 0
I¡M 17.95643 1 100 �2.867 100
Total 113 81 �1.220 26.8
aTotal number of observed single-amino-acid variation (SAAV) putatively caused by mRNA editing events in the 7-day sample. Respective theoretical mass shifts of
each amino acid exchange are given. Additionally, percentages of sites found for both the edited as well as the nonedited variant are given. PROVEAN prediction
score was retrieved for each individual SAAV via the PROVEAN web interface (70), and the median score for each class of SAAV was calculated. A default threshold of
�2.5 was used to estimate the extent of potentially deleterious variants.

bN¡D events were not considered, as they can be caused by RNA editing as well as by asparagine deamidation on the protein/peptide level.
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Phylostratigraphy. Determining the last common ancestor of a given protein can
help unravel the emergence of protein families and the evolutionary patterns leading
to the origin of genes. Here, we applied phylostratigraphy to determine the evolution-
ary age of the known and novel proteins of S. macrospora. We constructed a phy-
lostratigraphic map and assigned proteins to a total of 15 phylostrata (PS), with PS1
being the evolutionarily oldest and PS15 the evolutionarily youngest phylostratum.

Comparison of the 104 newly identified proteins with all remaining known detected
(i.e., identified by proteomics) and known undetected (i.e., not detected by proteomics)
proteins of S. macrospora shows differences in their relative distribution among the PS
(Fig. 6A). Proteins identified by proteomics (i.e., expressed proteins) tended to be more
often assigned to an old PS than unidentified proteins (i.e., nonexpressed proteins),
which mainly occupy more recent phylostrata. Novel genes showed an intermediate
distribution, although they were generally less often assigned to the oldest PS and
more often to the comparatively young PS8 to -11 than their known analogues.

The phylostratigraphic map (Fig. 6B) of all fully annotated class 1 hidden proteins
gives more detailed insight into their evolutionary emergence. Top BLAST hits are
displayed for every PS, and proteins are clustered by Ward’s method to facilitate visual
differentiation. The topmost clade is mainly occupied by a class of S-adenosyl-L-
methionine-dependent methyltransferases. These proteins are followed by a clade of
highly conserved proteins. These genes mostly have annotated paralogues in the S.
macrospora genome, likely making them products of gene duplication.

The bottommost clade groups novel proteins of younger evolutionary origin, most
of them giving no BLAST hit (below an E value cutoff of 1e�05) beyond PS9, repre-
senting functionally specific proteins evolved within the Sordariomyceta. Therefore,
phylostratigraphic analysis of the refined S. macrospora proteome provides evidence for
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evolutionarily young genes with specific functions being expressed at distinct devel-
opmental stages of fungal life.

DISCUSSION

The aim of this study was to provide an extensive proteomics data set of S.
macrospora and use these data in combination with proteogenomics workflows and a
novel implementation of peptide de novo sequencing to refine the genome annotation

FIG 5 Validation of a stop-loss editing site in the transcript for the white collar 1 protein. (A) Primary amino acid sequence of the white collar 1 protein. Editing
results in the conversion of a stop codon into a tryptophan codon and extends the amino acid sequence by 131 amino acids. As a consequence, the protein
carries a C-terminal histone deacetylase domain (HDAC). Peptides encoded by the canonical gene are shown in red, while the blue peptide is unique to the
novel C-terminal sequence. (B) Annotated MS/MS spectrum of the editing-specific peptide observed in the 7-day data set. (C) Domain structure of the white
collar 1 protein, including the HDAC domain (green box) in the extended C terminus (blue box). PAS, Per-Arnt-Sim domain; GATA, GATA-type zinc finger
transcription factor domain.
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FIG 6 Phylostratigraphic map of all S. macrospora proteins. (A) Division into known and identified detected proteins, novel proteins identified by the
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of a fungal model organism and potentially identify posttranscriptional modifications.
We further place the whole set of quantitative results within the context of cellular and
developmental stage-specific protein abundances.

