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Abstract
Low muscle mass has been associated with worse clinical outcomes in various cancers. This work investigated whether, 
during tyrosine kinases inhibitors (TKIs) therapy, low muscle mass was associated with treatment toxicity and survival 
outcomes. A systematic literature search was performed in Pubmed, Web of Science, and Scopus databases from inception 
to June 2020, based on fixed inclusion and exclusion criteria. Effect sizes were estimated with hazard ratios (HR) and odds 
ratios (OR) with 95% confidence interval (CI) and heterogeneity was assessed by measuring inconsistency (I2) based on the 
Chi squared test. A total of 24 retrospective studies were identified, enrolling patients treated with sorafenib (n = 12), sunitinib 
(n = 6), lenvatinib (n = 3), regorafenib (n = 2), gefitinib (n = 1), imatinib (n = 1), and pazopanib (n = 1). Thirteen studies were 
deemed eligible for pooled analyses. Meta-analyses found a significant effect of low muscle mass on dose-limiting toxicity 
(DLT) (OR 2.40, 95% CI 1.26–4.58, p = 0.008, I2 = 51%) in patients treated with TKI therapy. A subgroup analysis by treat-
ment showed an association between DLT and low muscle during sorafenib or sunitinib, although not significant. A signifi-
cant association between low skeletal muscle index and poorer overall survival was observed in HCC patients treated with 
sorafenib (HR 1.45, 95% CI 1.07–1.96, p = 0.02). For other TKIs, although some results showed an association between low 
muscle mass and worse outcomes, the number of studies for each TKI therapy was too small to reach conclusions. Skeletal 
muscle mass could influence the prognosis of some TKI-treated patients. This effect is demonstrated in sorafenib-treated 
HCC patients but remains almost unexplored in other cancer patients undergoing TKI therapy. Further prospective studies 
with large sample size and sufficient follow-up are needed to clarify the role of muscle mass in the metabolism of TKI-based 
cancer treatment, and its association with toxicity and survival.

Keywords Skeletal muscle mass · Tyrosine kinase inhibitors · Chemotherapy toxicity · L3 skeletal muscle index · Survival · 
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Introduction

Muscle wasting represents the primary nutritional issue 
observed in cancer patients. Loss of skeletal muscle is present 
in over 50% of newly diagnosed oncologic patients [1, 2] and 

is related to the catabolic effects of cancer-induced inflamma-
tion, such as decreased protein synthesis, increased muscle 
proteolysis, and hypermetabolism [3]. Furthermore, during 
antineoplastic treatments, the loss of lean body mass is exac-
erbated by common treatment side effects such as nausea and 
loss of appetite, which reduce patient intake of calories and 
proteins. Low muscle mass has been recognized as a prognos-
tic factor of morbidity and mortality in various types of malig-
nancies such as lung [4], pancreatic [5], gastric [6], hepatic 
[7], renal [8], and colorectal [9] cancers. Several methods and 
instruments determine the quantity and quality of muscle mass 
such as dual-energy X-ray absorptiometry [10], bioelectrical 
impedance analysis [11], magnetic resonance imaging, and 
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computed tomography (CT) [12]. CT scan imaging, routinely 
used at diagnosis for tumor staging, is to-date considered the 
gold standard non-invasive tools to assess muscle quantity and 
quality [12]. Thus, in recent years, the assessment of muscle 
wasting has become of great interest in oncology.

Tyrosine kinase inhibitors (TKIs) are effective agents in a 
wide range of tumor types, including lung cancer [13], colo-
rectal cancer [14], gastrointestinal stromal tumors (GISTs) 
[15], renal cell carcinoma (RCC) [16], and hepatocellular 
carcinoma (HCC) [17, 18]. TKIs target enzymes that are 
responsible for the activation of several intracellular molecu-
lar pathways often involved in tumor cell proliferation, such 
as phosphatidylinositol 3-kinase (PI3K), thymoma viral 
proto-oncogene (AKT), and mammalian target of rapamycin 
(mTOR) [19–21]. PI3K-AKT-mTOR pathway plays a key 
role in muscle protein synthesis. Indeed, the activation of the 
AKT/mTOR pathway and its downstream targets is essen-
tial for regulating skeletal muscle fiber size [20]. Given that 
the PI3K-AKT-mTOR pathway plays a key role in muscle 
protein synthesis [19], muscle wasting during TKI therapy 
has become an important clinical concern. Thus, a growing 
number of studies [22–28] evaluated the impact of different 
TKIs on muscle mass changes during treatment in cancer 
patients. Muscle wasting during TKI therapy may worsen 
treatment toxicities, such as diarrhea, hand–foot syndrome, 
rash, and fatigue, limiting the patient’s ability to receive full-
dose treatment and resulting in dose reductions and early 
treatment termination. In patients with low muscle mass, 
overdose-like effects may occur and lead to dose-limiting 
toxicity (DLT) [29], defined as any toxicity leading to dose 
reduction, temporary treatment discontinuation, or perma-
nent treatment discontinuation [30]. Several retrospective 
studies assessed the relationship between muscle mass and 
treatment outcomes. This systematic review and meta-anal-
ysis aims to evaluate the association between muscle mass 
quantity or quality and toxicities, overall survival (OS), and 
progression-free survival (PFS), in patients undergoing TKI 
therapy.

