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Long-term potentiation (LTP) at thalamic input synapses to the lateral nucleus of the amygdala (LA) has been proposed as a
cellular mechanism of the formation of auditory fear memories. We have previously shown that signaling via ERK/MAPK in both
the LA and the medial division of the medial geniculate nucleus/posterior intralaminar nucleus (MGm/PIN) is critical for LTP at
thalamo-LA synapses. Here, we show that LTP-inducing stimulation of thalamo-LA inputs regulates the activation of ERK and the
expression of ERK-driven immediate early genes (IEGs) in both the LA and MGm/PIN. Further, we show that pharmacological
blockade of NMDAR-driven synaptic plasticity, NOS activation, or PKG signaling in the LA significantly impairs high-frequency
stimulation-(HFS-) induced ERK activation and IEG expression in both regions, while blockade of extracellular NO signaling
in the LA impairs HFS-induced ERK activation and IEG expression exclusively in the MGm/PIN. These findings suggest that
NMDAR-driven synaptic plasticity and NO-cGMP-PKG signaling within the LA coordinately regulate ERK-driven gene expression
in both the LA and the MGm/PIN following LTP induction at thalamo-LA synapses, and that synaptic plasticity in the LA promotes
ERK-driven transcription in MGm/PIN neurons via NO-driven “retrograde signaling”.

1. Introduction

Fear conditioning is a type of associative learning that is
widely studied as a model of learning and memory across
a variety of species. Fear conditioning has been extensively
characterized at the behavioral level, particularly auditory
fear conditioning, in which a tone (CS; conditioned stimu-
lus) is paired with footshock (US; unconditioned stimulus).
In brief, auditory fear conditioning is thought to involve
transmission and integration of sensory information from
CS and US pathways within the lateral nucleus of the
amygdala (LA), where alterations in synaptic transmission
are believed to encode key aspects of the learning [1–3].
In support of this hypothesis, auditory fear conditioning
has been shown to regulate neural activity in the LA;
that is, LA neurons respond weakly to a tone CS before

conditioning, but respond in a robust manner to the CS after
fear conditioning [4, 5].

Long-term potentiation (LTP), an experimental model
of synaptic plasticity, is widely believed to be a potential
mechanism by which fear conditioning promotes synaptic
alterations in the LA [1, 6]. In support of this hypothesis,
LTP has been demonstrated in each of the major sensory
input pathways that are known to be important for auditory
fear conditioning [7–10]. Further, LTP induction at auditory
thalamic inputs to the LA has been shown to augment the
processing of natural auditory information in the LA [11],
and auditory fear conditioning induces neurophysiological
changes in the LA that are similar to artificial LTP induction
[5, 12]. Finally, auditory fear conditioning and LTP have been
shown to be subserved by similar stimulus contingencies [13]
and pharmacological mechanisms [14, 15].
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While the relationship between LTP in the LA and fear
conditioning has been extensively studied, we have only
begun to explore the underlying molecular mechanisms by
which LTP promotes synaptic changes in the LA. Recent
studies employing in vitro slice recording methods have
pointed to a role for a number of intracellular signaling
pathways in LTP at thalamic input synapses to the LA,
including CaMKII [16], PKA [9, 14], ERK/MAPK [14,
15], and the NO-cGMP-PKG signaling pathway [17, 18].
Very little, however, is known about how these signaling
pathways are related to each other or the identity of the
downstream nuclear targets of these pathways that promote
long-lasting LTP in the LA. Further, the involvement of
the NO-cGMP-PKG signaling pathway suggests that LTP at
thalamo-amygdala synapses may be characterized by pre-
as well as postsynaptic alterations in gene expression and
structural plasticity [19–21]. In support of this hypothesis,
recent studies from our lab have shown that ERK/MAPK
activation in both the LA [22] and in regions of the auditory
thalamus that are presynaptic to the LA, including the
medial geniculate nucleus and the posterior intralaminar
nucleus (MGm/PIN) [23], are critical for long-lasting LTP
at thalamo-LA synapses. This pattern of findings collectively
suggests that LTP at thalamic input synapses to the LA
regulates ERK activation and ERK-driven transcription at
both sides of the thalamo-LA synapse.

In the present study, we first used a combination of
Western blotting and immunocytochemistry to examine
whether LTP-inducing stimulation of thalamo-LA synapses
regulates ERK/MAPK activation and ERK-driven gene
expression in both the LA and the MGm/PIN. Next, we used
pharmacological methods combined with Western blotting
to examine the extent to which NMDAR-driven synaptic
plasticity and NO-cGMP-PKG signaling at the level of the LA
regulates ERK activation and ERK-driven immediate early
gene (IEG) expression in both LA and MGm/PIN following
LTP-inducing stimulation of thalamo-LA inputs.

2. Materials and Methods

2.1. Subjects. Adult male Sprague-Dawley rats (Harlan),
weighing 300–325 g, were housed individually in plastic
cages and maintained on a 12 : 12 h light/dark cycle. Food
and water were provided ad libitum throughout the exper-
iment.

2.2. Surgical Procedures. Rats were anesthetized with 40%
Urethane (i.p. injections at 10 min intervals; total of
1.6 mg/kg) and placed in a stereotaxic frame. The skull was
exposed, small holes were drilled over the left LA and/or
the MGm/PIN., and the dura was retracted. For stimulation
experiments, rats were implanted with a bipolar stimulating
electrode into the MGm/PIN. For pharmacology/stimulation
experiments, rats were implanted unilaterally with a 23-
gauge stainless-steel guide cannula aimed at the LA, and a
bipolar stimulating electrode into the ipsilateral MGm/PIN.
The coordinates for the LA were: −3.2 mm anterior-
posterior, 5.0 mm medial-lateral, −8.0 mm dorsal-ventral
relative to Bregma. The coordinates for the MGm/PIN

were: −5.6 mm medial-lateral, 2.9 mm medial-lateral, and
−6.6 mm dorsal-ventral [24]. All procedures were conducted
in accordance with the National Institutes of Health “Guide
for the Care and Use of Experimental Animals” and were
approved by the Yale University Animal Care and Use
Committee.

2.3. Electrical Stimulation Experiments. One-half hour after
implantation of the stimulation electrode, rats were given
LTP-inducing (high-frequency) stimulation (HFS) consist-
ing of three series of theta-patterned 100 Hz tetanic stimu-
lation given once a minute at an intensity of 300 μA, 100 μs,
a protocol that reliably induces LTP in the LA [22, 25, 26].
Low-frequency stimulation controls received the same total
number of pulses as rats in the HFS group (300 total pulses
over 2 min) but at lower frequency (2.5 Hz), a protocol that
does not induce LTP in the LA [22]. In all stimulation
experiments, current was applied such that it moved from
the tip to the tube of the bipolar stimulation electrode.

