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Abstract

Motivation: Large-scale computational docking will be increasingly used in future years to discrim-

inate protein–protein interactions at the residue resolution. Complete cross-docking experiments

make in silico reconstruction of protein–protein interaction networks a feasible goal. They ask for

efficient and accurate screening of the millions structural conformations issued by the calculations.

Results: We propose CIPS (Combined Interface Propensity for decoy Scoring), a new pair potential

combining interface composition with residue–residue contact preference. CIPS outperforms sev-

eral other methods on screening docking solutions obtained either with all-atom or with coarse-

grain rigid docking. Further testing on 28 CAPRI targets corroborates CIPS predictive power over

existing methods. By combining CIPS with atomic potentials, discrimination of correct conform-

ations in all-atom structures reaches optimal accuracy. The drastic reduction of candidate solutions

produced by thousands of proteins docked against each other makes large-scale docking access-

ible to analysis.

Availability and implementation: CIPS source code is freely available at http://www.lcqb.upmc.fr/

CIPS.

Contact: alessandra.carbone@lip6.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The large and constantly increasing number of protein structures

highly encourages using protein docking to obtain protein complex

structures from unbound conformations. In such experiments, a pro-

tein is fixed in the space and the interacting protein is rotated

around it and around itself. The space of relative positions is

explored through a large sampling of conformations, undergoing

several energy minimizations for the computation of the associated

free energy. Docking algorithms differ from one another basically

upon the energy function used, the degree of flexibility allowed and

the resolution chosen for protein representation (Gray, 2006). When

a large-scale docking experiment is addressed, with hundreds or

thousands of proteins docked against themselves, thousands of

millions of poses have to be analysed, thus the computation of each

of them should be as fast as possible. In this context, the bottleneck

between structure accuracy and computational cost emerges: on the

one hand, one seeks an accurate model of the complex structure,

and on the other hand, wishes a fast screening of the docking

decoys, realized with a scoring scheme that does not suffer from the

level of accuracy of the structures. Once a reasonable set of candi-

date solutions is retrieved, more refined procedures, like flexible

docking, can be applied (Andrusier et al., 2008).

The problem of properly defining a small subset of solutions

from docking calculations has been widely studied in the literature

(Moal et al., 2013). The idea is to rank all predicted conformations

with ad hoc scores, drawn either from the free energy or from
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statistical potentials. Interface contact propensities, or pair poten-

tials, capture the signal coming from the type of contacts at the

interface. They provide a statistical model estimating how often a

contact is expected to occur at the interface at random, given the

residue (or contact) frequency observed on a set of experimental

structures.

Previous studies showed the applicability of contact propensities

to the prediction of near-native docking decoys (Moont et al., 1999;

Lu et al., 2003; Huang and Zou, 2008; Liu and Vakser, 2011). The

simplest docking score proposed in the literature is based on the sum

of propensity values at the interface. Pioneering work is the one pro-

posed by Moont et al. (1999), who rank the decoys of a small set of

9 complexes after extracting information from datasets of intramo-

lecular (385 domains), homodimer (23 complexes) and heterodimer

(11 complexes) interactions. Lu et al. (2003) define a residue-based

propensity matrix on a dataset of true and false interactions and test

the ability of their score to discriminate near-native decoys for a set

of 21 complexes. Huang and Zou (2008) define a procedure itera-

tively improving the discrimination of near-native decoys by learn-

ing pair potentials on bound structures. Liu and Vakser (2011)

propose five pair potentials, defined either on experimental struc-

tures or on decoy sets. More sophisticated approaches propose lin-

ear combinations of pair potentials and energy terms (Feliu et al.,

2011; Fink et al., 2011; Pons et al., 2011), possibly weighted (Li

et al., 2007). A common practice is to learn optimal coefficients for

each term from docking decoys whose similarity to the native struc-

ture is known (Li et al., 2007). For example, SIPPER method (Pons

et al., 2011) combines knowledge-based and desolvation energy

terms to pre-screen docking poses for further refinement.

