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ABSTRACT Genotypes are often used to assign parentage in agricultural and ecological settings.
Sequencing can be used to obtain genotypes but does not provide unambiguous genotype calls,
especially when sequencing depth is low in order to reduce costs. In that case, standard parentage analysis
methods no longer apply. A strategy for using low-depth sequencing data for parentage assignment is
developed here. It entails the use of relatedness estimates along with a metric termed excess mismatch rate
which, for parent-offspring pairs or trios, is the difference between the observed mismatch rate and the rate
expected under a model of inheritance and allele reads without error. When more than one putative parent
has similar statistics, bootstrapping can provide a measure of the relatedness similarity. Putative parent-
offspring trios can be further checked for consistency by comparing the offspring’s estimated inbreeding to
half the parent relatedness. Suitable thresholds are required for each metric. These methods were applied
to a deer breeding operation consisting of two herds of different breeds. Relatedness estimates were
more in line with expectation when the herds were analyzed separately than when combined, although
this did not alter which parents were the best matches with each offspring. Parentage results were largely
consistent with those based on a microsatellite parentage panel with three discordant parent assignments
out of 1561. Two models are investigated to allow the parentage metrics to be calculated with non-random
selection of alleles. The tools and strategies given here allow parentage to be assigned from low-depth
sequencing data.
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As the cost of sequencing declines, it becomes feasible to use this
technology to obtain genomic information for research or commercial
applications. Often sufficient information is given by sequencing a
proportion of the genome, for example by using reduced representa-
tional sequencing approaches such as genotyping-by-sequencing

(GBS; Elshire et al. (2011)), restriction-site associated DNA sequenc-
ing (RAD-seq; Baird et al. (2008)) or exon capture sequencing (Ng
et al. 2009). To reduce costs further, sequencing may be undertaken at
low depth. However, this increases the chance of not reading both
alleles (in diploids) at a locus, which may result in a heterozygous
individual being called as homozygous for one of the alleles. An
attractive feature of sequencing-based genotyping is that it does not
require up-front costs of developing marker panels; SNPs are discov-
ered and genotyped in the same process and this can be done in the
absence of a reference genome sequence for the species.

A common use of genotype data is to assign parentage, for example
in agricultural or ecological settings (Grashei et al. 2018; Städele and
Vigilant 2016). Sequencing may provide a cost-competitive option for
this task, especially if other genomic information (such as breed assign-
ment or population structure) is also sought and/or if no parentage
marker panel is available for the species. Checking recorded
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pedigrees is useful for quality control of sample assignments. The
assignment of dams allows the inference of non-genetic effects such
as birth date and litter size (Dodds et al. 2005) and allows maternal
models to be fitted, even if the relationships are estimated genomi-
cally. Similarly, if genomic prediction combines information from
genotyped and ungenotyped individuals in a ‘single step’ analysis
(Aguilar et al. 2010), some tuning parameters (Legarra et al. 2014)
rely on there being pedigree information on all individuals.

As low-depth sequencing does not provide unambiguous genotype
calls, standard parentage analysis methods no longer apply. A common
approach to analyzing such data are to filter out the genotype calls with
low read depths (Kim et al. 2016). However, this greatly increases the
proportion of missing data and may result in low numbers of SNPs
called in both (all) members of a parent-offspring pair (trio). An ap-
proach that is used if parentage analysis is the primary objective is to
filter to a set of high quality (including high call rate) SNPs (Thrasher
et al. 2018). In both approaches, there is a loss of information in the
discarded data. Here we investigate methods for parentage assignment
from sequence data that take into account the way in which the geno-
mic information is obtained, i.e., using a model of random allele reads
at a particular SNP.

Themethods developedhere can be applied toparentage verification
(where parentage has been recorded, but genotyping is used to check the
parentage) or for parentage assignment (where parents are not recorded
but are known to come from a given group and genotyping is used to
match to the specific parent(s)). This article will focus on the latter
situation as it is more general.

MATERIALS AND METHODS

Use of mismatch rates for parentage assignment
A common approach to parentage assignment is by exclusion: find
individuals in the father and mother sets (ideally only one in each set)
which have genotypes consistent with parentage, i.e., no “mismatches”.
As (low-depth) GBS data does not always give the true genotype
(heterozygous individuals are sometimes observed as homozy-
gotes), there will be mismatches, even with the true parents, with
non-zero probability. Here we consider mismatch rates (number of
mismatches divided by the number of comparisons) as these will be
more stable over differing numbers of comparisons than mismatch
counts. One possible approach is to calculate the observedmismatch
rate after filtering the genotype calls to a given minimum depth.
However, this will reduce the data available for a comparison, es-
pecially when trios are considered. Instead we calculate the “excess
mismatch rate” (EMM) as the observed mismatch rate minus the
expected mismatch rate.