2.4. Drugs. The selective NR2B antagonist ifenprodil (Sigma,
Cat. No. I2892) was dissolved in 2% 2-hydroxypropyl-β-
cyclodextrin-(HBC-) saline solution in a stock concentration
of 2 μg/μL. The selective NOS inhibitor 7-nitroindazole
(7-Ni; Calbiochem, Cat. No. 483400) and the NO scav-
enger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-
1-oxyl-3-oxide (c-PTIO; Tocris, Cat. No. 0772) were dis-
solved in 100% DMSO to a final stock concentration
of 4 μg/μL. Prior to infusion into the brain, the drug
was diluted 1 : 1 in ACSF. The PKG inhibitor guanosine
3′,5′-cyclic monophosphorothioate, β-Phenyl-1,N2-etheno-
8-bromo-, Rp-Isomer, sodium salt (Rp-8-Br-PET-cGMPS;
Calbiochem, Cat. No. 370679) was dissolved in distilled
water in a stock concentration of 2 μg/μL.

2.5. Drug Infusions. Cannulated rats were given an intra-LA
infusion of either ifenprodil (1.0 μg), 7-Ni (1.0 μg), c-PTIO
(1.0 μg), Rp-8-Br-PET-cGMPS (1.0 μg) or the appropriate
vehicle solution 30 min following implantation. Each of the
drug or vehicle solutions was infused at a volume of 0.5 μL.
The cannulas were connected to 1.0 μL Hamilton syringes
via polyurethane tubing. The tubing was back-filled with
sesame oil, with a small air bubble separating the oil from the
drug solution, which was infused bilaterally with an infusion
pump at a constant rate of 0.25 μL/min. After infusion, the
injector remained in the guide cannula for 1 minute to allow
diffusion of the drug from the tip.

2.6. Western Blotting Experiments. Rats were given LTP-
inducing HFS 30 min after infusion and sacrificed at the
appropriate time point after stimulation by decapitation.
For Western blotting experiments, punches containing the
LA and MGm/PIN both ipsilateral and contralateral to the
side of stimulation were obtained with a 1 mm punch tool
(Fine Science Tools) from 400-μm-thick sections taken on a
sliding freezing microtome. Punches were manually dounced
in 100 μL of ice-cold hypotonic lysis buffer (10 mM Tris-HCl,
pH 7.5, 1 mM EDTA, 2.5 mM sodium pyrophosphate, 1 mM
phenylmethylsulfonyl fluoride, 1 mM β-glycerophosphate,
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Figure 1: High-frequency stimulation of the MGm/PIN promotes ERK phosphorylation in LA at 5 min and in the MGm/PIN at 30 min after
stimulation. (a) Placement of stimulation electrode and schematic representation of the experimental protocol. (b) Schematic representation
of the HFS and LFS stimulation protocols. Anesthetized rats were given HFS or LFS and sacrificed at 5 min, 30 min or 60 min after
stimulation. (c) Images of Western blots for phospho-ERK1/2 and associated GAPDH loading controls from LA (upper) and MGm/PIN
(lower) samples after HFS or LFS. (d-e) Mean (±SEM) percent phospho-ERK1/2 immunoreactivity from LA punches taken from rats
receiving HFS (left) or LFS (right) and sacrificed at 5 min (HFS: n = 6; LFS: n = 6), 30 min (HFS: n = 6; LFS: n = 8), or 60 min (n = 6). (f-
g) Mean (±SEM) percent phospho-ERK1/2 immunoreactivity from MGm/PIN punches taken from rats receiving HFS (left) or LFS (right)
and sacrificed at 5 min (HFS: n = 6; LFS: n = 6), 30 min (HFS: n = 5; LFS: n = 5), or 60 min (n = 6). For each figure, phospho-ERK1/2
levels have been normalized to total-ERK1/2 levels for each sample and counts on the ipsilateral (stimulated) side have been expressed as a
percentage of those on the contralateral (nonstimulated) side. ∗P < .05 relative to the ipsilateral side N.S. = not significant.

1% Igepal CA-630, 1% protease inhibitor cocktail (Sigma),
and 1 mM sodium orthovanadate).

Sample buffer was immediately added to the homoge-
nates, and the samples were boiled for 4 min. Homogenates
(20 μg/lane) were electrophoresed on 10% Tris-HCl gels and
blotted to Immobilon-P (Millipore).

To examine phosphorylated (activated) ERK or total
ERK, Western blots were blocked in 5% milk and then incu-
bated with an antiphospho-MAPK (1 : 1000; Cell Signaling)
or an anti-total MAPK antibody (1 : 1000; Cell Signaling).
Blots were then incubated with an antirabbit secondary
antibody conjugated to horseradish peroxidase (1 : 20,000;
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Figure 2: High-frequency stimulation of the MGm/PIN promotes ERK-driven IEG expression in both the LA and MGm/PIN. (a) Placement
of stimulation electrode and schematic of the experimental protocol. Rats were given HFS or LFS and sacrificed 2 hours after stimulation.
(b) Images of Western blots for Arc/Arg3.1, c-Fos, EGR-1, and GAPDH from both LA (top) and MGm/PIN samples (bottom). (c) Mean
(±SEM) percent IEG immunoreactivity from LA punches taken from rats given HFS (n = 9) or LFS (n = 9). (d) Mean (±SEM) percent
IEG immunoreactivity from MGm/PIN punches taken from rats given HFS (n = 9) or LFS (n = 9). In each figure, IEG levels have
been normalized to GAPDH for each sample, and IEG expression on the ipsilateral side has been expressed as a percentage of that on
the contralateral side for each rat. ∗P < .05 relative to the ipsilateral side N.S. = not significant.

Cell Signaling) and developed using enhanced chemilu-
minescence (Pierce). Optical densities of the bands were
analyzed using NIH ImageJ software. To assess for changes in
the activation of ERK/MAPK, phosphorylated kinase levels
were normalized to total ERK levels. To confirm that total
ERK levels remained constant across infusions, blots were
blocked in 5% BSA in TTBS and reincubated in GAPDH
antibody (1 : 5000; Abcam). Following incubation with an
antimouse secondary antibody conjugated to horseradish

peroxidase (1: 20,000; Cell Signaling), blots were developed
identically to those processed for phospho-ERK and total
ERK. Total ERK levels were then normalized to GAPDH
levels for analysis.

To examine Arc/Arg3.1, Western blots were blocked in
TTBS buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, and
0.05 Tween 20) with 5% dry milk and then incubated
with Arc antibody (1 : 1000; Santa Cruz Biotechnology).
Blots were then incubated with anti-mouse conjugated
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to horseradish peroxidase (1: 20,000; Cell Signaling). For
EGR-1, blots were blocked in TTBS with 5% milk and
then incubated with EGR-1 antibody (1 : 1000; Santa Cruz
Biotechnology). Blots were then incubated with anti-rabbit
antibody conjugated to horseradish peroxidase (1: 20,000;
Cell Signaling). For c-Fos, blots were blocked in 4%
milk in TTBS and then incubated with c-Fos antibody
(1 : 1000; Cell Signaling). Blots were then incubated with
anti-rabbit conjugated to horseradish peroxidase (1: 20,000;
Cell Signaling). All blots were developed using West Dura
chemiluminescence (Pierce laboratories). To control for
inconsistencies in loading, optical densities of Arc/Arg3.1,
EGR-1 and c-Fos were all normalized to GAPDH protein
levels.

