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A B S T R A C T   

Objectives: COVID-19 pandemic caused several alarming challenges for clinical trials. On-site source data veri
fication (SDV) in the multicenter clinical trial became difficult due to travel ban and social distancing. For 
multicenter clinical trials, centralized data monitoring is an efficient and cost-effective method of data moni
toring. Centralized data monitoring reduces the risk of COVID-19 infections and provides additional capabilities 
compared to on-site monitoring. The key steps for on-site monitoring include identifying key risk factors and 
thresholds for the risk factors, developing a monitoring plan, following up the risk factors, and providing a 
management plan to mitigate the risk. 
Methods: For analysis purposes, we simulated data similar to our clinical trial data. We classified the data 
monitoring process into two groups, such as the Supervised analysis process, to follow each patient remotely by 
creating a dashboard and an Unsupervised analysis process to identify data discrepancy, data error, or data fraud. 
We conducted several risk-based statistical analysis techniques to avoid on-site source data verification to reduce 
time and cost, followed up with each patient remotely to maintain social distancing, and created a centralized 
data monitoring dashboard to ensure patient safety and maintain the data quality. 
Conclusion: Data monitoring in clinical trials is a mandatory process. A risk-based centralized data review process 
is cost-effective and helpful to ignore on-site data monitoring at the time of the pandemic. We summarized how 
different statistical methods could be implemented and explained in SAS to identify various data error or 
fabrication issues in multicenter clinical trials.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) has affected all kinds of public 
health operations, including clinical trials. The World Health Organi
zation (WHO) declared COVID-19 as a public health emergency and 
proclaimed it a pandemic. In clinical trials, it is vital to allocate the 
medical resources and treatments among the subjects fairly. Due to 
COVID-19, patients hesitated to visit the clinical sites where they were 
worried about getting sick or infected by other people. As a result, pa
tients who missed scheduled visits due to COVID-19 related health is
sues, hospitalizations, self-isolation, quarantine, or lockdown. It became 
difficult for clinical sites to follow up with the patients and missed 
clinical information in the current situation. Clinical sites were trying to 
collect the missing information through alternative methods such as 
telephone calls. Data monitoring in clinical trials is essential to check 
data integrity and data quality. There were different types of data errors 

in clinical trials, and some sort of data errors are more important than 
others [1,28]. 

According to International Conference on Harmonization Good 
Clinical Practice Guideline (ICH GCP) (E6) definition, “Clinical moni
toring is the surveillance and regulatory efforts that monitor a partici
pant’s safety and efficacy during a trial[14].” Contract research 
organizations (CRO) monitor clinical trial data by proposing a data 
monitoring plan and then record, supervise, review, and report the 
findings of a clinical investigational product. A monitoring plan for an 
active trial was required to verify the data source through electronic case 
report verification or reviewing the trial data. Practical and careful data 
motoring of clinical trials by the sponsor or the contract research or
ganizations played a vital role in protecting human subjects and perform 
a high-quality study. Sponsors of clinical trials were required to oversee 
human rights and submit the trial data to the FDA. FDA published 
several guidelines about how the sponsors should monitor, conduct, and 
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progress clinical trials during COVID 19 pandemic[12]. Centralized data 
monitoring was one of the most efficient and cost-effective methods to 
ensure human rights, achieve a higher level of data quality, maintain the 
integrity of the trial, increase patient safety [7,13,28] (Baigent et al., 
2015). Due to the COVID-19 pandemic, on-site monitoring became 
difficult and the clinical sites have restricted on-site monitoring. 

Based on US FDA guidelines, risk-based monitoring ensures clinical 
trial quality by identifying, assessing, monitoring, and reducing the 
potential risks that may have affected safety and quality [11]. There 
were three steps in a risk-based monitoring approach; Firstly, identifying 
the essential data for a study based on the informed consent to inclu
sion/exclusion screening and mitigating adverse events. Secondly, per
forming a risk assessment to determine a specific source of risk and the 
study errors based on those risks. Finally, develop a monitoring plan 
describing the monitoring method, responsibilities, and the re
quirements to communicate [9]. 

We applied the risk-based data monitoring method in a dummy 
clinical trial data, showed the risk-based monitoring approach through a 
flow chart and provided several SAS programs, and showed how to 
detect data discrepancy and interpret the output. We have explained the 
benefits of the risk-based monitoring approach during the COVID-19 
pandemic and mitigate different risks in multicenter clinical trials. 