The expected mismatch rate is calculated under the hypothesis
of parentage and takes into account the read depths of the indi-
vidual and the putative parent(s). The derivation is given using
the model (and some possible extensions) and notation of Dodds
et al. (2015).

Let A and B denote the alleles of a SNP and g� denote the apparent
genotype (e.g., AA� denotes that one or more A alleles and no B alleles
are observed). Suppose homozygotes are observed without error, but
for heterozygotes

PðAA�   j  ABÞ ¼ PðBB�   j  ABÞ ¼ K and

PðAB�   j ABÞ ¼ 12 2K

The binomial model assumes that allele reads are at random. For an
AB genotype, each read is equally likely to be an A or a B, leading

toK ¼ 1=2k for a genotype with read depth k. The theory is presented
in terms of K for simplicity of presentation and to allow other sam-
pling models (relating K to k) to be easily implemented.

Expected mismatch rates are calculated under the assumption of
a randomly mating, non-inbred population in Hardy-Weinberg
equilibrium. Let p be the A allele frequency (assumed known). An
example of probability calculations for a set of true and observed
genotypes for a trio is given in Table 1. The full table is given in
Table S1. The corresponding probabilities for a single parent and
offspring genotypes is given in Table S2 and the derivation of the
probability of an apparent mismatch, given the offspring apparent
genotype, read depth and read depths of the parent(s) is given in the
Supplemental material.

Let Kx with x = o,m,f to denote the value of K for the offspring,
putative mother and putative father, respectively. The probabili-
ties of an apparent parent-pair-offspring mismatch, given the off-
spring genotype, are

Pðapparent mismatch j AA�Þ ¼ �
p2ð12 pÞ ð Km þ Kf Þ ð1þ KoÞ
þ p ð12pÞ2½2Ko þ Km

þ Kf 2Kf Km þ 2KmKo

þ 2Kf Ko 2 2Kf KmKo�
þ 2ð12pÞ3Ko

��ðp
þ 2ð12 pÞKoÞ

Pðapparent mismatch j AB�Þ ¼ � ð12 2pð12 pÞÞ ðKm þ Kf Þ
þ 4 pð12 pÞ Kf Km

��
2

Pðapparent mismatch j BB�Þ ¼�
2p3Ko þ p2ð12pÞ ½2Ko þ Km

þ Kf 2Kf Km þ 2KmKo

þ 2Kf Ko2 2Kf KmKo�
þ pð12pÞ2ðKm þ Kf Þð1þ KoÞ

� �
ðð12pÞ þ 2pKoÞ

The probabilities of an apparent father-offspring mismatch, given the
offspring genotype, are

Pðapparent mismatch j AA�Þ ¼ ð12 pÞ�pKf þ Kf Ko

þ ð12 pÞKo
��½p þ 2ð12 pÞKo�

Pðapparent mismatch j AB�Þ ¼ 0

Pðapparent mismatch j BB�Þ ¼ p
�
pKo þ Kf Ko þ ð12 pÞKf

��
3 ½ð12pÞ þ 2pKo�

The equations formother-offspringmismatch are the same, but with
Kf replaced by Km. For all three situations P(apparent mismatch |
BB�) can be obtained from P(apparent mismatch | AA�) by replac-
ing p with 1-p. The expected mismatch rate for an offspring is
calculated as the average of the relevant set of these equations over
all the SNPs.

Use of relatedness estimates to assign parentage
Wealso consider an approach (Moore et al. 2019) that uses a relatedness
estimator appropriate for the analysis of GBS data (Dodds et al. 2015).
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Let r and F denote relatedness and inbreeding, respectively, and sub-
scripts O, F, and M denote the offspring, father and mother, respec-
tively. For non-inbred offspring and parents, rOF = rOM = 0.5. Allowing
for related and possibly inbred parents, we have, e.g., rOF = 0.5 + 0.5FF +
FO; the relatedness can be greater than 0.5.

Genomic-based estimates give relatedness relative to some
(often not well defined) base population (Powell et al. 2010), and
so even a non-inbred individual and a parent may not have a re-
latedness estimate close to 0.5. A possible solution is to find a
transformation (Weir and Goudet 2017) so that the parents and
their non-inbred offspring have estimates near 0.5, for example by
using pairs of known (pedigree-based) relatedness or scaling so
that minimum estimates are close to zero (if it is reasonable to
assume some members of the population are unrelated). In many
situations, there will be limited sets of possible male and female
parents, and the true parents will be the member of each set that
has the highest relatedness with the offspring in question. Any refer-
ence to relatedness or inbreeding in the following will be taken to
mean estimated values.