2.7. Quantification of Western Blots. Densitometry was con-
ducted using NIH ImageJ software. For analysis, data from
the ipsilateral side were expressed as a percentage of that from
the contralateral side for each rat. Data were analyzed using
paired-sample t-test (ipsilateral versus contralateral).

2.8. Immunohistochemistry. For immunohistochemical ex-
periments, rats were given either HFS or LFS. Two hours
following stimulation, rats were rapidly and deeply anes-
thetized with chloral hydrate (250 mg/kg, i.p.) and perfused
through the heart with phosphate buffered saline (PBS),
followed by ice-cold 4% paraformaldehyde in 0.1 M phos-
phate buffer (PB). Brains were removed and postfixed in 4%
paraformaldehyde-PB for 12 hours and then cryoprotected
in 20% glycerol-0.1 M PB for 48–72 hours. Free-floating
sections (40 μm) containing the LA or MGm/PIN were cut
using a sliding microtome. After blocked in PBS containing
1% BSA (Sigma Fraction V, Cat. No. A-3059), slices were
incubated overnight at room temperature in either anti-
Arc/Arg3.1 antibody (mouse monoclonal, 1 : 500; Santa Cruz
Biotechnology), anti-EGR-1 antibody (mouse polyclonal,
1 : 1000; Santa Cruz Biotechnology), or anti-c-Fos antibody
(rabbit polyclonal, 1 : 1000; Cell Signaling) in PBS with 1%
BSA. After extensive washes in PBS, tissue sections were
visualized using VectaStain ABC kit (Vector Laboratories)
and developed in DAB peroxidase substrate (Sigma) for
5 min. Sections were mounted on Fisherbrand electrostatic
slides and coverslipped. Sections from comparable anterior-
posterior levels were selected for scoring (LA: ∼3.2-3.3 mm
posterior to Bregma; MGm/PIN: ∼5.6-5.7 mm posterior to
Bregma), Cell counts were taken from at least 3 sections
for LA and MGm/PIN per rat and scored using a defined
boundary roughly equivalent to the size of the LA or
MGm/PIN using NIH ImageJ. Because every sixth section
through the amygdala was processed for immunohistochem-
istry, it was not necessary to correct for double-counting.
For analysis, cell counts were averaged into a single score for
each rat. Counts from the ipsilateral side were expressed as
a percentage of that on the contralateral side, and data were
then analyzed using paired-sample t-test.

3. Results

3.1. LTP-Inducing Stimulation of Thalamo-LA Synapses Regu-
lates ERK Activation in Both the LA and the MGm/PIN. Our

lab has recently shown that HFS of the thalamo-LA pathway
regulates ERK phosphorylation in the LA and that pharma-
cological blockade of ERK activation in the LA impairs LTP at
thalamo-LA synapses, in vivo [22]. Interestingly, ERK activa-
tion at the level of the MGm/PIN also appears to be critical
for LTP at thalamo-LA synapses; intra-MGm/PIN infusion
of a MEK inhibitor also impairs LTP in the thalamo-LA
pathway [23]. This pattern of findings collectively suggests
that LTP at thalamo-LA synapses regulates ERK activation in
both the LA and the MGm/PIN. In the present experiment,
we tested this hypothesis by examining phospho-ERK in both
LA and MGm/PIN in anesthetized rats after LTP-inducing
stimulation of the thalamo-LA pathway, in vivo (Figure 1(a)).
Rats were given 100 Hz HFS of the MGm/PIN (Figure 1(b)),
a protocol that induces a reliable LTP at thalamo-LA synapses
[22, 25, 26]. Control rats received 2.5 Hz LFS (Figure 1(b)),
a protocol that does not induce LTP [22]. Rats were then
sacrificed at different time points after stimulation (5 min,
30 min, or 60 min).

The findings for the LA are presented in Figures 1(d)-
1(e), while images of Western blots are presented in Fig-
ure 1(c) (top). Consistent with our previous findings [22],
rats receiving HFS of the thalamo-LA pathway exhibited
significantly elevated levels of both phospho-ERK1 (Fig-
ure 1(d)) and phospho-ERK2 (Figure 1(e)) in the LA 5 min
after stimulation (pERK1: t(5) = 3.871, P < .05; pERK2:
t(5) = 3.631, P < .05; Figures 1(d)-1(e), left). No significant
differences were observed for the 30 (pERK1: t(5) = 2.026,
P > .05; pERK2: t(5) = 1.425, P > .05] or 60 min [pERK1:
t(5) = 0.254, P > .05; pERK2: t(5) = 0.268, P > .05) time
points (Figures 1(d)-1(e), left). Importantly, this effect was
not accounted for by changes in the total amount of ERK1
or ERK2 protein (data not shown); no significant differences
were observed for the 5 min (ERK1: t(5) = 1.268, P > .05;
ERK2: t(5) = 0.882, P > .05), 30 min [ERK1: t(5) = 0.369,
P > .05; ERK2: t(5) = 0.542, P > .05], or 60 min (ERK1:
t(5) = 1.847, P > .05; ERK2: t(5) = 0.434, P > .05)
time points. Further, this effect was not observed in LFS
controls (Figures 1(d)-1(e), right); no significant differences
were observed for either the 5 min (pERK1: t(5) = 0.725,
P > .05; pERK2: t(5) = 0.759, P > .05), or 30 min (pERK1:
t(7) = 1.076, P > .05; pERK2: t(7) = 0.300, P > .05) time
points following LFS.