Here, we define a new contact propensity matrix, called CIPS for

Combined Interface Propensity for decoy Scoring, in which interface

propensity and local geometry are explicitly included; our pair po-

tentials are computed from a diversified set of 230 bound structures

(Vreven et al., 2015). We compare our method to three propensity

matrices (Glaser et al., 2001; Pons et al., 2011; Mezei, 2015) and to

two atomic potentials (Krissinel and Henrick, 2007; Pierce and

Weng, 2007) on three datasets, very different from one another in

composition, size and underlying docking algorithms. A simple com-

bination of CIPS with atomic potentials, not requiring a learning

step on the decoy sets, is also analysed. Finally, we study the impact

in decoys ranking of four propensity-based descriptors, which pro-

vide different characterizations of the interaction either based on

propensity values, contact counts or interface layers (Levy, 2010),

either computed for the whole interface or between ‘propensity

patches’. Supported by a series of computational experiments on

both full-atom (Tovchigrechko and Vakser, 2005; Tovchigrechko

and Vakser, 2006) and coarse-grain (Sacquin-Mora et al., 2008;

Lopes et al., 2013) decoy sets, we demonstrate that CIPS can be pro-

posed as a fast, accurate and robust method for decoys selection. It

is expected to be very useful to discriminate millions of docking con-

formations quickly.

2 Materials and methods

2.1 Combined interface propensities
The bias of contact hi; ji abundance at the interface expresses the

preference of amino acids i and j to be one in front of the other, pro-

vided that both i and j lie at the interface. Based on this idea, we

model interface propensity as a combination of two terms: the one is

contact-based, taking into account the preference of i and j to be in

contact, the other one is residue-based, expressing the preference of i

and j to be located at the interface (one belonging to a surface and

the second to the other). We further include, in the definition of the

contact-based term, a connectivity factor taking into account the

number of per-residue contacts. The final formula expressing the

bias of contact hi; ji abundance is given by

Pi;j ¼ ci;j � ri;j; (1)

where ci;j is the contact-based term and ri, j is the residue-based term

(see also Fig. 1A). Detailed explanation formula (1) is provided

below.

The contact propensity term. The interface propensity of a con-

tact hi; ji between amino acids i and j is a measure of how often the

contact hi; ji occurs at protein interfaces compared to the expected

frequency. It is usually defined as

log2

f obs
i;j

f exp
i;j

; (2)

where f obs
i;j and f exp

i;j are the observed and the expected fraction of

contacts of type hi; ji, respectively. Note that the notation hi; ji does

not impose any order between i and j. Given the number of contacts

ci, j of type hi; ji and the total number of inter-protein contacts

n ¼
P
hi;ji ci;j, the observed fraction of contacts of type hi; ji is given

by f obs
i;j ¼ ci;j=n. We compute the predicted fraction of contacts by

means of the residue–residue contact frequency as follows. The

amount of contacts involving amino acid i is given by ci ¼
P

j ci;j

and the contact frequency of i is defined as fi ¼ ci=n. The expected

fraction of contacts between i and j is given by f exp
i;j ¼ fifj.

The connectivity factor. We introduce a weight for f exp
i;j (see

above). The connectivity factor ai;j associated to hi; ji is a function of

the average number of contacts for residue types i and j, respectively.

It is defined as ai;j ¼ 1� a � vi � vj

� �
, where vk is the average contact

frequency of k, rescaled in [0, 1] (see Supplementary Table S1, third

row), and a is a fixed parameter (see Supplementary Section S1.2).

We obtain the following new expression for the interface contact

propensity [compare to Equation (2)]

ci;j ¼ log2

f obs
i;j

ai;jf
exp

i;j

: (3)

The term ci;j of (1) is the value ci, j in Equation (3) rescaled in [0, 1].

The residue propensity term. The amino acid preference at the

interface is modelled by the term ri, j associated to the pair hi; ji. It is

defined as

ri;j ¼ 1þ b � wi þwj

� �
; (4)

where the wk is the residue propensity of k from Negi and Braun

(2007) rescaled in �1;1½ �, and b is a fixed parameter (see

Supplementary Section S1.2).