In total, we were able to confidently identify 6,223 proteins. Four million recorded
MS/MS spectra yielded 1,875 million matches to database peptide sequences at a
maximum FDR of 1%. Due to the narrow isolation window of 0.4 m/z during data
acquisition, resulting in exceptionally clear spectra, these data represent an excellent
repository of S. macrospora peptide spectra, potentially being of use beyond the scope
of this study. We were able to identify proteins representing 62% of the theoretical
proteome, whereas the remaining 38% was not covered by LC-MS/MS analysis. Argu-
ably, a proportion of these proteins may not be accessible using common proteomics
methods due to their physicochemical properties and unfavorable amino acid se-
quences (e.g., membrane proteins, proteins inaccessible to commonly used proteases,
etc.). However, due to the use of complementary proteases and extensive fractionation,
we achieved exceptionally high individual protein coverage in this study (45% on
average), which is higher than results from similar proteogenomics approaches (28–31).
Therefore, we presume that a large fraction of the nonidentified proteins is highly
specific to individual tissues or only expressed under context-specific conditions,
neither of which were addressed with our experimental setup.

This observation is further corroborated by the phylostratigraphic analysis of all S.
macrospora proteins: while the identified fraction mainly populates the oldest PS (PS1
and -2), nonidentified proteins are overrepresented in the youngest PS. Since essential
proteins usually are highly conserved and tend to be more abundant (e.g., structural
proteins or ribosomal proteins), they are also easier to detect under common condi-
tions. In contrast, evolutionarily young proteins tend to be more specialized and their
expression restricted to specific conditions, rendering them more difficult to detect
experimentally.

Although the idea of integrating LC-MS-based proteomics data into genome anno-
tation seems obvious and was done several times even before the term proteogeno-
mics was first suggested by Jaffe et al. (2), corresponding studies face eminent
challenges. Foremost, accurate control of the true FDR of novel identifications is crucial
and has to be correctly accounted for, as described by Nesvizhskii (1). We accounted for
this in a 2-fold manner. First, only spectra not matching the 1% FDR threshold in the
first search against the v3 protein database were taken for a second search against the
6-frame translation database of the S. macrospora genome. Thus, the vast majority of
matches to known peptide sequences do not erroneously lower the threshold for
putatively novel hits, which potentially would lead to an underestimation of the error
rate. Second, the FDR of novel hits was calculated solely for this subset, avoiding
distortions from the known peptides.

We demonstrate that the novel peptides not only match in scoring, mass deviation,
and peptide length but also perfectly correlate with predicted retention times. This is
not a parameter of the Percolator peptide evaluation workflow (32) and therefore
represents an additional line of evidence. In addition, since FDR estimation upon de
novo peptide sequencing is not trivial (33, 34), all potentially novel peptides identified
by de novo peptide sequencing were added to a combined database alongside the
validated refined protein sequences.

After spectrum matching, the results were grouped and FDRs were individually
calculated for canonical and novel matches, accounting for potentially different char-
acteristics of both classes. Similar approaches were recently applied successfully for the
de novo-aided identification of proteasomal spliced peptides (35, 36). Since we started
from stringently filtered de novo peptide sequences meeting an FDR of 5% (33), after
class-specific FDR calculation only 5 out of 118 initially reported SAAVs did not satisfy
the criteria, leading to a theoretical de novo FDR of 4.2%. Even the number of peptide
spectrum matches (PSMs) supporting those SAAVs increased from 192 (de novo) to 416
(database search), since the latter approach is more tolerant of missing fragment ions.
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Seventeen of those SAAVs could be further validated by PRM analysis, where the
respective peptides showed the expected retention times and fragmentation behavior.

To the best of our knowledge, this study is the first to employ a de novo peptide
sequencing-aided approach in the context of proteogenomics and RNA editing. Since
in our case the flow of information originates from the proteomics side, we emphasize
that this is the most literal implementation of an approach termed proteogenomics,
while in the previous cases of genome- and transcriptome-aided peptide identification
it would be more appropriate to speak of genoproteomics.

Arguably, the benefit of similar genoproteomics or proteogenomics reannotation
endeavors is greatest for newly sequenced organisms (3, 30, 31). However, here we
demonstrate that even well-annotated and well-studied organisms such as S. mac-
rospora benefit from orthogonal proteomics input, especially concerning orphan genes
and genes poorly conserved across taxa, since these tend to be missed by homology-
based annotation approaches. Among the 104 newly identified genes, 23 were marked
as incomplete, since they were found at scaffold borders and, thus, were missing their
N- or C-terminal sequence information. Additional work is required to further consol-
idate the S. macrospora genome assembly.