Materials and methods

This systematic review was performed according to the 
Cochrane Handbook for systematic reviews [31] and the 
preferred reporting items for systematic reviews and meta-
analyses (PRISMA) statement [32].

Eligibility criteria

We included studies that met all of the following criteria:

• Studies with prospective or retrospective designs.

• Studies enrolling adult patients diagnosed with cancer 
and exclusively undergoing any type of TKI therapy 
(afatinib, alectinib, axitinib, bosutinib, brigatinib, 
cabozantinib, ceritinib, crizotinib, dasatinib, erlotinib, 
gefitinib, ibrutinib, imatinib, lapatinib, lenvatinib, nilo-
tinib, osimertinib, pazopanib, ponatinib, regorafenib, 
ruxolitinib, sorafenib, sunitinib or vandetanib).

• Studies measuring muscle-mass quantity or quality. 
Included studies could report lumbar skeletal muscle 
index (SMI;  cm2/m2), skeletal muscle mass (SMM; 
 cm2/m2), skeletal mass area (SMA;  cm2), psoas index 
(PI;  cm2/m2), skeletal muscle mass density (SMD; 
Hounsfield units (HU)).

Outcomes

The outcomes of interest are as follows:

• toxicity endpoints such as DLT, rate of treatment dis-
continuation due to toxicity, rate of dose reduction 
due to toxicity, and the total number of adverse events 
grades ≥ 3 according to the National Cancer Institute 
(NCI) Common Terminology Criteria for Adverse 
Events (CTCAE) [33].

• OS defined as the time from the day of the start of TKI 
treatment to death from any cause.

• PFS defined as the time from the day of TKI treatment 
to the day on which the first event of disease progres-
sion was diagnosed or the day of death from any cause.

Search strategy and study selection

A systematic literature search was performed from the 
inception of the electronic databases (MEDLINE, via Pub-
Med, the Institute for Scientific Information Web of Sci-
ence and Scopus) on 25th June 2020. The search string for 
each database is described in Appendix 1 (Supplementary 
data). The search strategy was limited to English language 
articles. Also, a cross-reference search of eligible articles 
was performed to check studies that were not found during 
the computerized search. All articles generated from the 
electronic search were imported into Mendeley© (Elsevier, 
Amsterdam, The Netherlands), a reference management 
software, and duplicates were removed. Two researchers 
(E.R. and P.R.) independently screened abstracts and titles, 
then read the full text of relevant studies. Any disagree-
ments were resolved by consensus or by a third reviewer 
(M.C.M.).
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Data extraction and reporting

Information was collected using an Excel© (Microsoft 
Office, USA) spreadsheet specifically developed for this 
study. Each full-text article was retrieved, and any ineli-
gible articles were excluded from the reasoning reported. 
Differences in judgment between two reviewers (P.R.; 
E.R.) were settled by discussion and consensus. Data 
extraction included the first author’s name, year of publi-
cation, study design, relevant objectives, patient charac-
teristics, sample size, method of muscle mass assessment, 
time of muscle-mass assessment, outcomes, and results.

Statistical analysis

Meta-analyses were performed to estimate the effect of 
muscle mass on DLT and OS in cancer patients undergoing 
TKI therapy. Included studies defined low skeletal muscle 
mass using a cut-off value of muscle area (with or without 
normalization for sex and/or height). Outcomes were com-
pared between patients with low muscle mass and those 
without low skeletal muscle mass (high muscle mass). For 
DLT, an analysis was performed by extracting the odds 
ratio (ORs) with corresponding 95% confidence intervals 
(CIs) from primary studies. For survival data, analyses 
were performed by extracting hazard ratio (HR) with 95% 
CI from primary studies. For OS, two separate analyses 
were performed—one included unadjusted HRs (extracted 
from univariate analysis), and one included adjusted HRs 
(extracted from multivariate analysis) from each study. A 
p value of < 0.05 was considered statistically significant. 
Study heterogeneity was evaluated via Cochrane’s Q test 
and the I2 statistic. The I2 value of 25%, 50%, and 75% as 
cut-off points represented low, moderate, and high degrees 
of heterogeneity, based on Cochrane’s rough guide to the 
interpretation of I2 [34]. A Cochrane’s Q statistical P 
value < 0.10 and/or I2 > 50% were deemed as statistically 
significant heterogeneity. Given the anticipated variability 
in the cut-off threshold to define low skeletal muscle mass 
and the clinical characteristics among the included stud-
ies, summary estimates were calculated using the random-
effects models of DerSimonian and Laird. When possible, 
subgroup analyses were performed to explore sources of 
heterogeneity such as cancer type and treatment. All sta-
tistical analyses were performed using Review Manager 
software from the Cochrane Collaboration (RevMan Ver-
sion 5.3. Copenhagen: The Nordic Cochrane Centre).