The findings for the MGm/PIN are presented in Figures
1(f)-1(g), while images of Western blots are presented in
Figure 1(c) (bottom). We found that ERK activation was
enhanced in the MGm/PIN following HFS, but with a
different time course from that in the LA. Rats receiving HFS
of the thalamo-LA pathway exhibited significantly elevated
levels of both phospho-ERK1 (Figure 1(f)) and phospho-
ERK2 (Figure 1(g)) in the MGm/PIN at both 5 min (pERK1:
t(5) = 2.897, P < .05; pERK2: t(5) = 2.596, P < .05) and
30 min after stimulation (pERK1: t(3) = 5.655, P < .05;
pERK2: t(4) = 3.747, P < .05). No significant differences
were observed for the 60 min time point (pERK1: t(4) =
0.405, P > .05; pERK2: t(4) = 0.073, P > .05) (Figures
1(f)-1(g), left). Importantly, the increase in phospho-ERK
at both time points was not accounted for by changes in
the total amount of ERK1 or ERK2 protein (not shown); no
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Figure 3: High-frequency stimulation of the MGm/PIN promotes increased immunolabeling of ERK-driven IEGs in the LA (a) Placement
of stimulation electrode. (b) Schematic of experimental protocol. Rats were given HFS or LFS and sacrificed 2 hours after stimulation. (c)
Schematic of the amygdala at Bregma −3.2. (d) Mean (±SEM) percent Arc/Arg3.1 immunoreactive cells in the LA from rats receiving HFS
(n = 6) or LFS (n = 6). (e) Photomicrographs showing Arc/Arg3.1-labeled cells from rats receiving HFS (left) or LFS (right). (f) Mean
(±SEM) percent EGR-1 immunoreactive cells in the LA from rats receiving HFS (n = 6) or LFS (n = 6). (g) Photomicrographs showing
EGR-1-labeled cells from rats receiving HFS (left) or LFS (right). (h) Mean (±SEM) percent c-Fos immunoreactive cells in the LA from rats
receiving HFS (n = 6) or LFS (n = 6). (i) Photomicrographs showing c-Fos-labeled cells from rats receiving HFS (left) or LFS (right). In
each experiment, ipsilateral cell counts have been expressed as a percentage of contralateral cell counts for each rat. ∗P < .05 relative to the
ipsilateral side N.S. = not significant. LAd = dorsal division of the lateral amygdala; LAv l = ventrolateral division of the lateral amygdala;
LAvm = ventromedial division of the lateral amygdala; CE = central amygdala; B = basal amygdala; AST = amygdala-striatal transition zone.
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significant differences were observed for the 5 min (ERK1:
t(5) = 0.520, P > .05; ERK2: t(5) = 0.731, P > .05),
30 min (ERK1: t(4) = 0.661, P > .05; ERK2: t(4) = 0.648,
P > .05), or 60 min (ERK1: t(4) = 1.131, P > .05; ERK2:
t(4) = 0.195, P > .05) time points. Interestingly, LFS controls
were also observed to have elevated levels of phospho-ERK1
and phospho-ERK2 in MGm/PIN at 5 minutes (pERK1:
t(5) = 3.193, P < .05; pERK2: t(5) = 4.073, P < .05),
but not at 30 min (pERK1: t(5) = 0.529, P > .05; pERK2:
t(5) = 0.067, P > .05) (Figures 1(f)-1(g), right). Further,
no significant differences in total ERK were observed (data
not shown) for the 5 min (ERK1: t(5) = 1.551, P > .05;
ERK2: t(5) = 0.691, P > .05) or 30 min (ERK1: t(4) = 0.224,
P > .05; ERK2: t(4) = 1.611, P > .05) time points following
LFS. The fact that both HFS and LFS induced increases in
ERK activation in the MGm/PIN at 5 min suggests that the
elevated ERK phosphorylation in MGm/PIN at this time
point was due to local electrical stimulation. Importantly, at
the 30 min time point only HFS promoted significant ERK
activation in the MGm/PIN, suggesting that the enhanced
ERK phosphorylation in MGm/PIN at this later time point
is specifically associated with LTP.

3.2. LTP-Inducing Stimulation of Thalamo-LA Synapses Reg-
ulates ERK-Driven IEG Expression in Both the LA and the
MGm/PIN. In our first series of experiments, we observed
significant increases in ERK activation in the LA and
MGm/PIN following HFS of the thalamo-LA pathway. In
the present experiments, we used a combination of Western
blotting and immunohistochemistry to examine whether
LTP-inducing stimulation of thalamic input synapses to the
LA regulate the ERK-driven IEGs Arc/Arg3.1, EGR-1 and c-
Fos in the LA and the MGm/PIN. As before, anesthetized rats
received either HFS or LFS of thalamic inputs to the LA and
were sacrificed by decapitation 2 hours later (Figures 2(a),
3(a), 4(a)), a time point which is sufficient for observing IEG
expression in the LA after LTP [27].

The results of our Western blotting experiments are
depicted in Figures 2(c)-2(d), while images of Western blots
for LA and MGm/PIN are presented in Figure 2(b) (top and
bottom, respectively). Western blotting revealed that HFS
of the thalamo-LA pathway promoted significant elevations
in the expression of Arc/Arg3.1, c-Fos, and EGR-1 protein
expression in LA homogenates (Arc/Arg3.1: t(8) = 6.502,
P < .05; c-Fos: t(8) = 3.901, P < .05; EGR-1: t(8) = 5.273,
P < .05; Figure 2(c)). LFS, in contrast, had no significant
effect on the expression of the three IEGs [Arc/Arg3.1: t(8) =
1.294, P > .05; c-Fos: t(8) = 0.241, P > .05; EGR-1:
t(8) = 2.822, P > .05; Figure 2(c)]. A similar effect was
also observed in the MGm/PIN (Figure 2(d)). As in the
LA, HFS of the thalamo-LA pathway promoted significant
elevations in the expression of Arc/Arg3.1, c-Fos, and EGR-1
protein expression in MGm/PIN homogenates [Arc/Arg3.1:
t(8) = 3.642, P < .05; c-Fos: t(5) = 3.403, P < .05; EGR-1:
t(6) = 2.59, P < .05; Figure 2(d)], while LFS had no effect
[Arc/Arg3.1: t(8) = 1.163. P > .05; c-Fos: t(5) = 0.094,
P > .05; EGR-1: t(6) = 1.720, P > .05; Figure 2(d)].

Immunohistochemical localization of the three IEGs
after HFS and LFS in both the LA and MGm/PIN can

be seen in Figures 3 and 4, respectively. Consistent with
recent work in our laboratory [27], HFS induced robust
expression of Arc/Arg3.1 in the LA [t(5) = 6.894, P < .05;
Figure 3(d)], while LFS had no significant effect [t(5) =
0.124, P > .05; Figure 3(d)]. Arc/Arg3.1 cells were prominent
in both the dorsal LAd and extending into the more
ventral portions of the LAd and LAvl (Figure 3(e), left). In
contrast, LFS produced little Arc/Arg3.1 expression in the LA
(Figure 3(e), right). The analysis of EGR-1 and c-Fos revealed
similar findings. For each protein, HFS induced significant
expression in the LA (EGR-1: t(5) = 3.822, P < .05; c-Fos:
t(5) = 4.144, P < .05; Figures 3(f)–3(h)), while LFS had
no significant effect (EGR-1: t(5) = 0.709, P > .05; c-Fos:
t(5) = 0.121, P > .05; Figures 3(f), 3(h)]. In contrast to
Arc/Arg3.1, the distribution of EGR-1 labeled cells was much
higher in the LAd relative to the LAv (Figure 3(g)), while
c-Fos labeled cells were evenly scattered throughout the LA
(Figure 3(i)).

In the MGm/PIN, HFS induced significant expression of
Arc/Arg3.1 [t(6) = 22.556, P < .05], EGR-1 [t(5) = 13.470,
P < .05], and c-Fos [t(5) = 10.959, P < .05] proteins
(Figures 4(d), 4(f), 4(h)), while LFS did not [Arc/Arg3.1:
t(5) = 1.913, P > .05; EGR-1: t(5) = 0.227, P > .05; c-
Fos: t(5) = 0.395, P > .05]. Rats receiving HFS exhibited
Arc/Arg3.1, EGR-1, and c-Fos labeled cells throughout the
MGm and PIN, while very few labeled cells were observed in
the MGv (Figures 4(e), 4(g), 4(i)).