New genes could have emerged through numerous processes at different
evolutionary stages (37). In this context, phylostratigraphy is a widely used method
that allows genome-wide investigation of gene formation despite certain inherent
limitations and a potential bias concerning rapidly evolving genes (38). Here, we
were able to phylostratigraphically classify newly identified proteins and found an
accumulation of proteins of younger phylostrata. Peculiarly, the novel protein
SMAC_12920.3, harboring a conserved glucosamine-6-P-N-acetyltransferase (GNAT)
family N-acetyltransferase domain, was traced to PS11 (Sordariomycetes), while phy-
lostratigraphy also revealed homologues in PS1 among a wide range of Actinobacteria.
Considering that no match was found in interjacent PS, SMAC_12920.3 might be the
product of horizontal gene transfer (HGT) during the course of adaptive radiation in the
Sordariomycetes clade.

As described recently, the nematode Hopolamina acquired GNATs late in evolution
horizontally from plant-pathogenic actinomycetes (39). The phylogenetic tree of the
newly described FAM7 family of N-acetyltansferases indicates multiple possible events
of HGT from bacteria to numerous eukaryotes and archaea. Interestingly, alignment and
phylogenetic tree construction of the SMAC_12920.3 sequence with representatives of
the three described classes of fungal GCN5-related N-acetyltransferases (histone acetyl-
transferase family 7 [FAM7] GNAT) show no clear membership to either of these classes;
rather, it clusters more closely to actinobacterial GNATs (see Fig. S6 in the supplemental
material). Similarly, the gene SMAC_02065.3, encoding a mannosyl-3-phosphoglycerate
synthase, shows an analogous PS pattern and has been speculated to be a product of
HGT from members of the thermophile Actinomycetales (40).

We identified peptides of proteins ascribed to 45 AS events. For 21 of them, both
splice variants were detected with distinct peptides. Alternative transcript splicing was
long known to be prevalent in animals, e.g., the estimated AS rate for human multiexon
genes is thought to be �90%, but it has also been shown to be present in fungal
species, with rates of up to 18% in Cryptococcus neoformans (41). For Neurospora crassa,
a close relative and member of the Sordariaceae, for 12.7% or 1,245 of the genes in its
current annotation, two or more mRNA splice isoforms exist (42). However, although it
has been extensively assumed that AS contributes significantly to functional protein
diversity and proteome complexity, seemingly just a minor portion of alternatively
spliced transcripts are actually translated into protein (43).

In addition to a described occurrence of peculiar amino acid sequences found at
splice sites that were unfavorable for LC-MS-based analysis (44), we did not expect to
find equivalent evidence for the translation of AS mRNA variants into protein compared
to their transcript abundances. However, these lower-abundance variants might be of
even greater interest, since they might represent functional context-specific alterna-
tives. This assumption is supported by an accumulation of these AS events in related
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fungal species. The newly identified splice variant of mek2 potentially represents this
case. The genomic sequence coding for both splice variants is conserved in Neurospora
and Podospora species of the Sordariaceae, while more distant fungi only code for a
long variant lacking the intron that is alternatively spliced in the before-mentioned
species. Sequence analysis of the extended MEK-2 N terminus has resemblance to a
protein kinase-like domain, hinting at a signaling option masked or exposed through
AS. Overall, our findings have the potential to augment our understanding of both
fungal AS and AS in general.

In conclusion, our advanced proteogenomics approach, with the combination
of proteogenomics and de novo peptide sequencing analysis, in conjunction with
Blast2GO and phylostratigraphy, not only provides a comprehensive view of the
proteome of S. macrospora and insights into the functional understanding of this
multicellular organism but also immensely enhances its genome annotation quality.
This approach offers a powerful basis to further develop applications for investigating
fundamentals in eukaryotic cellular differentiation and organismic development.

MATERIALS AND METHODS
Strains and culture conditions. The previously sequenced S. macrospora wild-type strain (S48977)

was obtained from our laboratory collection and crossed several times to spore color mutant fus (45) for
regeneration purposes. A vigorously growing, fully fertile, black-spored strain (R19027) was chosen as a
new isolate and used in the experiments described here. The strain was grown on cornmeal medium (46).