Quality assessment

In this work, all included cohort studies are retrospective. 
We evaluated all studies with the Newcastle–Ottawa Scale 

(NOS) representing a valid tool assessing the quality of non-
randomized studies in meta-analyses, including cohort stud-
ies (retrospective and prospective) [35]. The NOS criteria 
associated with the selection of the cohort were as follows: 
representativeness of the exposed cohort; selection of the 
non-exposed cohort; ascertainment of exposure; and dem-
onstration that an outcome of interest was not present at the 
beginning of the study. Then, NOS criteria involving the 
comparability of the cohorts were as follows: the study con-
trolled age and sex as confounders and additional confound-
ing factors. Finally, the following NOS criteria involved the 
assessment of the outcome were as follows: independent 
blind assessment or record linkage, sufficiently long follow-
up for outcome to occur; and adequacy of cohort follow-up. 
The judgement for each NOS criteria involves answering a 
question, with answers ‘Yes’ indicating a low risk of bias, 
‘No’ indicating a high risk of bias, and ‘Unclear’ indicating 
either lack of information or uncertainty over the potential 
for bias. Two investigators independently assessed the meth-
odological quality of the included cohort studies using NOS 
criteria. Differences in judgment among reviewers were set-
tled by discussion and consensus.

Results

Study selection

The flow diagram in Fig. 1 displays the results of the litera-
ture search and study selection process. Thirteen thousand 
seven hundred eighty-five publications, of which duplicates 
1,117, were initially identified and 12,594 irrelevant studies 
were discarded. From 74 screened records, 50 were excluded 
for the following reasons: letters to the editor (n = 4), reviews 
(n = 9), animal studies (n = 7), no muscle quantity or qual-
ity assessment (n = 27), no assessment of clinical outcomes 
(n = 3). Twenty-four [15, 24, 26–28, 36–54] studies were 
included in the systematic review, of which 13 [24, 26, 
39–42, 44–48, 50, 54] in the meta-analyses.

Study characteristics

Descriptive results of each included studies are reported in 
Table 1 and Table 2. All included studies were retrospective. 
Publication date ranged from 2010 [39] to 2020 [51–53] and 
sample size from 21 [51] to 365 [26] patients. All enrolled 
patients had an advanced stage cancer. All included studies 
used CT imaging, performed in the pre-treatment period, to 
calculate muscle mass. The CT indexes to measure muscle 
mass varied across studies; twenty-one studies measured 
SMI, two measured SMA [38, 39], one measured SMM [51], 
one psoas index PI [43] and one SMD [45]. The muscle mass 
was quantified in patients undergoing therapy with gefinitib 
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(one study [36]), imatinib (one study [15]), lenvatinib (three 
studies [22, 52, 53]), pazopanib (one study [37]), regorafenib 
(two studies [38, 51]), sorafenib (twelve studies [24, 26–28, 
39–46]) and sunitinib (six studies [27, 47–50, 54]). Cut-
offs values varied across the studies, such as 55.4 cm2/m2 
for men and 38.9 cm2/m2 for women [39, 40, 47, 48], or 
42 cm2/m2 for men and 38  cm2/m2 for women [51–53] or 
43 cm2/m2 for men with a body mass index (BMI) < 25 kg/
m2, 53 cm2/m2 for men with a BMI > 25 kg/m2, and 42 cm2/
m2 for women [15, 44, 54] or median cut-offs [26, 42]. One 
study [51] measured the SMM decrease ≤ or > 2%.

Regarding endpoints, 9 out of 20 studies assessed DLT 
[26, 27, 38–40, 47, 48, 50, 54], five reported treatment dis-
continuations due to toxicity [41–43, 46, 50], four measured 
toxicity as the total number of adverse events [36, 44, 45, 
49], the number of severe adverse events [53] or the rate of 
dose reduction [41]. Treatment toxicity was evaluated dur-
ing the first cycle of treatment [44, 47, 49, 54], at three [15, 

27, 43], or six months [26, 43, 48] after starting treatment. 
Moreover, OS was assessed in 20 studies while PFS was 
assessed in eight studies [37, 38, 40, 47, 49, 50, 52, 54].

Quality assessment

The quality assessment of each NOS criterion for each study 
was detailed in Appendix 2 (Supplementary data).

Twenty-three studies out of the total were truly repre-
sentative of population-based study, except for Antoun et al. 
[39] who selected only male patients. All studies selected 
the non-exposed cohort from the same community as the 
exposed cohort, except for Gu et al. [27] where there was 
not a selected non-exposed cohort. As regards ascertain-
ment of exposure, all studies directly measured muscle 
mass and previously defined specific cut-offs values. In all 
studies, outcomes of interest were not present at the start of 
the study. Twenty-two studies out of the total controlled for 

Fig. 1  Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram
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Table 2  Descriptive results of the included studies regarding survival outcomes (classified by TKI type)

TKI First author, year, 
country

Outcomes Comparison Cut-off values (high 
vs. low muscle)

Adjustment HR (95% CI) or OR 
(95% CI) or mean or 
median or %

p value

Gefitinib Rossi, 2018, Italy 
[36]

OS High SMI vs. low 
SMI

55  cm2/m2 for men
39  cm2/m2 for 

women

Univariable Median:12.6 
(4.7–16.1) vs. 23.5 
(15–33.3)

HR: 0.45 (0.22–0.96)

0.035

Lenvatinib Uojima, 2020, Japan 
[53]

OS Low SMI vs. high 
SMI

42  cm2/m2 for men
38  cm2/m2 for 

women

Univariable
Multivariable

OR 2.22 (1.11–4.45)
OR 2.25 (1.09–4.62)