3.3. NMDAR-Driven Synaptic Plasticity and NO Signaling
in the LA Promote ERK Activation in Both the LA and the
MGm/PIN Following LTP-Inducing Stimulation at Thalamo-
LA Synapses. Our findings thus far indicate that LTP-
inducing stimulation of thalamo-LA synapses is accompa-
nied by ERK activation and ERK-driven gene expression in
both the LA and the MGm/PIN. The HFS-induced activa-
tion of ERK-driven transcriptional regulation in MGm/PIN
neurons is consistent with previous work that has shown that
infusion of a MEK inhibitor into the MGm/PIN impairs LTP
in the LA [23], a finding which suggests that LTP-induced
activation of ERK in MGm/PIN neurons may contribute to
presynaptic aspects of plasticity at the level of the LA. If so,
might synaptic plasticity and NO signaling within the LA at
the time of LTP induction be driving these changes at the
level of the MGm/PIN?

In the present experiment, we asked whether blockade
of NMDAR-driven synaptic plasticity and NO signaling in
the LA impairs HFS-induced activation of ERK in both
the LA and the MGm/PIN. Anesthetized rats were given
intra-LA infusion of the NR2B-selective inhibitor ifenprodil,
the NOS inhibitor 7-Ni, or the membrane impermeable
scavenger of NO c-PTIO prior to LTP-inducing stimulation
of the thalamo-LA pathway (Figure 5(a)). To examine the
pharmacological regulation of ERK activation in the LA
and the MGm/PIN, rats were sacrificed at either 5 or
30 min following stimulation, time points that we showed
to be optimal for observing ERK activation in the LA and
MGm/PIN following HFS, resp. (Figure 1).

The findings are depicted in Figures 5(d)-5(e), while
images of Western blots are presented in Figure 5(c) for LA
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Placement of stimulation electrode. (b) Schematic representation of experimental protocol. Rats were given HFS or LFS and sacrificed
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to total-ERK1/2 levels for each sample and counts on the ipsilateral side have been expressed as a percentage of those on the contralateral
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and MGm/PIN (top and bottom, respectively). We observed
a significant increase in phospho-ERK1/2 activation in the
LA 5 min after HFS in vehicle-infused controls [pERK1:
t(4) = 4.075, P < .05; pERK2: t(4) = 3.904, P < .05;
Figure 5(d)]. Intra-LA infusion of either ifenprodil [pERK1:
t(4) = 0.173, P > .05; pERK2: t(4) = 1.273, P > .05] or
7-Ni [pERK1: t(5) = 1.772, P > .05; pERK2: t(5) = 0.332,
P > .05], however, significantly impaired HFS-induced ERK
activation in the LA (Figure 5(d)). Interestingly, intra-LA
infusion of c-PTIO had no effect on HFS-induced ERK
activation in the LA [pERK1: t(4) = 5.026, P < .05; pERK2:
t(4) = 3.640, P < .05; Figure 5(d)], indicating that blockade
of extracellular NO within the LA has no effect on NO
signaling within LA cells.

In the MGm/PIN, we observed a significant increase
in phospho-ERK1/2 activation 30 min after HFS in vehicle-
infused controls [pERK1: t(4) = 3.035, P < .05; pERK2:
t(4) = 3.864, P < .05; Figure 5(e)]. In contrast to the
findings in the LA, however, infusion of all three drugs
impaired HFS-induced ERK activation in the MGm/PIN
(Figure 5(e)). Significant impairments in ERK activation
were observed in the MGm/PIN following intra-LA infusion
of either ifenprodil [pERK1: t(5) = 1.405, P > .05; pERK2:
t(5) = 1.348, P > .05], 7-Ni [pERK1: t(5) = 0.812, P > .05;
pERK2: t(5) = 0.302, P > .05], or c-PTIO [pERK1: t(4) =
0.487, P > .05; pERK2: t(4) = 0.193, P > .05].

Thus, blockade of NMDAR-driven synaptic plasticity and
NO signaling at the level of the LA impairs HFS-induced
ERK activation not only in the LA, but also in the MGm/PIN.
Further, extracellular release of NO in the LA is required for
HFS-induced ERK activation in the MGm/PIN, but not in
the LA.

3.4. NMDAR-Driven Synaptic Plasticity and NO-cGMP-PKG
Signaling in the LA Promote ERK-Driven IEG Expression in
Both the LA and the MGm/PIN after LTP-Inducing Stimula-
tion of Thalamo-LA Synapses. In this series of experiments,
we examined whether blockade of NMDAR-driven synaptic
plasticity and NO signaling in the LA impairs HFS-induced
expression of the IEGs Arc/Arg3.1, c-Fos, and EGR-1 in both
the LA and the MGm/PIN. As in the previous experiment,
anesthetized rats were given intra-LA infusion of ifenprodil,
7-Ni, or c-PTIO prior to LTP-inducing stimulation of the
thalamo-LA pathway (Figure 6(a)). In addition, we also
ran a group that was infused with the protein kinase
G (PKG) inhibitor Rp-8-Br-PET-cGMPS. To examine the
pharmacological regulation of IEG expression in the LA
and the MGm/PIN, rats were sacrificed 2 hrs following
stimulation, a time point that we showed to be sufficient
for observing HFS-induced IEG expression in the LA and
MGm/PIN.

The findings for rats infused with ifenprodil are depicted
in Figures 6(d)-6(e), while images of Western blots are
presented in Figure 6(c). We observed significant elevations
in the expression of Arc/Arg3.1, c-Fos, and EGR-1 protein
expression in LA homogenates from vehicle-infused controls
[Arc/Arg3.1: t(7) = 3.440. P < .05; c-Fos: t(7) = 2.405,
P < .05; EGR-1: t(7) = 5.009, P < .05; Figure 6(d)].
In contrast, those rats given intra-LA infusion of ifenprodil

exhibited significantly impaired IEG expression in the LA
[Arc/Arg3.1: t(7) = 0.377. P > .05; c-Fos: t(7) = 0.708,
P > .05; EGR-1: t(7) = 0.306, P > .05; Figure 6(d)]. A
similar pattern of findings was observed in the MGm/PIN
(Figure 6(e)). Vehicle-infused controls exhibited significant
elevations in the expression of Arc/Arg3.1, c-Fos, and EGR-1
protein expression in MGm/PIN homogenates [Arc/Arg3.1:
t(7) = 2.629. P < .05; c-Fos: t(7) = 3.783, P < .05; EGR-
1: t(7) = 3.440, P < .05; Figure 6(e)], while ifenprodil-
infused rats exhibited significantly impaired IEG expression
in the MGm/PIN [Arc/Arg3.1: t(7) = 0.211. P > .05; c-
Fos: t(7) = 0.592, P > .05; EGR-1: t(7) = 0.139, P > .05;
Figure 6(e)].