Reagents. Guanidine hydrochloride (GuHCl), iodoacetamide (IAA), and ammonium bicarbonate
(ABC; NH4HCO3) were acquired from Sigma-Aldrich, Steinheim, Germany. Calcium chloride (CaCl2) was
purchased from Merck (Darmstadt, Germany), and dithiothreitol (DTT) was bought from Roche Diagnos-
tics (Mannheim, Germany). Sequencing-grade modified trypsin and endoproteinase GluC were obtained
from Promega (Madison, WI, USA), and all chemicals for ultrapure high-performance liquid chromatog-
raphy (HPLC) solvents, i.e, formic acid (FA), trifluoroacetic acid (TFA), and acetonitrile (ACN), were
acquired from Biosolve (Valkenswaard, Netherlands).

De novo assembly and transcriptome-based annotation of the S. macrospora wtR genome. S.
macrospora genomic DNA was prepared as previously described by pulverizing mycelium in liquid
nitrogen and phenolization (47). A 380-bp insert library (2� 151-bp paired-end sequencing) was se-
quenced on an Illumina HiSeq 2500 at GATC (Constance, Germany). Illumina raw data were trimmed with
custom-made Perl scripts to remove reads with undetermined bases and for trimming of low-quality
bases (phred score of �10) from the 3= end as described previously (11). Trimmed reads were assembled
with SPAdes 3.10 (48) using k-mer lengths (-k) of 21, 33, 55, 77, 99, and 127. For annotation, available S.
macrospora transcriptome data from total mycelia grown under different growth conditions (11, 17, 18)
were de novo assembled using Trinity 2.4.0 (49). The de novo-assembled transcripts together with
predicted transcripts from the previous S. macrospora annotation (11), as well as predicted proteins from
S. macrospora and N. crassa (11, 50), were used for gene model predictions using MAKER 2.31.18 (51). S.
macrospora locus tags (with the format SMAC_xxxxx) were mapped onto the predicted gene models
based on BLAST results (52) using custom-made Perl scripts. Approximately 1,000 gene models were
manually corrected based on mapped RNA-Seq data using the genome browser Artemis (53).

Protein extraction. For protein extraction of surface cultures, the S. macrospora wild type was
precultured in petri dishes with liquid BMM, CM (46, 54), or SWG (derived from synthetic crossing
medium [55] and containing KNO3 [1 g/liter], KH2PO4 [1 g/liter], MgSO47H2O [0.5 g/liter], NaCl [0.1 g/liter],
CaCl2 [0.1 g/liter], trace elements [0.1 ml/liter], arginine [1 g/liter], glucose [20 g/liter], soluble starch [40
g/liter; Difco], and biotin [0.1 mg/liter]) for 2 days at 27°C. Three standardized inoculates of BMM
precultures were transferred into petri dishes with 20 ml liquid BMM and cultivated for 3, 5, and 7 days
at 27°C and 40 rpm. For CM and SWG surface cultures, four and five inoculates were transferred into petri
dishes with 20 ml liquid CM and SWG, respectively, and cultivated for 3 days at 27°C and 40 rpm. For
shaking cultures, the precultures were cultivated in petri dishes with liquid BMM for 3 days at 27°C. One
inoculate was transferred into 100-ml flasks with 80 ml liquid BMM and incubated for 2 days at 27°C,
100 rpm, and constant light (56). For cell wall lysis and protein extraction, dried mycelium was ground
in liquid nitrogen, suspended in extraction buffer (50 mM Tris-HCl, pH 7.4, 250 mM NaCl, 10% glycerol,
0.05% NP-40, 1 mM phenylmethylsulfonyl fluoride, 0.2% protease inhibitor cocktail IV [Calbiochem],
1.3 mM benzamidine, 1% phosphatase inhibitor cocktails II and III [Sigma-Aldrich]), and centrifuged for
30 min at 4°C and 15,000 rpm. The supernatant was prepared for mass spectrometry.

Determination of protein concentration and carbamidomethylation. Protein concentration in all
sample lysates was estimated by performing a calorimetric bicinchoninic acid assay (BCA protein
concentration assay kit; Pierce) according to the manufacturer’s protocol. Carbamidomethylation was
performed by first reducing cysteines by addition of DTT to a final concentration of 10 mM and
incubation for 30 min at 56°C. Free thiols were then alkylated with 30 mM IAA for 30 min at room
temperature in the dark, and excess IAA was quenched by further addition of 10 mM DTT.