Parentage assignment strategy
A strategy for parentage assignment, based primarily on either EMMor
relatedness metrics, follows. Here “best” is taken to mean either the
lowest EMM or the highest related, accordingly.

1. Initially assign the best member of possible fathers as the father.
2. Initially assign the best member of possible mothers as the mother.
3. Discard any assignments that fall beyond some threshold (EMM

too high or relatedness too low), for example by visually examining
the distribution of metrics for the initial assignments.

4. Discard any initial assignments where the metrics for the best and
second best member of the possible parents are deemed too close
to accept the initial assignment.

5. Check that the combined (trio) assignment is consistent (both the
trio EMM and rFM 2 2FO are not too high).

If only one parent gender is being assigned (and the other parent is
unknown or not genotyped), then any of the steps above that involve
using both parent assignments together will not be relevant. Even
though one of the methods (EMM or relatedness) must be chosen to
find the best parent, thresholds for bothmethods can be used jointly to
discard dubious assignments.

The methods presented here have been incorporated into R code
available at https://github.com/AgResearch/KGD. This code is more
efficient at calculating relatedness than EMM, and so the relatedness
approach would be preferable if the performance of the two approaches
is otherwise similar. For the relatedness approach, a bootstrapping
method is investigated to aid step 4. The SNP markers are sampled
with replacement to obtain a bootstrap sample with the same number
of SNPs and the relatedness values recalculated. The proportion of
times across many (e.g., 1000) bootstrap samples that the most related
parent has a higher estimated relatedness (with the offspring) than the

second most related parent is denoted as the bootstrap support for the
assignment.

In step5whenusing relatedness, a lowvalue of rFM 2 2FOmight also
be rejected. In practice, it should suffice to place an upper limit on this
value, as the likely errors are when one parent is correctly assigned, and
the other parent is incorrectly assigned, due to its high relatedness with
the correctly assigned parent.

Alternative allele sampling models
There may be models that are better for modeling the data than the
binomial model, for example ones where allele reads exhibit clustering
such that observed homozygosity is higher (when depth exceeds one)
than in the random reads case. The calculations here require K, the
probability of all A alleles (no B alleles) for a trueAB genotype, and only
consider models where this is the same as the probability of all B alleles.
In particular, K ¼ 1

2 when k ¼ 1.
One possible alternative model is the beta-binomial (BB)

model, which is often used to model data that are more dispersed
than a binomial, for example, where there is some hidden clus-
tering of the sampling process. The probability of seeingmB alleles
with depth k is

�
k
m

�
bðmþ a; k2mþ bÞ

bða;bÞ
where B is the beta function. The mean of the distribution, with k = 1,
is a /(a + b) which is equal to 1

2 when b = a. Making this substitu-
tion and setting m = 0,

K ¼ bða; kþ aÞ
bða;aÞ ¼ Gðkþ aÞGð2aÞ

Gðkþ 2aÞGðaÞ
where G denotes the gamma function. This model approaches the
binomial model as a approaches infinity.

The second alterative model considered assumes that the sam-
pling process for reads for a particular SNP is Markovian – the
probability of reading a particular allele depends on which allele
was seen for the previous read (of that SNP). We denote the prob-
ability of seeing the same allele as was previously read as p9. The
binomial model is a special case with p9=0.5. We refer to this as the
‘modified p’ (MP) model. As noted above, the probability of seeing a
particular allele for the first read (the only read if k = 1) is 0.5.
Because we are only interested in the cases where all the reads are
the same, we do not actually need to know the order that the alleles
were read. For this model

K ¼ 1
2
p9 k21

Examples of the relationship between K and k for these models are
shown in Figure S1. Both these models need the value of an extra
parameter. Here we estimate the parameter by finding a set of par-
ent-progeny trios that are assumed correct based on the binomial
model (which is more conservative for calculating expected mis-
match rates). The sum of squares of the deviations of the mismatch
rates from the expected mismatch rates for these trios is then min-
imized (using the optimize function in R) with respect to the un-
known parameter.