The findings for rats infused with 7-Ni are depicted
in Figures 7(b)-7(c), and images of Western blots are
presented in Figure 7(a). We observed significant elevations
in the expression of Arc/Arg3.1, c-Fos, and EGR-1 protein
expression in LA homogenates in vehicle-infused controls
[Arc/Arg3.1: t(7) = 2.374. P < .05; c-Fos: t(7) = 2.462,
P < .05; EGR-1: t(7) = 2.402, P < .05; Figure 7(b)]. In
contrast, those rats given intra-LA infusion of 7-Ni exhibited
significantly impaired IEG expression in the LA [Arc/Arg3.1:
t(7) = 0.672. P > .05; c-Fos: t(7) = 1.101, P > .05; EGR-
1: t(7) = 1.499, P > .05; Figure 7(b)]. A similar pattern
of findings was observed in the MGm/PIN (Figure 7(c)).
Vehicle-infused controls exhibited significant elevations in
the expression of Arc/Arg3.1, c-Fos, and EGR-1 protein
expression in MGm/PIN homogenates [Arc/Arg3.1: t(7) =
3.066. P < .05; c-Fos: t(7) = 2.383, P < .05; EGR-1:
t(7) = 2.687, P < .05; Figure 7(c)], while 7-Ni-infused
rats exhibited significantly impaired IEG expression in the
MGm/PIN [Arc/Arg3.1: t(7) = 0.065. P > .05; c-Fos: t(7) =
0.025, P > .05; EGR-1: t(7) = 0.460, P > .05; Figure 7(c)].

The findings for rats infused with c-PTIO are depicted in
Figures 8(b)-8(c), with images of Western blots presented in
Figure 8(a). We observed significant elevations in the expres-
sion of Arc/Arg3.1, c-Fos, and EGR-1 protein expression in
LA homogenates from vehicle-infused controls [Arc/Arg3.1:
t(7) = 2.374. P < .05; c-Fos: t(7) = 2.462, P < .05; EGR-
1: t(7) = 2.402, P < .05; Figure 8(b)]. Consistent with
our ERK data, those rats given intra-LA infusion of c-PTIO
also exhibited elevated IEG expression in the LA [Arc/Arg3.1:
t(7) = 2.545. P < .05; c-Fos: t(7) = 2.406, P < .05;
EGR-1: t(7) = 2.509, P < .05; Figure 8(b)]. A different
pattern of findings, however, was observed in the MGm/PIN
(Figure 8(c)). Vehicle-infused controls exhibited significant
elevations in the expression of Arc/Arg3.1, c-Fos, and EGR-1
protein expression in MGm/PIN homogenates [Arc/Arg3.1:
t(7) = 3.066. P < .05; c-Fos: t(7) = 2.383, P < .05; EGR-
1: t(7) = 2.687, P < .05; Figure 8(c)], while cPTIO-infused
rats exhibited significantly impaired IEG expression in the
MGm/PIN [Arc/Arg3.1: t(7) = 1.241. P > .05; c-Fos: t(7) =
0.696, P > .05; EGR-1: t(7) = 1.600, P > .05; Figure 8(c)].

The findings for rats infused with PKG inhibitor Rp-8-
Br-PET-cGMPS are depicted in Figure 9(b)-9(c), and images
of Western blots are presented in Figure 9(a). We observed
significant elevations in the expression of Arc/Arg3.1, c-
Fos, and EGR-1 protein expression in LA homogenates
from vehicle-infused controls [Arc/Arg3.1: t(7) = 7.972.
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Figure 6: Pharmacological blockade of NMDAR-driven synaptic plasticity impairs ERK-driven IEG expression in both the LA and
MGm/PIN following HFS. (a) Placement of stimulation electrode and infusion cannula. (b) Schematic representation of experimental
protocol. Rats were given intra-LA infusion of the vehicle or 1 μg ifenprodil followed 30 min later by HFS of the MGm/PIN. Rats were
sacrificed 2 hours after stimulation. (c) Images of Western blots for Arc/Arg3.1, c-Fos, EGR-1 and GAPDH from both LA (top) and
MGm/PIN (bottom) samples. (d) Mean (±SEM) percent Arc/Arg3.1, c-Fos and EGR-1 immunoreactivity from LA punches taken from
rats given intra-LA infusion of 2% HBC-saline (vehicle; n = 8) or 1 μg/side ifenprodil (n = 8). (e) Mean (±SEM) percent Arc/Arg3.1,
c-Fos and EGR-1 immunoreactivity from MGm/PIN punches taken from rats given intra-LA infusion of 2% HBC-saline (vehicle; n = 8)
or 1 μg/side ifenprodil (n = 8). In each figure, IEG levels have been normalized to GAPDH for each sample, and IEG expression on the
ipsilateral side has been expressed as a percentage of that on the contralateral side for each rat. ∗P < .05 relative to the ipsilateral side N.S. =
not significant.

P < .05; c-Fos: t(7) = 3.686, P < .05; EGR-1: t(7) = 4.599,
P < .05; Figure 9(b)]. In contrast, those rats given intra-
LA infusion of Rp-8-Br-PET-cGMPS exhibited significantly
impaired IEG expression in the LA [Arc/Arg3.1: t(6) =

1.688. P > .05; c-Fos: t(7) = 0.631, P > .05; EGR-1:
t(7) = 1.287, P > .05; Figure 9(b)]. A similar pattern
of findings was observed in the MGm/PIN (Figure 9(c)).
Vehicle-infused controls exhibited significant elevations in
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Figure 7: Pharmacological blockade of NOS activation in the LA impairs ERK-driven IEG expression in both LA and MGm/PIN following
HFS. (a) Images of Western blots for Arc/Arg3.1, c-Fos, EGR-1 and GAPDH from both LA (top) and MGm/PIN (bottom) samples. (b) Mean
(±SEM) percent Arc/Arg3.1, c-Fos and EGR-1 immunoreactivity from LA punches taken from rats given intra-LA infusion of 50% DMSO
(vehicle; n = 8) or 1 μg/side 7-Ni (n = 8). (c) Mean (±SEM) percent Arc/Arg3.1, c-Fos and EGR-1 immunoreactivity from MGm/PIN
punches taken from rats given intra-LA infusion of 50% DMSO (vehicle; n = 8) or 1 μg/side 7-Ni (n = 8). In each figure, IEG levels have
been normalized to GAPDH for each sample, and IEG expression on the ipsilateral side has been expressed as a percentage of that on the
contralateral side for each rat. ∗P < .05 relative to the ipsilateral side N.S. = not significant.

the expression of Arc/Arg3.1, c-Fos, and EGR-1 protein
expression in MGm/PIN homogenates [Arc/Arg3.1: t(7) =
7.972. P < .05; c-Fos: t(7) = 4.064, P < .05; EGR-1: t(7) =
4.901, P < .05; Figure 9(c)], while rats infused with the PKG
inhibitor exhibited significantly impaired IEG expression in
the MGm/PIN [Arc/Arg3.1: t(6) = 1.688. P > .05; c-Fos:

t(7) = 1.101, P > .05; EGR-1: t(7) = 0.401, P > .05;
Figure 9(c)].