1.1. Data monitoring process 

Based on FDA and Clinical Trials Transformation Initiative (CTTI) 
guidelines, there were different methods to monitor clinical trials 
depending on trials’ focus and methodology [17]. The investigator 
personnel’s regular or periodic on-site visits remained the most favor
able data monitoring mechanism in a clinical trial. To maintain FDA 
data monitoring guidelines, sponsors typically performed source data 
verification every 4–8 weeks [26]. The coronavirus pandemic hampered 
the on-site data monitoring process, increased missing data due to 
participant infection, treatment disruptions, and loss of follow-up. Due 
to COVID19, the International conference on harmonization (ICH) and 
the international standards organization (ISO) emphasized centralizing 
monitoring instead of on-site monitoring, and FDA recommended a risk- 
based monitoring process [12]. When a sponsor carried out in-person 
evaluation through sponsor employees at the clinical investigation 
sites is termed as on-site monitoring. On-site monitoring’s primary 
purpose is to identify the reason for missing data, discrepancies in the 
case report form (CRF), and the source data and document the infor
mation to maintain data integrity and data quality. On-site monitoring 
helps assess compliance with the study protocol, drug accountability, 
and an overall idea about the trial’s quality. On the other hand, when 
data evaluation is carried out remotely by the sponsor personnel at a 
location other than visiting the clinical sites is called centralized data 
monitoring. Centralized data monitoring provides all the on-site moni
toring features and adds some additional advantages [2]. We have 
shown different steps of a centralized data review process in a flow 
chart. 

1.2. Importance of risk-based data monitoring process 

Over the years, risk-based monitoring has grown because it reduced 
the time-consuming and costly practice of on-site source data verifica
tion (SDV) [21]. The fundamental concept of a risk-based central 
monitoring system was to identify and mitigate risks. A risk assessment 
in a trial allowed us to identify protocol-specific risks, potential impacts 
of the risk factors and develop a risk minimization strategy to complete a 
trial successfully. In clinical trials, risk assessment focused on risks 
related to subject safety, trial integrity, and data quality. A complete and 
efficient risk assessment was vital because the regulatory organizations 
required documents and rationale for a selected central monitoring 
strategy [23]. Risk-based monitoring reduced the cost of a trial signifi
cantly compared to on-site monitoring. Risk-based data monitoring 

mainly depended on source data verification, a proven resource incen
tive method with a higher ability to identify and mitigate issues. Because 
efficient monitoring was essential to maintain patient safety, it was more 
critical to avoid on-site monitoring to reduce the risk of COVID-19 
infection from other patients, clinical staff, or site monitors. There are 
several reasons why risk-based monitoring was better than on-site 
monitoring, such as less error, low cost, efficient analysis, cross-site 
comparison, and timely results [28]. 

Risk-based centralized monitoring identified the data error through 
automated reviews [24]. Due to COVID-19, on-site monitoring was not 
possible and lots of sites restricted on-site monitoring. Centralized 
monitoring could reduce on-site monitoring and schedule visits to 
problematic study sites only. We could create a central risk dashboard to 
statistically and graphically check the data through centralized and risk- 
based monitoring to determine study outliers and inliers and identify 
any unusual patterns present in the data. Another advantage of a 
centralized review system was that it provided a cross-site comparison to 
assess the site performance and potential fraudulent data identification 
or miscalibrated data. Risk-based monitoring dashboard made it easier 
to identify and mitigate any ongoing trial issue too. A dashboard was 
prepared to monitor the data as the trial went on. For each study, spe
cific risk factors such as vital signs, adverse events, and serious adverse 
events could be monitored through the dashboard. If a site on the 
dashboard showed any irregular data or risk factors, the investigator 
could further investigate on-site data verification to in-depth statistical 
analysis [22]. 

2. Methods 

We classified risk-based centralized data monitoring into two groups: 
[1] the supervised monitoring process and [2] the unsupervised moni
toring process. We intended to implement a range of data monitoring 
processes for efficient data monitoring plans and reduce time-consuming 
and costly on-site source data verification. Our first goal was to follow- 
up all the subjects in a trial remotely using a patient data dashboard, 
identify trends and outliers from high-risk sites and perform statistical 
analysis to check possible data discrepancy. At the time of the COVID-19 
pandemic, on-site monitoring was not safe. Patients could also miss 
scheduled visits and visited the sites during weekends due to travel re
strictions or social distancing. We showed that a supervised data 
monitoring process could identify critical features such as patients’ 
enrollment violations, protocol deviation, adverse events, travel re
strictions by region or site, missing visit or dose due to COVID- 19 
pandemic, and overall site compliance. We also showed different un
supervised analysis process such as descriptive statistics to identify 
outliers or influential observations; Pearson correlation analysis be
tween the key variables to check whether values are copied across sites, 
digit preference to identify fabricated numbers, one way ANOVA to 
compare different groups that significantly differ from each other, and 
Chi-square goodness of fit to check a difference in frequency distribu
tions for two or more observations. 