The alternative sampling models will alter the expected mismatch
rates and the self-relatedness (1+F) estimates, but not the relatedness
estimates between individuals, as these do not depend on K (Dodds
et al. 2015).

n Table 1 Example of probability calculations for the case where
the true genotypes for father, mother and offspring are AA, AB
and AA, respectively. Km is the value of K for the mother

Observed genotype Observed
Mismatch?Father Mother Offspring Probability

AA AA AA p3(1-p)Km

AA AB AA p3(1-p)(1-2Km)
AA BB AA p3(1-p)Km Yes
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Animals
The methods have been applied in two herds of deer, part of Focus
Genetics’ breeding program (www.focusgenetics.com). One was a Red
deer (Cervus elaphus) breeding herd and the other was a Wapiti (also
known as Elk; Cervus canadensis) breeding herd. The animals were
managed in accordancewith the provisions of theNewZealandAnimal
Welfare Act 1999, and the Codes of Welfare developed under sections
68–79 of the Act. Even though Red deer and Elk are considered differ-
ent species (Pitra et al. 2004), they are capable of inter-breeding and
produce fertile progeny. We will refer to them as breeds here, as that
is how they are considered in New Zealand deer farming. Although
the herds are not necessarily purebred, they are denoted here by their
predominant breed.

Therewere1272Reddeer successfully genotypedbyGBS(mean read
depthof at least0.3over all SNPs called).These consistedof 571progeny,
born in 2015, 34 potential sires (none missing) and 667 potential dams
(10missing, i.e., unavailable or not successfully genotyped). There were
709 Wapiti successfully genotyped by GBS consisting of 246 progeny,
born in 2015, 41 potential sires (none missing) and 422 potential dams
(two missing). There may be additional sires and dams that were not
sampled. This resource had also been genotyped using a panel of
16 microsatellite markers, a commercial in-house deer parentage panel
used by GenomNZ (www.genomnz.co.nz) and parentage assignments
made based on those genotypes.

GBS Genotyping
Genotypingwas undertaken based on themethod of Elshire et al. (2011)
as described in Dodds et al. (2015) apart from the following minor
differences. DNA extraction was from ear-punch tissue. The GBS-
libraries were prepared utilizing the PstI restriction enzyme. Either
96 or 192 samples were run per lane on an Illumina HiSeq2500 to ob-
tain 100bp single end reads. The genotypes were called without map-
ping to a reference assembly.

Analysis
Allele frequencies were estimated using allele counts across the relevant
group of individuals. Relatedness estimates were calculated using the
methods of Dodds et al. (2015), including the removal of SNPs with
Hardy-Weinberg disequilibrium (observed frequency of the reference
allele homozygote minus its expected value) below -0.05. Population
structure was visualized by plotting the first two components of a
principal components analysis of the genomic relatedness matrix
(GRM, the matrix of estimated relatedness between all pairs of
individuals including self-relatedness). Additional calculations were
made and used for assigning parentage as described above. Parent-
age calculations were made twice, first using all animals in the data-
set, using combined allele frequencies and then separately for each
breed, using breed specific allele frequencies. SNPs which had
a minor allele frequency (MAF) of zero in the breed-specific set were
discarded for that breed.

Data availability
TheGBSdataare available in thefileHapMap.hmc.txt.gz included in the
supplemental material available at FigShare: https://doi.org/10.25387/
g3.9243167.

RESULTS

Combined breed analysis
Unless stated otherwise, the relatedness has been used to determine
best matching parents. The sequencing and SNP calling resulted in

78,042 SNPs for analysis with a mean read depth of 3.6 and call rate
of 72%. The fin plot, which shows apparent Hardy-Weinberg disequi-
librium plotted against minor allele frequencies (MAFs), is shown in
Figure S2. SNPs with Hardy-Weinberg disequilibrium below -0.05
tended to have high depth and near minimum disequilibrium and
may represent reads from duplicated regions. These were removed
from further analysis, leaving 77,473 SNPs. The distribution of minor
allele frequencies (MAFs) of these SNPs is shown in Figure S3 and
shows that a high proportion of SNPs had low MAF. The first two
principal components of the GRM are shown in Figure 1. The first
component, explains 96.9% of the variation, while the second com-
ponent explains 0.3%.