Thus, similar to the findings of our ERK experiments,
blockade of NMDAR-driven synaptic plasticity and NO
signaling at the level of the LA impairs HFS-induced IEG
expression not only in the LA but also in the MGm/PIN.
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Figure 8: Pharmacological blockade of extracellular NO in the LA impairs ERK-driven IEG expression in the MGm/PIN, but not the LA,
following HFS. (a) Images of Western blots for Arc/Arg3.1, c-Fos, EGR-1, and GAPDH from both LA (top) and MGm/PIN (bottom) samples.
(b) Mean (±SEM) percent Arc/Arg3.1, c-Fos, and EGR-1 immunoreactivity from LA punches taken from rats given intra-LA infusion of
50% DMSO (vehicle; n = 8) or 1 μg/side c-PTIO (n = 8). (C) Mean (±SEM) percent Arc/Arg3.1, c-Fos and EGR-1 immunoreactivity from
MGm/PIN punches taken from rats given intra-LA infusion of 50% DMSO (vehicle; n = 8) or 1 μg/side c-PTIO (n = 8). In each figure, IEG
levels have been normalized to GAPDH for each sample, and IEG expression on the ipsilateral side has been expressed as a percentage of that
on the contralateral side for each rat. ∗P < .05 relative to the ipsilateral side N.S. = not significant.

Further, extracellular release of NO in the LA appears to be
required for HFS-induced IEG expression in the MGm/PIN,
but not in the LA

4. Discussion

Long-term potentiation (LTP) at thalamo-LA synapses has
been proposed as a candidate cellular mechanism of the

formation of auditory fear memories, yet little is known
about the molecular mechanisms underlying LTP at this
synapse. In the present study, we have examined the
regulation of ERK and that of three different ERK-driven
IEGs at both sides of the thalamo-LA synapse after LTP-
inducing stimulation. We found that LTP-inducing stim-
ulation at thalamo-LA synapses is accompanied by ERK
activation and ERK-driven gene expression not only in
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Figure 9: Pharmacological blockade of PKG in the LA impairs ERK-driven IEG expression in both LA and MGm/PIN following HFS. (a)
Images of Western blots for Arc/Arg3.1, c-Fos, EGR-1, and GAPDH from both LA (top) and MGm/PIN (bottom) samples. (b) Mean (±SEM)
percent Arc/Arg3.1, c-Fos, and EGR-1 immunoreactivity from LA punches taken from rats given intra-LA infusion of ACSF (vehicle; n = 8)
or 1 μg/side Rp-8-Br-PET-cGMPS (n = 8). (c) Mean (±SEM) percent Arc/Arg3.1, c-Fos and EGR-1 immunoreactivity from MGm/PIN
punches taken from rats given intra-LA infusion of ACSF (vehicle; n = 8) or 1 μg/side Rp-8-Br-PET-cGMPS (n = 8). In each figure, IEG
levels have been normalized to GAPDH for each sample, and IEG expression on the ipsilateral side has been expressed as a percentage of that
on the contralateral side for each rat. ∗P < .05 relative to the ipsilateral side N.S. = not significant.

the LA, but also in regions of the MGm/PIN that are
presynaptic to the LA. Further, pharmacological disruption
of either NMDAR-driven synaptic plasticity or NO-cGMP-
PKG signaling at the level of the LA impairs ERK activation
and IEG expression in each region. Collectively, these

findings suggest that NMDAR-driven synaptic plasticity and
NO signaling within the LA coordinately regulate ERK
activation and ERK-driven gene expression in both the LA
and the MGm/PIN following LTP induction at thalamo-LA
synapses.
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4.1. LTP-Inducing Stimulation of Thalamo-LA Inputs Reg-
ulates ERK Activation and ERK-Driven IEG Expression in
the LA and MGm/PIN. A recent study in our lab showed
that LTP-inducing stimulation of thalamo-LA inputs induces
ERK activation in the LA, and that intra-LA infusion of
ERK/MAPK inhibitor impairs LTP at thalamo-LA synapses
[22]. However, ERK activation at the level of the MGm/PIN
also appears to be critical for LTP at thalamo-LA synapses;
intra-MGm/PIN infusion of a MEK inhibitor also impairs
LTP in the thalamo-LA pathway [23]. In the present study,
we, therefore, examined ERK activation in both the LA and
MGm/PIN following LTP-inducing stimulation of thalamo-
LA synapses. Consistent with our previous findings [22],
we showed that phospho-ERK expression was enhanced
in the LA 5 min after HFS compared to LFS controls;
significant elevations in phospho-ERK were not evident at
later time points. In the MGm/PIN, however, HFS-induced
phospho-ERK was observed at both 5 and 30 min following
stimulation. Importantly, only the 30 min time point differed
significantly from LFS controls, suggesting that the increase
observed within 5 min after HFS may have been due to
nonspecific stimulation of the region alone. Thus, LTP-
inducing stimulation of thalamo-LA synapses induces ERK
activation in both the LA and MGm/PIN, but the activation
in the MGm/PIN is delayed relative to that in the LA.

Our findings also revealed that LTP-inducing stimulation
of thalamo-LA synapses regulates the expression of the
ERK-driven IEGs Arc/Arg3.1, c-Fos, and EGR-1 in both
the LA and MGm/PIN. Previous studies have extensively
documented the role of Arc/Arg3.1 [28–32] and EGR-1
[33–37] in hippocampal LTP, but little is known about the
role of these IEGs in amygdala LTP. The Arc/Arg3.1 gene
encodes for a synaptic activity-induced effecter protein and
has been shown in previous studies to be required for LTP
and hippocampal-dependent learning and memory [28].
Arc/Arg3.1 is known to be induced by patterns of neural
activity that promote synaptic plasticity and is thought to
be trafficked and localized to recently potentiated synapses
[29–32]. In our own lab, we have recently shown that
LTP induction at thalamo-LA synapses induces Arc/Arg3.1
mRNA and protein expression in the LA, and that antisense
knockdown of Arc/Arg3.1 protein in the LA impairs memory
consolidation of auditory fear conditioning; that is, LTM is
impaired whereas STM is intact [27].

In contrast to Arc/Arg3.1, both EGR-1 and c-Fos are
thought to behave as transcription factors, regulating the
expression of late-response genes that are critical for long-
term synaptic plasticity. Importantly, several studies have
observed associative increases in the expression of c-Fos
and EGR-1 in the LA after cued fear conditioning [38–40].
Furthermore, Malkani and colleagues showed that antisense
knockdown of EGR-1 in the LA impairs memory formation
of contextual fear conditioning [41], a finding that has
recently been extended to auditory fear conditioning in our
own lab [42]. Consistent with these findings, we report
here that Arc/Arg3.1, c-Fos, and EGR-1 protein expression
in the LA is enhanced after LTP-inducing stimulation of
thalamic inputs to the LA, as well as in regions of the
auditory thalamus that are presynaptic to the LA. Together

with our ERK findings, these results suggest that ERK-driven
transcriptional regulation at both sides of the thalamo-LA
synapse may be critical for synaptic plasticity underlying the
formation and/or consolidation of auditory fear memories.