0.025
0.028

Lenvatinib Yamazaki, 2020, 
Japan [52]

PFS Low SMI vs. high 
SMI

42  cm2/m2 for men
38  cm2/m2 for 

women

Univariable
Multivariable

NR
HR 2.488 (1.058–

5.846)

0.017
0.037

Regorafenib Gokyer, 2019, Tur-
key [38]

OS
PFS

Low SMI vs. high 
SMI

49  cm2/m2 for men
31  cm2/m2 for 

women

Univariable
Univariable

NR
NR

NS
NS

Regorafenib Bekir, 2020,Turkey 
[51]

OS SMM decrease ≥ 2% 
vs. SMM 
decrease < 2%

NA Univariable HR 2.82 (1.07–7.42) 0.03

Sorafenib
Sunitinib
Others

Gu, 2017, China [27] OS
PFS

Muscle loss ≥ 5% vs. 
muscle loss < 5%

NA Univariable
Univariable

HR 2.186 (1.209–
3.952)

HR 1.745 (1.102–
2.762)

0.010
0.018

Sorafenib Naganuma, 2017, 
Japan [42]

OS Low SMI vs. high 
SMI

Median L3-SMI
43  cm2/m2 for men
36  cm2/m2 for 

women

Univariable
Univariable
Multivariable
Multivariable

Male: HR 1.916 
(1.008–3.642)

Female: HR 1.279 
(0.404–4.045)

Male: HR 2.315 
(1.125–4.765)

Female: HR 1.835 
(0.372–9.040)

0.047
NS
0.023
NS

Sorafenib Labeur, 2019, Neth-
erlands [45]

OS
OS

Low SMI vs. high 
SMI

Low SMD vs. high 
SMD

NR Univariable
Univariable

HR 1.20 (0.94–1.54)
HR 0.97 (0.75–1.24)

NS
NS

Sorafenib Mir, 2012, France 
[40]

OS
PFS

Low SMI vs. high 
SMI

55.4  cm2/m2 for men
38.9  cm2/m2 for 

women

Univariable
Univariable

Median: 7.4 
(1.9–19.3) vs. 11.0 
(7.7–16.5)

Median: 2.5 
(1.3–16.1 vs. 4.6 
(2.5–7.7)

NS
NS

Sorafenib Saeki, 2019, Japan 
[24]

OS % SMI changes 
from baseline to 
3 months after 
treatment

NA Univariable
Multivariable

HR 0.506 (0.300–
0.864)

HR 0.55 (0.317–
0.983)

0.013
0.044

Sorafenib Sawada, 2019, Japan 
[46]

OS
PFS

Low SMI vs. high 
SMI

36.2  cm2/m2 for men
29.6  cm2/m2 for 

women

Univariable
Multivariable
Univariable
Multivariable

HR 2.629 (1.341–
5.154)

HR 1.153 (0.538–
2.474)

HR 1.899 (1.029–
3.506)

HR 1.233 (0.653–
2.327)

0.004
NS
0.04
NS

Sorafenib Hiraoka, 2017, Japan 
[43]

OS Low PI vs. high PI 4.24  cm2/m2 for men
2.50  cm2/m2 for 

women

Univariable Median: 7.6 vs. 15.6 0.042
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confounders such as sex, age, and other additional confound-
ing variables such as cancer stage, number of metastatic 
sites, time from diagnosis to treatment, and comorbidities. 
For only two studies [47, 48], the confounders that were 
adjusted for were not clearly stated. For all studies, imaging 
analyses were performed by investigators/radiologists who 
were blinded to the patient outcomes. As regards follow-up, 

four studies [40, 47, 49, 54] did not have adequate follow-up 
time to assess DLT, indeed, DLT was assessed during the 
first cycle of TKI treatment and two studies [41, 42] did not 
specify the follow-up time. Finally, overall, studies had an 
adequate follow-up of cohorts whereas for four studies the 
number of patients lost to follow up was unclear [41, 42, 
48, 54].

BMI body mass index; CI confidence interval; HR hazard ratio; HU Hounsfield units; LBM lean body mass; NR not reported; NS non-significant; 
OR odds ratio; OS overall survival; PFS progression-free survival; PI psoas index; Q quartile; SD standard deviation; SMA skeletal muscle area 
 (cm2); SMD skeletal muscle density; SMI skeletal muscle index  (cm2/m2); SMM skeletal muscle mass; TKI tyrosine kinase inhibitor; vs., versus

Table 2  (continued)

TKI First author, year, 
country

Outcomes Comparison Cut-off values (high 
vs. low muscle)

Adjustment HR (95% CI) or OR 
(95% CI) or mean or 
median or %

p value

Sorafenib Antonelli, 2018, Italy 
[44]

OS Low SMI vs. high 
SMI

43  cm2/m2 for men 
with BMI < 25 kg/
m2

53  cm2/m2 for men 
with BMI > 25 kg/
m2

42  cm2/m2 for 
women

Univariable
Multivariable

HR 1.71 (1.12–2.71)
HR 1.63 (1.05–2.53)

0.01
0.03

Sorafenib Imai, 2015, Japan 
[41]

OS Low SMI vs. high 
SMI

NR Univariable
Multivariable

HR 0.904 (0.830–
0.984)

HR 0.909 (0.836–
0.985)