3. Results 

3.1. Supervised monitoring 

To monitor the data collection process and ensure data quality, the 
supervised analysis could be utilized. Through supervised data moni
toring (SDMP), sponsors could monitor protocol compliance and main
tained a fair data collection process. For example, following the study 
visit time point, drug dosing date, inclusion/exclusion criteria, and 
missing data could be controlled through SDMP. The main idea for a 
supervised data monitoring process was to identify the key risk factors 
on different sites of a trial, such as the reason for missing visit or dose, 
loss of follow-up, incorrect inclusion in the study drug, duration of study 
drug, or reported adverse events due to pandemic. Key risk factors could 
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be chosen based on the risk that might impact the study’s quality [24]. 
During the risk assessment process, a tolerance threshold was deter
mined for each factor so that when a specific risk factor has fallen 
beyond the limit, the sponsors could detect the site, analyze the cause 
through central monitoring, and adopt necessary action to mitigate the 
risk [19]. There are several ways to select the cut-off points in the 
literature, such as ±15% of median, ± Standard deviation of the median, 
± median absolute deviation of the median, etc. [19]. The plot in Fig. 2 
shows the progress each patient has made in the study. Each vertical line 
represents the expected visit date, and each point represents the actual 
visit date, which allowed us to quickly see if patients had their visit 
within the ±2 day window. The plot is colored by whether or not they 
received their dose for that visit (legend is located on the bottom). 
Lastly, the arrow-shaped points indicate today’s date, which shows how 
far each patient is from the previous visit and how soon they are ex
pected to make their next visit. (See Fig. 1.) 

3.2. Unsupervised monitoring 

In the unsupervised analysis process, the different statistical analysis 
method was used to identify outliers, inliers, or any specific data pattern 
without any preconception. In the unsupervised analysis process, there 
was no predefined threshold or limit. The univariate or multivariate 
statistical analysis method was used to test the differences in distribu
tion and identify the risk factors [4]. The unsupervised analysis process’s 
key advantages include but are not limited to: efficient tool for multi
center studies and extensive data monitoring and data mining, easy to 
monitor outliers or extreme values and compared between sites, less 
time consuming and less costly [28]. 

3.2.1. Descriptive statistics and outlier detection 
Descriptive statistics and different data visualization techniques 

were used to identify outliers or influential observations. More than 1.5* 
interquartile range from 75 percentile were considered outliers in a box 
plot value. Fig. 3 showed a box plot of Hearts rate as one of the vital sign 
variables and plotted by state and study site to monitor the data. This 
box plot provided quick insights on where the outliers were and how 
skewed the results could be for each parameter for single or multisite 
studies. Multiple vital sign parameters could be monitored and 
compared simultaneously which reduced a lot of risk factors and 
ensured efficient study results. Other than a box plot, using a histogram, 
univariate distribution table, extreme value, distribution plots for 

subgroups, multivariate scatter plots, or influence statistics could also be 
helpful statistical methods to identify outliers. Fig. 3(a) showed the box 
plot of a vital sign parameter by state, and Fig. 3(b) showed the heatmap 
of the correlation matrix of five vital sign parameters. Based on Fig. 3(a), 
we saw some data issues for different sites for the state “C” and “P”. After 
checking the frequency distribution, we saw lots of missing data on those 
states. Fig. 3(b) indicated the correlation matrix of the vital sign pa
rameters for one site (site 110 for state M) and showed the respiratory 
rate negatively associated with heart rate and systolic blood pressure, 
which aligns with the other published papers. So, on-site location ‘110’ 
might have a data fraud issue and we need to check the missing data 
issues for the state “C” and “P”. We could also use cluster heatmap to 
identify similar sites or subjects with similar data sets for a large number 
of sites and patients [18]. 