4.2. NMDAR-Driven Synaptic Plasticity and NO-cGMP-PKG
Signaling Coordinately Regulate ERK Activation and ERK-
Driven Gene Expression at Both Sides of the Thalamo-
LA Synapse. Our findings of enhanced activation of ERK-
driven transcriptional regulation in both LA and MGm/PIN
neurons is consistent with previous work that has shown
that infusion of a MEK inhibitor into either the LA or the
MGm/PIN impairs LTP in the LA [22, 23] and suggests
that LTP-induced activation of ERK in MGm/PIN and LA
neurons may contribute to pre- and postsynaptic aspects
of plasticity at the level of the LA, respectively. Long-term
synaptic plasticity has long been thought to involve NMDAR-
driven recruitment of intracellular signaling pathways that
promote long-term plastic change and memory through
alterations of transcription and translation and accompa-
nying morphological changes at both pre- and postsynaptic
sites [43–48]. Further, many studies have suggested that the
NO-cGMP-PKG signaling pathway plays a critical role in
coordinating these two events [49–54], behaving both as a
regulator of transcription in the postsynaptic cell [50] as well
as a “retrograde signal” that can promote enhanced release of
transmitter in the presynaptic cell [55] as well as structural
changes in the presynaptic terminal [56, 57].

While most widely studied in the hippocampus [49,
58–63] and cerebellum [58], recent evidence from our
laboratory has suggested that NO signaling in the LA is
also critical to fear memory formation [17]. Neuronal NOS
(nNOS) is expressed in LA neurons and in postsynaptic
sites of excitatory synapses in the LA [17]. Further, phar-
macological manipulation of NO signaling in the LA using
either a NOS inhibitor, a membrane-impermeable scavenger
of NO, or a PKG inhibitor impairs memory consolidation
of auditory fear conditioning and LTP at auditory thalamic
input synapses to the LA, in vitro [17, 18].

In the present study, we used pharmacological methods
to ask whether NMDAR-driven synaptic plasticity and NO-
cGMP-PKG signaling may be regulating both ERK and ERK-
driven transcription within the LA and the MGm/PIN.
We showed that blockade of NR2B (via ifenprodil), NOS
(via 7-Ni), or PKG (via Rp-8-Br-PET-cGMPS) significantly
impaired HFS-induced activation of ERK and ERK-driven
gene expression in both the LA and the MGm/PIN. Remark-
ably, however, blockade of extracellular NO signaling (via c-
PTIO) significantly impaired HFS-induced activation of ERK
and ERK-driven gene expression in the MGm/PIN, but not
in the LA. These findings suggest that the ERK activation and
downstream IEG expression in MGm/PIN following LTP is
driven by NO “retrograde signaling” at the level of the LA.
The identity of the signal that links NO release at the level of
the LA with ERK activation and ERK-driven gene expression
at the level of the MGm/PIN is currently unknown, as is
how such a signal may propagate in a retrograde manner
from synapse to nucleus across a ∼2-3 mm distance in such
a rapid manner. However, previous reports have suggested
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Figure 10: A model of the biochemical mechanisms underlying LTP at thalamo-LA synapses. See text for details

that retrograde transport can occur very rapidly in neurons,
between ∼4–8 mm/hr [64]. Further, while the mechanism
by which NO-cGMP-PKG signaling within the LA promotes
ERK activation and ERK-driven gene expression in the LA
and MGm/PIN during LTP induction is presently unknown,
previous studies have suggested that PKG or its downstream
substrates can activate Raf-1, an upstream regulator of
ERK1/2 [65], or inhibit protein phosphatase-1 [66], which
may indirectly regulate ERK1/2. Further, NO-cGMP-PKG
signaling has been shown to regulate CREB phosphorylation
in the hippocampus following LTP induction, presumably by
affecting upstream kinases such as ERK [50].

4.3. A Model of Synaptic Plasticity at Thalamo-LA Synapses.
The present findings are consistent with a revised model
of the molecular events underlying synaptic plasticity at
thalamo-LA synapses in which NMDAR-driven synaptic
plasticity and NO signaling in LA neurons promotes pre-
and postsynaptic alterations at thalamo-LA synapses via
regulation of ERK-driven gene expression in MGm/PIN
and LA neurons, respectively, (Figure 10). In that model,
thalamo-LA LTP is hypothesized to involve both pre-
and postsynaptic modifications at thalamo-LA synapses.
These modifications are first triggered by NMDAR-mediated
activation of the NO-cGMP-PKG signaling pathway in the
postsynaptic cell (Step 1) that promote the activation of ERK
(Step 2)[22] and ERK-driven IEG expression (Step 3) in
LA neurons. The transcription of these ERK-driven genes is
ultimately thought to lead to postsynaptic functional and/or

structural changes that contribute to long-term synaptic
plasticity at this synapse [3]. Concurrently, “retrograde
signaling” via NO (Step 4) may promote the activation of
ERK (Step 5) and ERK-driven transcription (Step 6-7) in
presynaptic thalamic targets of LA neurons that are necessary
to promote structural and/or functional changes on the
presynaptic side of LA synapses (Step 8). Together with
the postsynaptic modifications driven by ERK signaling in
the LA, these presynaptic modifications act to strengthen
the connectivity of thalamo-LA synapses, which is reflected
neurophysiologically in an enhanced response to the CS in
the LA after LTP induction (Step 9).

In support of this model, recent studies from our lab
and others have shown that ERK-driven transcription in the
MGm/PIN is required not only for fear memory consolida-
tion [23, 67, 68] but also for synaptic plasticity at thalamo-
LA synapses [23]. Further, auditory fear conditioning has
recently been shown to lead to increased expression of
the presynaptically localized proteins synaptophysin and
synapsin in the LA [20, 21, 69], suggesting that fear memory
consolidation is accompanied by presynaptic alterations at
LA synapses. Finally, recent studies from our lab have shown
that auditory fear conditioning is associated with increases in
the activation of ERK and ERK-driven IEG expression in the
LA and MGm/PIN [19, 21], and that knockdown of EGR-1 in
MGm/PIN neurons impairs both fear memory consolidation
and the training-induced expression of both synapsin and
synaptophysin in the LA [21]. Together with the findings
of the present paper, these findings collectively suggest that
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both synaptic plasticity at thalamo-LA synapses and memory
consolidation of auditory fear conditioning are subserved by
pre- and postsynaptic modifications at LA synapses.

5. Conclusions

In summary, our findings suggest that NMDAR-driven
synaptic plasticity and NO signaling within the LA coor-
dinately regulate ERK activation and ERK-driven gene
expression in both the LA and the MGm/PIN following
LTP induction at thalamo-LA synapses, and further suggest
that synaptic plasticity in the LA promotes ERK-driven
transcription in MGm/PIN neurons via NO-driven “ret-
rograde signaling”. These findings further extend what is
known about the molecular basis of LTP within the LA, and
provide additional evidence that studying LTP at thalamo-
LA synapses may inform us about the molecular basis of fear
memory formation in the amygdala.
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