0.02
0.02

Sorafenib
Lenvatinib

Uchikawa, 2019, 
Japan [28]

OS ΔSMI < 0 and those 
with ΔSMI ≥ 0

ΔSMI: (post SMI 
– pre SMI) from 
initiation to evalu-
ation

NA Univariable NR NS

Sunitinib Huillard, 2013, 
France [47]

OS
PFS

Low SMI and 
BMI < 25 kg/m2 
vs. high SMI and 
BMI > 25 kg/m2

55.4  cm2/m2 for men
38.9  cm2/m2 for 

women

Univariable
Univariable

NR
NR

NS
NS

Sunitinib Ishihara, 2018, Japan 
[50]

OS ΔSMI < 0 and those 
with ΔSMI ≥ 0

L3 SMI  (cm2/m2) 
calculated from CT 
scan

ΔSMI (relative SMI 
change during the 
initial two cycles 
of treatment)

Univariable
Multivariable

HR 4.08 (1.96–9.32)
HR 4.53 (2.15–10.5)

0.0001
 < 0.0001

Sunitinib Cushen, 2014, Ire-
land [48]

OS
PFS

SMI, Q1 (< 44.8 
 cm2/m2) vs. Q4 
(> 63.2  cm2/m2)

Low SMI vs. high 
SMI

55.4  cm2/m2 for men
38.9  cm2/m2 for 

women

Univariable
Univariable

NR
NR

NS
NS

Sunitinib Ishihara, 2016, Japan 
[54]

OS
PFS

Low SMI vs. high 
SMI

43  cm2/m2 for men 
with BMI < 25 kg/
m2

53  cm2/m2 for men 
with BMI > 25 kg/
m2

42  cm2/m2 for 
women

Univariable
Multivariable
Univariable
Multivariable

HR 4.29 (1.72–13.0)
HR 2.29 (0.73–8.16)
HR 3.15 (1.66–6.41)
HR 2.54 (1.19–5.65)

0.0012
0.0004
 < 0.0001
0.02

Pazopanib
Sunitinib

Köstek, 2019, Tur-
key [37]

OS
PFS

Baseline SMA NA Univariable
Univariable

NR
NR

NS
NS
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Results

The results of the studies are reported in Table 1 for treat-
ment toxicity and Table 2 for survival outcomes (OS and 
PFS).

Sorafenib

Sorafenib is approved for the treatment of advanced HCC, 
RCC, and unresectable thyroid cancer [55]. Sorafenib 
blocks receptor tyrosine kinase signaling, such as vascu-
lar endothelial growth factor receptor (VEGFR), plate-
let-derived growth factor receptor (PDGFR), c-KIT, 
and RET, and inhibits downstream Raf serine/threonine 
kinase activity to prevent tumor growth by anti-angio-
genic, anti-proliferative, and/or pro-apoptotic effects 
[56]. Regarding toxicity, the results of the different stud-
ies [26, 39–46] varied according to muscle mass assess-
ment methods and endpoints (Table 1). Meta-analyses of 

data were performed to evaluate the effect of muscle mass 
on DLT during TKI therapy (sorafenib or sunitinib). A 
total of 485 patients from seven studies were included 
in the analysis of ORs. Compared to patients with low 
muscle mass, patients with normal/high muscle mass 
reported a significantly lower DLT (OR 2.40, 95% CI 
1.26–4.58, p = 0.008) with moderate significant heteroge-
neity (I2 = 51%, P > 0.05) (Fig. 2a). However, a subgroup 
analysis (Fig. 2b) by treatment showed that DLT during 
sorafenib treatment was not associated with muscle mass 
(OR 4.19, 95% CI 0.95–18.36, p > 0.05). The significant 
heterogeneity (I2 = 67%, P > 0.10) is probably due to can-
cer type. Indeed, this meta-analysis included only three 
studies from thyroid and HCC patients. Further studies 
with large and homogeneous sample size are required to 
confirm the significant effect of muscle mass on DLT 
in sorafenib-treated HCC patients, demonstrated in two 
studies [39, 40].

Fig. 2  a Forest plot evaluating the effect of muscle mass on DLT due to TKI treatment (sorafenib, sunitinib). b Subgroup analysis by TKI type. 
CI confidence interval; DLT dose-limiting toxicity; IV inverse variance
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Meta-analyses assessing the effect of baseline SMI on 
OS have been performed. A total of 420 patients from six 
studies [24, 41, 42, 44–46] were included in the analy-
sis of HRs for OS by univariate analysis. Compared to 
patients with low SMI, patients with normal/high SMI 
reported a significantly better OS (HR 1.47, 95% CI 
1.16–1.86, p = 0.001; Fig. 3a). The test for heterogeneity 
was significant (P = 0.01; I2 = 63%) and a random-effects 
model was used. Multivariate analyses in five studies [24, 
41, 42, 44, 46] were performed to evaluate the effects 
of confounding factors such as age, gender, body mass 
index, Child–Pugh score, clinical disease’s stage, and ini-
tial dose of sorafenib treatment. A meta-analysis of these 
adjusted HRs was performed and confirmed that a high 
SMI at baseline was independently associated with bet-
ter OS (HR 1.45, 95% CI 1.07–1.96, p = 0.02, Fig. 3b). A 
random-effects model was used; the test for heterogeneity 
was high (P = 0.07; I2 = 50%).