3.2.2. One-way analysis of variance 
One-way ANOVA test was used to test the mean difference between 

two or more independent and normally distributed observations with 
equal variance and assumed the residuals follow a normal distribution. 
The normality assumptions of the residuals could be tested using his
tograms or Q-Q plots, influential data points were identified through 
Cook’s distance, and equality of variance could be tested using the test of 
homogeneity (such as folded t-test). Post hoc statistical analysis helped 
to compare different groups that significantly differ from each other. 

3.2.3. Chi-square goodness of fit test 
The Chi-square goodness of fit test was used to test a difference in 

frequency distributions for two or more observations. The sum of the 
squared difference between the observed and the expected values fol
lowed a chi-square distribution with a degree of freedom which corre
sponds to the number of observations considered during the Chi-square 
calculation. Like Z-score, Chi-square distribution was also used to 
identify a discrepancy in the data. Expected values were based on real 
data and calculated data. They were not supposed to lie too far or too 
close to the expected value. The chi-square statistic p-value could 
identify data fabrication or data error if the data too large or too small. 
There were two methods, such as digit frequency analysis and inlier 
analysis, that utilize chi-square statistics to identify whether the data 
lied too far or too close to the expected value or not. 

3.2.4. Digit frequency analysis 
Human nature favored specific digits during data fabrication [3]. 

Fig. 2. Ongoing Monitor study visits through a supervised monitoring dashboard. The “X” and blue circle indicate if the patient missed the dose for a specific visit or 
not. Here, “X” indicates if the patient missed a dose and a blue circle if they received their dose. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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Fig. 3. (a) Box plot of Vital sign parameters by state, (b) Pearson correlation matrix plot for the vital signs.  

Fig. 4. Examples of first-digit distribution with Chi-square p-value. (a), The first digit followed a perfect uniform distribution with a p-value of 1.00 (b), where the 
first digit followed an abnormal distribution with p-value 0.0001, and (c), where the first digit followed the normal distribution with a p-value of 0.001. 

Fig. 5. Mahalanobis distance by study sites. (a) Large distance identified outliers, (b) Small distance determined inliers.  
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Digit frequency analysis such as First digit analysis [5,27], Last digit 
analysis [3,8], or other digit analysis method could be utilized to detect 
an alleged data fraud. We used terminal data analysis using the chi- 
square goodness of fit formula, where the observed value was the 
number of times the digit between 0 and 9 appeared in all the sites as the 
first digit. Each digit’s expected values correspond to the number of 
measurements considered divided by 10 because the equal frequency is 
assumed for each digit. The degree of freedom considered for terminal 
digit analysis is the total number of digits − 1, which was 9. We took the 
Respiratory variable in our simulated data and identified the variable’s 
first digit for each site. We used Benford’s law [5,27] in our simulated 
data and showed three different digit analysis scenarios. When a ter
minal digit, either first or last, appeared more frequently than the other, 
it may be because of rounding to the nearest digit or data fabrication. 
Terminal digit analysis could help monitor the data quality and avoid 
data fraud or data errors. 

3.2.5. Inlier analysis 
In real life, data was expected to vary to a certain extent. The data 

which lied in the interior of a statistical distribution due to error is called 
inlier. Inliers were challenging to distinguish from good data points and 
required additional concern to identify and correct. Mahalanobis dis
tance was a multidimensional risk assessment method that combined a 
multidimensional risk score [6]. Mahalanobis distance was reduced to 
the Euclidian distance when normalized by the variance [29]. When the 
distance was computed for a univariate standard normal distribution, 
the distance was reduced to the (positive) z-score. Therefore, Mahala
nobis distance was the most flexible and optimal method to combine 
dimensions and identify risk factors. Mahalanobis distance was a mea
sure of distance and the mean away from zero (and not towards zero) 
was considered relevant. Mahalanobis distance helped identify inliers, 
indicating data fraud because it was less likely that a subject was an 
average for a broad set of variables [10]. We used our dummy dataset to 
create a Mahalanobis distance. Fig. 4 showed a boxplot of distance 
measured for each site compared to the multivariate distribution 
centroid. The distance measure was computed from 10 possible vari
ables. Fig. 5 represented Mahalanobis distance by the site to identify 
outliers (large distance) or inliers (small distance). This plot uncovered 
possible data errors and depicted critical differences in the study pop
ulation across sites. In the figure, large variability indicated a diverse 
study population or location, and low variability indicated a 

homogeneous population and identified any locations that required 
further investigation. Fig. 5(a) showed outliers based on Mahalanobis 
distance based on three vital sign parameters (diastolic blood pressure, 
systolic blood pressure, Heart rate), and we could see the outliers in site 
215 but it didn’t show the inliers information. In Fig. 5(b), the inlier 
based on Mahalanobis distance is shown. The vertical red line indicated 
the natural log of the degrees of freedom. Based on the distance, the 
smaller values indicated an inlier. We could see sites 210, 107, 205, and 
115 showed inliers and required further investigations. 