Sample clean-up and proteolysis. Prior to digestion, samples were purified by ethanol precipita-
tion. A 10-fold excess of ice-cold ethanol was added to an aliquot of each sample, corresponding to
100 �g of total protein content, and incubated for 1 h at – 40°C. Protein precipitates were centrifuged for
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30 min at 12,000 rpm, 4°C, and after removal of the supernatant, pellets were washed with 200 �l ice-cold
acetone. After centrifugation for 20 min at the same settings as those described above, supernatant was
discarded and samples were dried under a laminar-flow hood. For digestion with trypsin, proteins were
first resuspended in 20 �l 6 M GuHCl, followed by dilution with 50 mM ABC (pH 7.8) to reach a final
concentration of 0.2 M the former. CaCl2 was added at a concentration of 2 mM, and finally trypsin was
added at a ratio of 1:20 (protease:substrate [wt/wt]). Digestions were carried out at 37°C for 14 h and
stopped by the addition of 10% (vol/vol) TFA to a final concentration of 1%. Desalting of the peptides
and assessment of the quality of the digests were done as described before (57). Samples dedicated to
GluC digestion were resolubilized in 8 M urea, 50 mM ABC (pH 7.8) and diluted with an additional 50 mM
ABC buffer to reach a final concentration of 0.4 M urea. Endoproteinase GluC was added at a 1:30
protease/substrate ratio (wt/wt), and samples were incubated for 14 h at 25°C. Acidification, desalting,
and quality control were carried out as described above.

Mass spectrometric analysis. Samples for global analysis were fractionated after digestion and
subjected to LC-MS/MS analysis using an Ultimate 3000 RSLCnano HPLC coupled to a Q Exactive HF mass
spectrometer, while samples dedicated to label-free quantification and PRM analysis were measured
unfractionated on an Ultimate 3000 RSLCnano HPLC coupled to an Orbitrap Fusion Lumos mass
spectrometer (all from Thermo Scientific). Detailed settings are described in Text S1 in the supplemental
material.

Interpretation of MS/MS spectra. For detailed information on the applied data interpretation
workflows and database search settings, see Text S1. In short, de novo peptide sequencing was
conducted by combined usage of the PEAKS Studio 7.5 (58), Novor (59), and pNovo� (60) algorithms as
described previously (33). Proteogenomic searches were conducted by consecutively searching the
spectra against the S. macrospora genome (v3) protein database (PEAKS Studio 7.5 [58]) and the
preprocessed 6-frame translation of the genome (v3) (Mascot 2.6.1), without and with allowed protein
N-terminal acetylation. After every search step, matching spectra were excluded from the subsequent
search. For appropriate FDR calculation of RNA editing variants, a hybrid database was generated,
database searches were conducted with MS-GF� (v10282) via the SearchGUI interface (version 3.2.20)
(61), and FDR was calculated using the MSnID R package (62). The final comprehensive database search
was conducted via Proteome Discoverer 2.2 (Thermo Fischer Scientific), and label-free quantification
experiments were analyzed using Progenesis (version 3.0.6039; Nonlinear Dynamics, Newcastle upon
Tyne, U.K.) in conjunction with SearchGUI (61), followed by statistical evaluation using R (v3.3.1) (63) base
methods.

Proteogenomic analysis. Result files from searches against the S. macrospora genome were loaded
into R (version 3.3.1) (63) using the mzID package. After compensating for redundancies introduced by
the search approach by allowing for overlapping genome fragments, only unique peptides were kept for
downstream analysis. To display the results in common genome browsers, identifications were converted
to proBAM files as described by the HUPO Proteomics Standards Initiative (v 1.0.0). Identifications were
first converted to SAM files and further sorted, indexed, and converted to BAM files using the free
software tool SAMtools (64). Results from initial database searches against the predicted S. macrospora
protein database were converted to proBAM similarly using the proBAMsuite R package (65).