Figure 2A shows the relatedness between each progeny and the best
matching sire (i.e., the individual in the sire’s group with the highest
relatedness with that progeny). Also plotted is the raw mismatch rate,
i.e., the proportion of SNPs whose raw calls are inconsistent with
parentage. A plausible relatedness threshold for declaring parentage
is a value near 0.5, perhaps a little less than 0.5 to allow for errors in
the estimation process. A threshold of 0.4 is shown in Figure 2 (and
other relevant plots) as an initial threshold. All but 11 of the progeny
have a best matching sire relatedness greater than 0.4, while only two
were between 0.4 and 0.5. The other values are considerably higher,
averaging 0.61 for Red deer and 0.84 for Wapiti. The raw mismatch
rates among those above the 0.4 relatedness threshold vary greatly,
ranging from 0.011 to 0.065. Rawmismatch rates for the other progeny
were all greater than 0.040. Figure 2B shows a similar plot, but with
excess mismatch rate (EMM) on the vertical axis. Here there is a clear
relationship between relatedness and EMM. All progeny with a best
relatedness of at least 0.5 have an EMM below 0.007 while the other
progeny have an EMM above 0.019. This suggests an EMM threshold
between 0.01 and 0.015, and a relatedness threshold of around 0.5 for
declaring parentage, although the EMM threshold combined with any
lower relatedness threshold does not change the assignments in these
data. Here an EMM threshold of 0.01 is shown in the figures and used
for assignments.

The corresponding relatedness plots for the best matching dams are
shown in Figure 2C (with raw mismatch rates) and Figure 2D (with
EMMs). These show a similar pattern to the sire plots. Pairs with an

Figure 1 Principal components analysis. First two principal compo-
nents from a principal components analysis of the GRM for the
combined breed data.
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EMM less than 0.009 all had relatedness greater than 0.4 (all but one
were greater than 0.49), suggesting relatedness and EMM thresholds of
around 0.4 and 0.009, respectively as appropriate threshold for declar-
ing parentage.

One sire assignment and five dam assignments, passing the re-
latedness (0.4) andEMM(0.01) thresholds, had anotherpotential parent
with offspring-parent relatedness within 0.05 of the best matching pair
(see Figure S4). If a conservative threshold of 0.99 is used for bootstrap
support, three of the dam assignments are rejected, while the other four
assignments are retained.

When considering both parent matches together, there were three
assignmentswhere the trioEMMexceeded0.02. It is likely that ahigher
threshold is appropriate for the trio than pair EMM thresholds, as an
error in any of the three individual’s genotypes may generate a mis-
match, and so 0.02 is used here as the threshold. For one of these
progeny, the second best matching sire and best matching dam gave a
low trio EMM (0.006) and this combination passed the other parent-
age thresholds. Two best sire and dam match trios that passed the
relatedness and EMM threshold for each offspring-parent pair had
parent relatedness exceeding twice the offspring inbreeding by more
than 0.2 (the ‘inbreeding threshold’ being used here to reject a parent
pair). One of these was the trio just mentioned (where the second
best sire and best dam combination appeared better); the other passed
the trio EMM threshold but had a lower EMM with the best sire and
second best dam.

There was only one case where the lowest EMM parent was not one
of the two highest related parents. This was for a dam of one of the
Red calves. The highest related dam was excluded with the EMM
threshold. In this case, the microsatellite-based analysis did not give a
dam assignment.

Separate breed analysis
The combined breed analysis showed quite different relatedness
values in the two breeds. In particular, relatedness to the best
matching parent for Wapiti is high. The separate breed analysis uses
allele frequencies from within each breed, and this may be more
appropriate. There were 69,223 SNPs remaining polymorphic within
the Wapiti herd and 76,926 in the Red deer herd. Mean SNP depths
were similar to the combined analysis (3.8 and 3.3 forWapiti andRed
deer, respectively).

Figure 3 shows the excess mismatch rate and relatedness between
each progeny and the best matching sire and dam for the separate
breeds analyses. It appears that the thresholds of 0.4 for relatedness
and 0.01 for EMM (shown on the plots), or slightly more lenient
thresholds, are suitable for declaring parentage. For sire assignment,
one Wapiti progeny fails this relatedness threshold (Figure 3A), while
13 Red progeny fail both thresholds (none failing only one threshold,
(Figure 3C). For dam assignment, these same thresholds excluded four
Wapiti progeny (Figure 3B; one failing both thresholds, three failing
only the relatedness threshold) and 28 Red progeny (Figure 3D;

Figure 2 Mismatch rates vs. relat-
edness for combined breed analy-
sis. Raw mismatch rate (A, C) or
excess mismatch rate (B, D) vs. es-
timated relatedness between the
best matching sire (A, B) or dam
(C, D) and each progeny. The ver-
tical and horizontal gray lines de-
note the relatedness and excess
mismatch rate thresholds, respec-
tively, for declaring parentage. In
B and D, points corresponding to
cases where another potential par-
ent has offspring-parent related-
ness within 0.05 of plotted value
are shown with filled symbols in a
brighter shade of their breed color;
those not reaching the 0.99 boot-
strap support threshold are shown
as triangles.
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24 failing both thresholds, one failing the EMM threshold only and
three failing the relatedness threshold only). Most progeny that failed
on only one of the thresholds were close to that threshold.