Sunitinib

Sunitinib is a multitargeted TKI mainly acting on VEGFR 
and PDGFR [16]. Sunitinib is the reference standard of 
care for first-line treatment of metastatic RCC or pancreatic 

neuroendocrine tumors and for second-line treatment of 
patients affected by unresectable and/or metastatic GISTs 
who failed on previous imatinib therapy [57]. Regarding 
toxicity due to sunitinib treatment, a subgroup analysis of 
data from four studies [26, 48, 50, 54] including 228 patients 
was performed to evaluate the effect of muscle mass on DLT 
in RCC patients (Fig. 2b). Low muscle mass was not asso-
ciated with DLT (OR 1.94, 95% CI 0.83–4.53, p > 0.05). 
The test for heterogeneity was moderate and significant 
(P > 0.10; I2 = 49%). Regarding the effect of muscle mass 
on survival outcomes, three studies [37, 47, 48] observed a 
non-significant association between muscle mass and OS/
PFS, while two other studies [50, 54] showed a significant 
association between low SMI and poor OS/PFS in univari-
ate (HR 4.08, 95% CI 1.96–9.32, p = 0.0001 [50]; HR 4.29, 
95% CI 1.72–13.0, p = 0.0012 [54]) and multivariate (HR 
4.53, 95% CI 2.15–10.5, p < 0.0001 [50]; HR 2.29, 95% CI 
0.73–8.16, p = 0.0004 [54]) analyses. It was not possible to 
perform a meta-analysis due to a lack of available HRs from 
the other two studies [47, 48].

Fig. 3  Forest plots evaluating the effect of SMI on overall survival in 
advanced HCC patients undergoing sorafenib treatment (a) HR from 
univariate analysis (b) HR from multivariate analysis. CI confidence 

interval; HCC hepatocellular carcinoma; HR hazard ratio; IV inverse 
variance; SMI skeletal muscle index
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Lenvatinib

Lenvatinib is an oral TKI targeting VEGFRs 1–3, fibroblast 
growth factor receptors (FGFRs) 1–4, PDGFR-α, proto-
oncogene receptor tyrosine kinase rearranged during trans-
fection (RET), and c-KIT proto-oncogenes. These tyrosine 
kinase receptors are implicated in tumor angiogenesis as 
well as tumor growth and progression [18]. It is approved 
for the treatment of advanced and metastatic differentiated 
thyroid carcinoma after radioactive iodine failure and as 
first-line therapy for the treatment of advanced HCC [58]. 
As regards toxicity, one study [53] evaluated in 100 patients 
the number of severe adverse advents during the first two 
months of lenvatinib treatment, showing a significant asso-
ciation (unadjusted OR 2.22, 95% CI 1.11–4.45, p = 0.025; 
adjusted OR 2.25, 95% CI 1.09–4.62, p = 0.028). Two stud-
ies [52, 53] assessed, in both univariable and multivari-
able analyses, a significant association between low SMI at 
diagnosis and OS (adjusted OR 2.25, 95% CI 1.09–4.62, 
p = 0.028) [53] in patients with HCC and PFS in patients 
with metastatic thyroid cancer (adjusted HR 2.488, 95% 
CI 1.058–5.846, p = 0.037) [52]. However, one study did 
not show a significant association between OS and muscle 
depletion during lenvatinib treatment [28].

Regorafenib

Regorafenib is an oral multikinase inhibitor of several pro-
tein kinases, including kinases involved in tumor angiogen-
esis (VEGFRs 1–3), oncogenesis (KIT, RET, RAF1, BRAF, 
and BRAFV600E), and development of the tumor microen-
vironment (PDGFR and FGFR) [14]. Given the results of a 
large, international, multicenter, randomized, placebo-con-
trolled, Phase 3 trial (the CORRECT study) [14], regorafenib 
is currently approved for second- or third-line treatment of 
metastatic colorectal carcinoma, after the failure of fluoropy-
rimidine-, oxaliplatin-, and irinotecan-based chemotherapy, 
and of anti-VEGF and/or anti-targeted therapy. Moreover, 
regorafenib is effective as second-line therapy for the treat-
ment of advanced HCC after sorafenib failure [59], and in 
patients affected by GISTs who had progression or intoler-
ance to imatinib or sunitinib [60, 61]. Regarding toxicity, 
only one study [38] assessed DLT at the end of three cycles 
of regorafenib treatment and demonstrated that it was sig-
nificantly higher in patients with lower SMI at baseline (HR 
15.6, 95% CI 1.72–140.82, p = 0.01). Moreover, this study 
showed a non-significant association between low SMI and 
OS/ PFS [38]. However, a recent study [51] showed that SMM 
decrease ≥ 2% during regorafenib treatment was significantly 
associated with a worse OS (HR 2.87; 95% CI 1.07–7.42, 
p = 0.03).