4. Discussion 

Over the decade, the number of clinical trials and their methodo
logical complexities evolved adequately, and clinical trials became 
genuinely global involving hundreds of sites from several countries. 
These trials’ critical challenges were to confirm effective data moni
toring, patient safety, and right and good data quality. The bottlenecks 
were vast geographic dispersion of the trials, many investigational 
variables, site support, different treatment, and inequality in standard of 
care. The traditional monitoring techniques of sponsors on-site visit was 
becoming expensive, time-consuming and burdensome. This on-site 
monitoring system even became impossible during the pandemic due 
to travel restrictions and social distancing. Risk-based monitoring 
identified the critical risk factors and helped to protect any scientific 
misconduct or data fraud. Intended or regular data fraud was not usual 
but may have significantly affected a trial’s integrity and jeopardize the 
life of other patients [16]. One of the standard data fabricated tech
niques was copying and pasting the existing data within or across study 
subjects. In such cases, a specific data pattern was visible in the study 
data and some values occurred more often than others. Each observa
tion’s frequency distribution could detect this kind of data fabrication 
and identified whether a value was copied to different subject charts or 
split into two groups [4,10]. 

Previously, several data monitoring ideas have been proposed, such 
as calendar check to find data error in dates or to identify any trend 
during the weekend or holidays [1,4]. In other studies, patient-level data 
monitoring was suggested by examining the date of randomization, vital 
sign test results, or error in follow-up appointment dates [15]. Kirkwood 
et al. suggested data monitoring methods using the R programming 
language. R was a free software programming language and a software 
environment for statistical computing and graphics. But R was not 

Fig. 1. Flow chart for centralized data review process.  
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widely used in Contract Research Organization or Pharmaceutical 
companies because of distrust of freeware. Moreover, for big data, R 
software became slow because it performed operations with everything 
in memory. In contrast, SAS could better handle big data and, more 
importantly, FDA used and preferred SAS over any other programming 
language. Timmermans et al. [25] used SMART™ software to monitor 
data quality and consistency in the Stomach Cancer Adjuvant Multi- 
Institutional Trial groups. They created a Data Inconsistency Score 
(DIS) based on the p-value associated with a triplet (center x variable x 
test). This was an expensive way of data monitoring with a limited scope 
of identifying correct data discrepancies. We have used SAS to perform 
the risk-based analysis, which is a more prominent language in FDA and 
pharmaceutical companies due to ease of learning, robust statistical 
analysis platform, and interaction with mu; multiple host systems. We 
have shown how risk-based statistical monitoring could ensure the 
clinical trial’s quality by finding, following, and decreasing the risk that 
could affect the study’s quality or safety. This method was less costly and 
less time-consuming. We have also shown a flow chart to show the 
different steps of a risk-based centralized data review process to better 
facilitate the data monitoring process and develop an appropriate data 
monitoring plan. 

COVID-19 pandemic raised different intercurrent events in a clinical 
trial. It is essential to assess several vital points during an ongoing study 
such as patient recruitment and treatment availability, data quality and 
data integrity, and the trial’s overall feasibility. The sponsors needed to 
take the necessary actions to reduce missing data due to COVID-19. Risk- 
based centralizing monitoring’s main objective is to ensure patient 
safety and maintain data quality and data integrity most efficiently and 
cost-effectively. Risk-based centralized monitoring played an essential 
role during COVID-19 by reducing the risk of getting infected. During 
the trial, a patient dashboard allowed to follow up a patient remotely. 
For multicenter studies, the sponsor can reduce the time and cost by 
monitoring and identifying the sites facing different issues related to 
COVID-19, such as patients who are missing schedule visits, study drugs, 
or facing adverse effects, and take necessary steps to mitigate the risk. It 
is more helpful and easy to monitor patient enrollments and data 
discrepancy for multisite and multi-location studies following our su
pervised data monitoring process. Several data errors can occur due to 
missing scheduled visits or missing dose, and this type of error can be 
reduced through supervised monitoring. Supervised data visualization 
at both patient and site-level will help to perform further unsupervised 
statistical analysis on the selected cites. Finally, a risk-based monitoring 
system can reduce one-fourth of the trial cost [20] and increase trial 
efficiency. The supervised analysis process will identify the critical risk 
factors, and later unsupervised analysis can be used to identify data 
discrepancy. 
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Appendix A. Appendix 