All theseWapiti assignmentspassed the trioEMMthreshold,butone
failed the inbreeding threshold (parent relatedness near zero, but in-
breeding just below -0.1). In the Red herd, there were six trios (passing
all the single parent thresholds) that failed the trio EMM threshold.
One of these also failed the inbreeding threshold. For this progeny the
second best sire along with the best dam formed a trio that passed all
the thresholds (as was the case for this progeny in the combined breed
analysis).

Using the provisional thresholds discussed here, 13 Red deer did
not get a sire assignment and 1 Wapiti and 25 Red deer did not get a
damassignment in thecombinedanalysiswhile13Reddeerand1Wapiti
did not get a sire assignment and 4Wapiti and 28 Red deer did not get a
dam assignment in the separate breed analysis. All progeny that had a
parent assigned in either of the combined breed or separate breed
analysis had the same best matching parent in the other analysis (even
if it did not pass the thresholds) except for one Wapiti mother.

Comparison with microsatellite-based
parentage assignments
Theseparatebreedanalysis gave relatednessvaluesmore in linewith that
expected and the same thresholds appeared suitable for both breeds.

Therefore, results from the separate breed analysis are used for com-
parison with the microsatellite results.

There were 793 progeny with a sire assignment (after applying
all criteria) using GBS; two were assigned a different sire and 791
had the same sire assignedusingmicrosatellites. Therewere 775progeny
with a dam assignment using GBS. Using microsatellites ten of these
were unassigned, two were assigned a different dam and 763 had the
same dam assigned.

Eight progeny that passed the single parent thresholds were above
the trio EMM (with GBS). Of these, one had a different dam assign-
ment and one had a different sire assignment with microsatellites,
compared to the best matching parents with GBS. The one with the
different sire assignment also failed the inbreeding test, while the trio
with the second best matching sire (the one assigned using the
microsatellite test) passed the EMM and inbreeding tests. One addi-
tional trio failed the inbreeding threshold but passed the EMM
threshold; this trio was assigned by the microsatellite test.

Alternative allele sampling models
Figure 4 compares raw and expected mismatch rates. The raw mis-
match rates are above the expected rates for the majority of trios, in-
cluding those we have accepted as representing parent-progeny trios
(shown with ‘Assign code’ Y). For these trios there is a strong relation-
ship (roughly linear) between raw and expected values, suggesting a

Figure 3 Excess mismatch rate vs.
relatedness for separate breeds
analyses. Excess mismatch rate vs.
estimated relatedness for the best
matching sire (A and C) and dam
(B and D) with each progeny for
the Wapiti (A and B) and Red deer
(C and D) analyses.
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systematic reason for the difference. To investigate this further, two
alternative allele sampling models (BB and MP) were considered.

The estimated values of b (for the BB model) were 3.96 for the Red
herd and 4.61 for the Wapiti herd. The estimated values of p9 (for the
MPmodel) were 0.604 for the Red herd and 0.591 for the Wapiti herd.
For both herds the BB model gave a lower sum of squares than the MP
model. Figure 5 shows raw mismatch rates compared to expected rates
calculated with the BB model for the Red herd. All four herd x model
combinations are given in Figure S5.

DISCUSSION
We have investigated methods for assigning parentage based on low
depth sequencing data, such as can be produced using GBS. The usual
approach to this is to filter genotype calls based on read depth and
thereafter assume that genotypes are called with high accuracy. For the
example deer data, if the SNPs were filtered as in Thrasher et al. (2018)
but without the MAF or Hardy-Weinberg filters (i.e., read depth of
at least 10, SNP call rate on remaining results of at least 95%,) this
would leave 131 SNPs. Only nine of these 131 had Hardy Weinberg
disequilibrium. -0.05 and those nine all had aMAF below the thresh-
old (0.25) used by Thrasher et al. (2018). Some software packages
(Marshall et al. 1998) allow genotype calls with errors, using a supplied
error rate that is constant across all genotypes. However here the actual
error rate (due to allele sampling) is dependent on the genotype call and
its read depth.