Imatinib

Imatinib is a kinase inhibitor approved for the treatment of 
newly diagnosed adult patients with Philadelphia chromo-
some-positive chronic myeloid leukemia in the chronic phase, 
in the blast crisis, in the accelerated phase, or chronic phase 
after failure of interferon-alpha therapy. It is also used in pedi-
atric patients with Ph + CML in chronic phase who are newly 
diagnosed, or whose disease has recurred after stem-cell trans-
plant, or who are resistant to interferon-alpha therapy. Imatinib 
can be administered to adult patients with unresectable, recur-
rent and/or metastatic dermatofibrosarcoma protuberans and 
in patients with c-kit positive unresectable and/or metastatic 
malignant GISTs [62]. Imatinib is a 2-phenyl amino pyrimi-
dine derivative that functions as a specific inhibitor of several 
tyrosine kinase enzymes. Only one study [15] evaluated the 
associations between toxicity and muscle mass. Pre-treatment 
low SMI was not associated with grades 3–4 toxicities, but the 
mean number of all-grade toxicities was significantly higher in 
patients with low SMI vs patients with high SMI (4.1 vs. 1.7; 
p < 0.01) after 3 months of treatment [15].

Gefitinib

Gefitinib was approved for the treatment of patients with meta-
static, EGFR mutation-positive NSCLC [63]. One study [36] 
suggested that gefitinib-treated patients with low SMI had a 
trend toward higher cutaneous toxicity, even if not statistically 
significant, and required more dose reductions. In this study, 
low SMI did not significantly affect the number of all-grade 
toxicities according to the NCI-CTCAE but a significant asso-
ciation between low SMI and poorer OS was observed (HR 
0.45, 95% CI 0.22–0.96, p = 0.035) [36].

Pazopanib

Pazopanib is a kinase inhibitor indicated for the treatment 
of patients with advanced RCC or advanced soft tissue sar-
coma, having received prior chemotherapy [64]. Pazopanib 
is a VEGFRs inhibitor with activity against VEGFRs1-3, 
PDGFR, c-KIT, and FGFR [65]. One study [37] was found, 
demonstrating that baseline SMA and LBM were significantly 
associated neither with DLT due to pazopanib treatment, nor 
with OS and PFS.

Discussion

We have systematically reviewed the currently published 
literature to evaluate the effect of muscle mass on treat-
ment toxicity and survival during TKI therapy. The major-
ity of included studies were related to sorafenib and suni-
tinib while a small number of recent studies evaluated 
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the impact of muscle mass on clinical outcomes during 
lenvatinib, regorafenib, imatinib, gefitinib, pazopanib 
therapies [66].

This review highlights a significant association between 
low muscle mass and toxicity during TKI therapy. Specifi-
cally, in two studies analyzing HCC patients, low mus-
cle mass is significantly associated with DLTs during 
sorafenib treatment. Moreover, in RCC patients, pooled 
data from sunitinib studies showed that low muscle mass 
could be also a risk factor of DLT during treatment, 
although not significant. As regards imatinib, lenvatinib, 
regorafenib, low muscle mass during treatment could 
be significantly associated with toxicity while low mus-
cle mass in patients treated with gefitinib and pazopanib 
did not appear to be significantly associated with toxic-
ity. These results highlight the complexity of the toxicity 
responses induced by TKI treatment and its association 
with muscle mass. We can hypothesize that the associa-
tion of muscle mass with TKI side effects may depend on 
cancer type. Especially, in HCC, detrimental effects on the 
nutritional status of the patient and consequently on the 
tolerability of the treatment are also due to the underlying 
concurrent disease, the liver cirrhosis [63]. In addition, 
the association between muscle mass and toxicity could be 
influenced by the number of inhibited targets (single ver-
sus multikinase inhibitors), the strength of target inhibition 
(affinity to the tyrosine kinase), and the type of inhibited 
target [67]. In particular, some TKIs—such as sunitinib, 
sorafenib, lenvatinib, regorafenib—mainly targets VEGFR. 
Interestingly, VEGF promotes the growth of myogenic fib-
ers and protects the myogenic cells from apoptosis [68]. 
Thus, by inhibiting targeted receptor tyrosine kinase such 
as VEGFR, some TKIs could inhibit muscle growth and 
dysregulate skeletal muscle fiber size [20], exacerbating 
the decrease of skeletal muscle mass and the increase of 
toxicity. Furthermore, a recent study suggested that the 
inhibition of the Akt/mTOR pathway, a key regulator of 
the muscle protein synthesis, may explain the marked loss 
of muscle mass in the long-term use of mTOR inhibitors 
[69]. In this context, since the majority of TKIs are admin-
istered at the same dose regardless of body weight, we can 
conjecture that patients who had low body weight (and/or 
low muscle mass) would be at higher risk for toxicity. Only 
for lenvatinib, the recommended dosage depends on the 
patient’s body weight: 8 mg if < 60 kg and 12 mg if ≥ 60 kg 
[70]. Interestingly, an exposure–response relationship was 
observed between lenvatinib withdrawal and body weight, 
indicating that dose adjustment with optimal body weight 
cut-off values improves lenvatinib safety in the treatment 
of HCC patients [71]. We can further hypothesize that 
dosage adjustments for body weight—and muscle mass—
could improve the drug’s tolerability. Further studies are 

required to find algorithms to determine weight-based 
doses for each TKI therapy.