/*Creating Box Plot by different Subgroup S.A.S. code*/. 
PROC SGPANEL DATA = DATA_NAME; 
PANEL BY XX (SUBGROUP VARIABLE NAME); 
VBOX YY (VARIABLE NAME); 
RUN; 
/*Creating Multivariate Scatter Plot by different Subgroup S.A.S. 

code*/ 
PROC SGPANEL DATA = DATA_NAME; 
PANEL BY XX (XX, SUBGROUP VARIABLE NAME); 
SCATTER Y=VARIABLE_NAME X = VARIABLE_NAME; 
RUN; 
/* Finding Influential statistics in SAS */ 

ODS OUTPUT LSMEANS = LSMEANSOUT; 
PROC GLM DATA = DATA_NAME; 
CLASS CLASS_VARIABLE; 
MODEL RESPONSE = CLASS_VARIALE OTHER_VARIABLE; 
LSMEANS CLASS_VARIABLE/PDIFF STDERR; 
OUTPUT OUT = COOKSD (WHERE = (COOKSD≥ 4/&NOBS)) 

COOKD=COOKSD; 
QUIT; 
ODS OUTPUT CLOSE; 
/* Finding univariate Mahalanobis distance in SAS */ 
%MACRO MAHALANOBIS_DIS_UN(DATA=, ID=, VAR=); 
PROC PRINCOMP DATA = &DATA1 STD OUT = DATA1 OUTSTAT 

= OUTSTAT; 
VAR &VAR; 
RUN; 
DATA DATA2; 
SET DATA1; 
&VAR.D=SQRT (USS(OF PRIN:)); 
RUN; 
PROC SORT DATA = DATA1; BY &ID; RUN; 
PROC SORT DATA = DATA2; BY &ID; RUN; 
DATA MAHALANOBIS; 
MERGE DATA1 DATA2; 
BY &ID; 
RUN; 
%MEND; 
% MAHALANOBIS_DIS_UN (DATA = DATA_NAME, ID = ID_VARI

ABLE, VAR = VARIABLE_NAME); 
/* Finding multivariate Mahalanobis distance in SAS */ 
%MACRO MAHALANOBIS_DIS_MUL(DATA=, ID=, VAR1=, 

VAR2=, VAR3=); 
PROC PRINCOMP DATA = &DATA1 STD OUT = DATA1 OUTSTAT 

= OUTSTAT; 
VAR &VAR1 &VAR2 &VAR3; 
RUN; 
DATA DATA2; 
SET DATA1; 
&VAR &VAR2 &VAR3.D=SQRT (USS(OF PRIN:)); 
DROP PRIN; 
RUN; 
PROC SORT DATA = DATA1; BY &ID; RUN; 
PROC SORT DATA = DATA2; BY &ID; RUN; 
DATA MAHALANOBIS; 
MERGE DATA1 DATA2; 
BY &ID; 
RUN; 
%MEND; 
% MAHALANOBIS_DIS_MUL (DATA = DATA_NAME, ID =

ID_VARIABLE, VAR1 = VARIABLE1, VAR2 = VARIABLE2, VAR3 =
VARIABLE3); 

/***** Terminal Digit analysis*****/ 
ODS HTML STYLE = STATISTICAL; 
ODS GRAPHICS ON; 
DATA D; 
SET D1; 
DIG_LAST = mod(VAR_NAME,10); * select the last digit 
DIG_FIRST = SUSTR(PUT(VAR_NAME,best3.),1,2); * select the first 

digit 
RUN; 
/***********Last Digit**********/ 
PROC FREQ DATA = D; 
WHERE SITE in (‘SITE_NAME’ ‘SITE_NAME’); 
TABLES SITE*DIG_LAST /chisq plots = freqplot; 
run; 
ODS GRAPHICS OFF; 
ODS HTML CLOSE; 
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/***********FIRST Digit**********/ 
PROC FREQ DATA = D; 
WHERE SITE in (‘SITE_NAME’ ‘SITE_NAME’); 
TABLES SITE*DIG_FIRST/chisq plots = freqplot; 
run; 
ODS GRAPHICS OFF; 
ODS HTML CLOSE; 
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