Finally, peptide sequences resulting from the combined de novo peptide sequencing approach were
first mapped to the known S. macrospora protein sequences using PepExplorer 2.0 (version 0.1.0.78) (66)
with the minimum identity threshold set to 0.5, allowing peptides of 6 or more amino acids and not using
the decoy tag option. All Ile amino acids in the database were first converted to Leu in order to
compensate for the inability to discriminate between these two amino acids by this approach. Addi-
tionally, peptide sequences were aligned to the S. macrospora genome using the BLAST (version 2.3.4)
(52) tBLASTn algorithm with the recommended parameters for short input sequences. Results of both
alignments were filtered for unique hits with complete identity and converted to .bed format in order to
be readable by common genome browsers. Annotation refinement was done in the Artemis genome
browser (Wellcome Sanger Institute, release 16.0.0) (53). RNA-Seq data published previously (12) (GEO
accession numbers GSM832531 to GSM832534; reads from wild-type sexual and vegetative mycelium
and protoperithecia) were loaded alongside the proBAM files, and annotation refinement was performed
by adhering to following rules. (i) If intergenic peptide hits were in disagreement with the existing
annotation, (A) at least two distinct novel peptides had to be identified in order for the refinement to be
carried out or (B) one novel peptide alongside at least one known peptide sequence was identified in
case of refinements of splice sites or TIS. (ii) For intragenic peptide hits, novel gene annotations were
reported as class I (high confidence) if (A) at least two distinct novel peptide sequences were detected
and RNA-Seq depth was sufficiently high or as class II (medium confidence) if (B) one distinct peptide
sequence was detected and RNA-Seq depth was sufficiently high or (C) two or more distinct novel
peptides were identified and RNA-Seq depth was insufficient but homologous sequences were found in
related organisms.

SAAV identification. Potential RNA editing sites were identified using a subset of the mapped de
novo sequencing data, showing one or more amino acid mismatches to the translated genomic data.
Prefiltering of potential SAAV peptides was done by discarding single-mismatch hits showing a theo-
retical mass difference of 42.01056 Da at the N-terminal position (Ser¡Glu exchange not distinguishable
from N-terminal acetylation) or a mass difference of 0.98402 Da at any position (Gln¡Glu or Asn¡Asp
not distinguishable from deamidation). Nucleotide sequences of potential editing sites next were
extracted, and the only peptides that were kept were those where A-to-I editing could theoretically
occur. For identification of stop-loss editing events, peptides partially matching to known protein C
termini and additionally comprising a Trp residue were extracted from the data set. Further, all spectra
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were manually quality controlled and filtered, excluding identifications which could be explained equally
well by posttranslational modifications of the relevant or neighboring amino acids.

Validation of potential SAAVs and stop-loss events with PRM. PRM runs were analyzed using
Skyline (version 4.1.0; MacCoss Lab Software, USA) (67). The top 5 transitions for each canonical and
modified peptide were selected, and diagnostic transitions specific for the SAAVs in question were
monitored where appropriate. This was done to further discriminate putative true amino acid exchanges
from isobaric posttranslational modifications on neighboring amino acids. Similarity of the monitored
transitions to the library spectra was ensured by using a dot product cutoff of 0.85.

Phylostratigraphy analysis. Construction of a phylostratigraphic map of all S. macrospora protein
sequences (10,004 after proteogenomics refinement) was performed as previously described (68, 69),
using a perl pipeline (https://github.com/AlexGa/Phylostratigraphy) and the BLAST algorithm (v 2.2.31�)
(52). A set of 15 phylostrata (PS) was defined based on the NCBI taxonomy browser, ranging from all
cellular organisms (PS1) to S. macrospora (PS15). Analysis was performed against a target database
provided by Drost et al. (68) (http://msbi.ipbhalle.de/download/phyloBlastDB_Drost_Gabel_Grosse_
Quint.fa.tbz), with a BLASTp E value cutoff of 1e�5. Each gene was assigned to the oldest PS producing
at least one hit below the E value cutoff. In cases where no hit was found, the gene was assigned to the
youngest PS.

Data availability. The proteomics data have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository under the data set identifier PXD014240. The S. macrospora wtR genome
sequence (BioProject no. PRJNA391581) was deposited at DDBJ/ENA/GenBank under the accession
number NMPR00000000. The version described here is version NMPR01000000. Illumina reads were
deposited in the NCBI SRA database under accession number SRR5749461.
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