As regards OS and PFS, patients treated with sorafenib 
and sunitinib were mainly studied, given their long commer-
cial release and use in the clinical practice. A meta-analysis 
showed that low muscle mass was significantly associated 
with poor OS in patients with advanced HCC treated with 
sorafenib. Two studies [52, 53] found similar results in HCC 
patients undergoing lenvatinib therapy. During sorafenib and 
lenvatinib therapy, as previously described, low muscle mass 
could be associated with higher toxicity. It is known that 
low tolerability of chemotherapy leads to decreased survival 
and higher recurrence/treatment failure rates [43, 72]. There-
fore, in HCC patients treated with sorafenib or lenvatinib, 
adequate nutritional support should be proposed at diagnosis 
to counteract potential muscle mass wasting and improve 
prognosis. Furthermore, in RCC, SMI, and SMD were also 
assessed in patients treated with targeted therapies includ-
ing sorafenib, everolimus, and sunitinib [73]. Indeed, a con-
trolled trial showed that high SMD improved OS and PFS of 
these patients [73]. This could be explained by muscle den-
sity which is closely related to muscle lipid content [74] that 
is linked to inflammatory processes. Indeed, myosteatosis, 
the biological prerogative of low skeletal muscle radioden-
sity, often occurs in cancer and other inflammatory diseases 
[75]. Due to the lack of recognizable early symptoms, RCC 
cancer is frequently diagnosed at an advanced stage. Conse-
quently, a variety of catabolic pro-inflammatory cytokines, 
such as tumor necrosis factor-α and interleukin-6 are already 
induced, influencing myosteatosis. These promising results 
are needed to be confirmed. Further studies are required to 
define the threshold values for muscle density and assess 
its association with outcomes in patients treated with TKIs 
such as sorafenib and sunitinib. As regards other TKIs, few 
studies showed a significant association between low mus-
cle mass and OS during gefitinib and regorafenib therapies. 
These results confirmed that lower muscle mass in cancer 
patients may be associated with worse OS and PFS [76]. 
We can hypothesize that, during regorafenib and gefitinib 
therapy, decreased skeletal muscle mass may be exacerbated 
with the imbalance between proteolysis and muscle metabo-
lism induced by the inhibition of the Akt/mTOR pathway.

Furthermore, although the effects of mTOR inhibitors on 
muscle mass have yet to be fully elucidated, a recent nar-
rative review based on a systematic literature search [77] 
highlighted that the loss of skeletal muscle mass may be 
exacerbated by different TKI treatments—such as axitinib 
[22], lenvatinib [25], regorafenib [23, 51], sorafenib [26, 28, 
39], or sunitinib [27]. In this context, every effort should be 
made to attenuate muscle wasting through early recognition 
of the loss of muscle mass and effective personalized nutri-
tional support during these therapies. Further studies are 
required to investigate TKIs to understand whether muscle 
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mass could be a prognostic factor and whether early plan-
ning of nutritional strategies could improve prognosis.

The major strength of this systematic review lies in the 
gathering and analysis of the latest research on all TKI 
therapies, muscle mass, and clinical outcomes. Neverthe-
less, some weaknesses should be considered. First, for the 
majority of TKIs such as alectinib, bosutinib, cabozantinib, 
ceritinib, crizotinib, dasatinib, and nilotinib, no studies 
were found. Indeed, most data about toxicity and survival 
outcomes have focused on sorafenib. This bias could be 
explained by the fact that, in the setting of HCC and thyroid 
cancer, the real-life scientific research has mainly focused on 
sorafenib, since it was approved 12 years ago [55]. Secondly, 
data from the studies, retrospective in nature, are observa-
tional; therefore, the possibility of confounding and causal 
interference cannot be excluded. Randomized controlled 
trials (RCTs) could eliminate bias in treatment assignment, 
specifically selection bias, and confounding; however, RCTs 
evaluating the impact of a low mass in clinical outcomes 
without any support might be unethical. Another limitation 
is the high heterogeneity between studies because different 
sex-specific cut-offs were used, either based on study-spe-
cific medians [36, 42] or cut-off values from the literature 
[37, 38, 40, 50, 54]. Additionally, almost all of the studies 
did not have sufficient follow-up time for toxicity outcomes 
or reported completeness of follow-up, and included a lim-
ited number of patients, restricting the statistical power to 
detect an association. Finally, we only included English lan-
guage studies thereby introducing language bias leading to 
potential publication bias. However, previous studies have 
failed to demonstrate a systematic bias from the use of lan-
guage restriction [78, 79].

Notwithstanding these limitations, we can conclude that 
a low muscle mass during sorafenib therapy is significantly 
associated with worse outcomes in terms of OS and DLT, 
the last, especially in HCC patients. Moreover, the effect 
of muscle mass on clinical outcomes during all other TKI 
therapies remains almost unexplored. Studies with larger 
sample sizes, preferably using a prospective study design 
and with sufficient follow-up time, are needed to highlight 
the importance of the assessment of muscle mass as part 
of routine clinical practice for cancer patients undergoing 
TKI therapy. Information obtained from such studies could 
clarify the role of muscle mass in the metabolism of TKI-
based cancer treatment, and its association with toxicity and 
survival. It could be crucial to establish, in clinical prospec-
tive studies or a real-world context, if an early muscle mass 
loss, induced by the disease itself but eventually worsening 
during TKI therapy, is not only a negative prognostic fac-
tor but also a potential surrogate for response, duration of 
response and overall survival.
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