Modeling the sequencing process, analogous to that used by Dodds
et al. (2015) for relatedness estimation, Bilton et al. (2018b) for linkage
analysis and Bilton et al. (2018a) for linkage disequilibrium estima-
tion, allows depth-dependent errors. Recently, Whalen et al. (2019)
have adopted this approach to develop likelihood-based methods for
relationship classification (including parentage). Here, we have con-
sidered the use of relatedness estimates using the KGD method of
Dodds et al. (2015) and expected mismatch rates. Both these statistics
model the probability of observing both alleles for a heterozygote in
a depth-dependent way assuming known allele frequencies. Excess
mismatch rates (EMM) are then calculated as the difference between
raw (assuming the genotype is given by the alleles observed) and
expected rates. The EMM is similar to mismatch rates used in exclu-
sion-based parentage assignment methods that allow for some geno-
typing error. The EMM could be calculated after filtering on read
depth, but as it accounts for depth, it allows all SNPs (not filtered
out for other reasons) to be used. In practice, it may suffice to calculate

the EMM only for the leading candidate parents, based on relatedness
estimates. This leads to a computationally efficient approach, as esti-
mated relatedness between pairs can be calculated faster than the
EMM (approximately 10x faster using current software). The analysis
could be undertaken using some other method to estimate related-
ness from low-depth sequencing data, such as those implemented in
PLINK (Chang et al. 2015), mapgd (Ackerman et al. 2017) or ANGSD
(Hanghøj et al. 2019). In some cases, for example with a small data-
set and where inbreeding is unlikely, allele frequency-free methods
such as those in Hanghøj et al. (2019) may help clarify parent-off-
spring relationships, but does not include a method for checking the
consistency of trios.

The analysis of the deer data showed that the rawmismatch rate was
not a reliable indicator of parentage – there was considerable overlap
of these values among pairs that were either consistent or not with
parentage, based on relatedness estimates. In contrast, it was possible
to find relatedness and EMM thresholds for declaring parentage that
were almost fully concordant, with only one case where the two

Figure 4 Raw vs. expected mismatch
rates. Comparison of raw and expected
parent-offspring trio mismatch rates for
the Wapiti (A) and Red deer (B) analy-
ses. The red lines show where these are
equal. The gray lines show the thresh-
old used for excluding a trio from par-
entage. Assign codes are Y: assign
parentage, A: an alternate parentage
has lower EMM, I: fails the inbreeding
criterion, E: exclude based on trio
EMM, F: assign father only, M: assign
mother only, N: do not assign either
parent.

Figure 5 Raw vs. expected mismatch rates using the BB model. Com-
parison of raw and expected parent-offspring trio mismatch rates for
the Red deer analysis using the BB model. The red line shows where
raw and expected rates are equal. The gray line shows the threshold
used for excluding a trio from parentage. Assign codes shown are from
the analysis using the binomial model; see Figure 4 caption for expla-
nation of these symbols.
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methods gave different conclusions. This case did have a low EMM
(-0.005) but with a low relatedness (0.27) for the best mother match in
the Red deer analysis. The same case was less of an outlier in the
combined breed analysis (EMMof -0.009, relatedness of 0.41), showing
that the results are dependent to some degree on the allele frequencies
used.

The choice of allele frequencies used influences the measures to
determineparentage.The theory assumes that allele frequencies for the
‘base population’ are known. The two breeds examined in this study
were clearly separated by the 1st principal component (a few inter-
mediate Red deer probably had some Wapiti ancestry). For the com-
bined breed analysis, we used estimates based on the total allele
counts of all animals genotyped in the study. This resulted in high
relatedness estimates within herds (for example, as demonstrated
by average relatedness between progeny and best matching sire of
0.84 and 0.60 for the Wapiti and Red herds, respectively). The allele
frequencies used may not be a very good representation of the allele
frequencies before breed differentiation, due to genetic drift within
these two breeds. For example, there are negative estimates of re-
latedness. For the within herd analysis, the relatedness values drop-
ped, reflecting that the allele frequencies relate to the genetic
variation within each herd. The within herd estimates between
progeny and best matching parent are more in the range that would
be expected for parent-offspring pairs with unrelated parents.
Therefore, choosing an appropriate base population for allele fre-
quency estimation may help in choosing thresholds that seem sen-
sible. A within-breed analysis would normally be preferred. Despite
the differences in the relatedness estimates using the within breed
compared to combined breed allele frequencies, the two analyses
were generally consistent in terms of parent assignment. Using a set
of provisional thresholds, any time an assignment was made in
both analyses it was to the same parent. This would still be the case
if the relatedness threshold in the separate breed analyses was
dropped to 0.35 (7 more assignments). There was one case of a
combined analysis mother assignment which had a different best
matching mother in theWapiti analysis. For this case the EMMwas
0.0094, close to the threshold (0.01). A slightly lower EMM thresh-
old may be more appropriate in the combined breed analysis
(Figure 2). Even among cases not assigned by either analysis,
most (31 out of 39) had the same best matching parents. These
observations suggest that if appropriate thresholds are chosen, the
assignments may be reasonably consistent with respect to the use of
different allele frequencies. The method requires appropriate thresh-
olds which can usually be determined when there are sufficient num-
bers of progeny, similar to what Moore et al. (2019) found using
genomic relatedness from SNP chip data.

The estimated inbreeding in the offspring plus half that of the
putative parent could be subtracted from the parent-offspring re-
latedness values to adjust for inbreeding. This could change which
possible parent has the highest relatedness match. It may bring
the values closer to the value of 0.5, as expected for non-inbreds.
However, estimated inbreeding is generally less precise than between
individual relatedness estimates (Figure 3. of Dodds et al. 2015),
especially with low depth sequencing, so the adjusted relatedness
would have more variability than the original estimate. In addition,
breeding programs usually aim to keep levels of inbreeding low
and so there may be little variation in inbreeding relative to the
assumed base population. In the combined breed analysis, where
the population is genetically diverse and subdivided, using the
adjusted relatedness approach gave best matching relatedness val-
ues mostly between 0.3 and 0.5 (data not shown). Although the

approach reduced the variation in these values, it appears to have
over-corrected the relatedness estimates in this case.

The (within breed) GBS-based assignments made here were largely
consistent with assignments based on a microsatellite parentage
panel. There were four cases of a different parent assignment. Two
were the only ones assigned to a particular sire using microsatellites
while this sire had no progeny assigned with GBS. Different DNA
samples from the sire were used for microsatellites and GBS, so it is
possible there was a sample mix-up. The other difference was for a
mother assignment, with no clear reason for the difference; a sample
mis-identification is possible. The use of trio information (trio EMM
and the inbreeding test) was found to be useful in reducing the
number of mismatches between the methods, and such information
should be used where possible. These tests help prevent false
assignments where a true parent is missing, but a close relative of
the other parent of the offspring meets the relatedness and single
parent EMM thresholds (e.g., helps avoid assigning a paternal aunt
as the mother). A comparison of the GBS-based assignment against
recorded parentage, for a sheep example, is given in the Supple-
mentary material where the GBS-based assignment gave one dif-
ference to the recorded parentage. This difference was also found
using a SNP-chip based parentage check and is a likely parentage
recording error.

The EMM tended to be greater than zero, even for cases which
appeared to be correct matches. A possible reason for this is that the
alleles at a locus are not sampled randomly but there tends to be
clustering in the alleles recruited for sequencing. This could be due,
for example, to PCR artifacts such as “stacking” (Andrews et al. 2016) or
suboptimal ratios of reagents (Ott et al. 2017). Two alternative allele
sampling models were proposed and applied, the beta-binomial model
and a model where the first allele is sampled at random, but subse-
quently the same allele is more likely to be sequenced than the other
allele. Bothmodels improved the EMMvalues by similar amounts, such
that the EMM tended to be close to zero for what appeared to be correct
matches, with the beta-binomial model giving a better fit. The use of
either of these models would allow tighter EMM thresholds and may
lead to more accurate parentage assignments. These models could
also be applied in other GBS analyses, such as the estimation of in-
breeding (Dodds et al. 2015), linkage (Bilton et al. 2018b), linkage
disequilibrium (Bilton et al. 2018a), calculating genotype likelihoods
for downstream analyses (Korneliussen et al. 2014) or predicting
gender (Bilton et al. 2019). More work is required to evaluate whether
these differences are important, whether the alternate models are
significantly better than the random sampling model or whether there
are other models (for example, one which allows sequencing error)
which are more realistic and provide a better fit.

The developments described here provide methods and guidelines
for assigning parentage from sequencing data. These methods have
been developed with reduced representational low depth sequencing
in mind. This allows sequencing costs to be as low as possible making
it a possibility for parentage analysis, perhaps in combination with
other genomic analyses. The sequencing approach allows genomic
resources to be developed with low start-up costs compared to other
approaches. The parentage assignment process requires some choice
of appropriate thresholds, but these are usually clear-cut. A possible
exception is where the population is genetically diverse with distinct
subgroups, and there are different possible approaches to calculat-
ing allele frequencies to use in the process. When applied to a deer
dataset, the parentage assignment was largely consistent with assign-
ments made using a microsatellite panel; the few differences seen
may have been due to sample tracking errors. Therefore, GBS or other
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sequencing-based methods can be used for parentage assignments,
increasing the utility of these sequencing methods.
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