2.1.1 Interface residues and residue–residue contacts

The accessible surface area (ASA) is computed with NACCESS

(Hubbard and Thornton, 1993) using a probe radius of 1:4 Å. The

interface is identified by the residues that lose ASA upon binding

(i.e. DASA > 0) (Levy, 2010). Inter-protein contacts are computed

between interface residues. Two residues are assumed to be in con-

tact if the distance within any heavy atom pair is below 5 Å. We con-

sider the support-core-rim model proposed in Levy (2010) defined

according to the degree of exposure to the solvent; the surface is

identified by the residues whose ASA is at least 25% of the total
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residue surface. A residue belongs to the support if it is buried both

in the bound and in the unbound form, to the core if it is exposed in

the unbound form and buried in the bound form, to the rim if it is

exposed both in the unbound and in the bound form. Note that the

DASA cut-off of 25% was chosen so that the number of residues on

each region is approximately the same (see Levy, 2010).

2.1.2 Experimental structures for propensity calculations

Properties of interface contacts are drawn from the analysis of the

230 bound structures of the Protein-Protein Docking Benchmark

(PPDB) v5.0 (Vreven et al., 2015). The dataset consists of 39

antibody-antigen, 46 enzyme-inhibitor, 26 enzyme complexes with

a regulatory or accessory chain, 17 enzyme-substrate, 23 G-protein

Fig. 1. CIPS propensity matrix and scoring of docking decoys. (A) Representation of the three components of CIPS propensity: residue–residue contact propensity

(left), connectivity level of interface residues (centre), and residue propensity at the interface (right). The contact propensity term is computed with Equation (2) and

normalized in [0, 1]; the number of contacts for amino acid k is the value vk in the expression of ai;j in Equation (3); the residue propensity of amino acid k is the value

from Negi and Braun (2007). (B) CIPS propensity matrix computed on PPDB v5.0 with Equation (1) by combining the three numerical components illustrated in (A). (C

and D) For each complex, the receptor is fixed (grey, at the bottom) and the docking solution (black) and the native conformation (grey) of the ligand are shown on

the top. The bar below each structure is coloured according to the propensity value (either from CIPS or Pons definition) of each contact at the interface; namely, for

CIPS matrix, Pi, j values are represented and coloured according to the gradient reported in (B). All contacts are represented and ordered from lower to higher pro-

pensity values. The number of inter-protein residue contacts is reported below the bars; their number depends on the distance between receptor and ligand (com-

pare structures of C and D). Note that CIPS and Pons values are not directly comparable. To account for this, we report the percentage ranking of the depicted

structures within the set of decoys for the same complex. (C). Four docking decoys from Dockground decoy benchmark for trypsin (receptor) in complex with trypsin

inhibitor (ligand) (PDB code: 2FI4). (D) Three docking decoys from CCD benchmark for antigen (receptor) in complex with antibody (ligand) (PDB code: 1QFW).

Molecular graphics are performed with the UCSF Chimera package (Pettersen et al., 2004) (Color version of this figure is available at Bioinformatics online.)
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containing, 24 receptor containing and 55 unclassified complexes

(others). PDB structures are downloaded from https://zlab.umass

med.edu/benchmark/.

2.2 Benchmark sets of docking decoys
The Dockground decoy benchmark (Liu et al., 2008) and the

Complete Cross Docking (CCD) benchmark (Lopes et al., 2013) are

used for testing. Both contain decoys issued from docking unbound

structures. The former is the result of rigid-docking experiments per-

formed with GRAMM-X (Tovchigrechko and Vakser, 2006) on

Dockground (Douguet et al., 2006). The decoy sets of the CCD

were computed with the coarse-grain model MAXDo (Sacquin-

Mora et al., 2008) on the PPDB v2.0 (Mintseris et al, 2005) (http://

www.lcqb.upmc.fr/CCDMintseris/). For each complex, we con-

sidered two instances, where a protein is either a receptor or a ligand

in the docking procedure. In this work, we use the 168 decoy sets

for the 84 true protein complexes.

2.2.1 Comparison with other pair potentials

Comparison of the results is performed against the propensity matri-

ces proposed in (Glaser et al., 2001), (Pons et al., 2011) and (Mezei,

2015). (Glaser et al., 2001) apply amino acid volume normalization

to residue frequencies; Mezei (2015) normalizes interface propensity

by surface propensity; Pons et al. (2011) compute residue frequen-

cies bias either at the surface or at the interface (we use the latter for

comparison). The matrix by Glaser et al. is computed on a set of

621 complexes, where a high fraction is constituted by homodimer

interfaces. The matrix by Pons et al. is computed on the 70 com-

plexes of the benchmark in (Chakrabarti and Janin, 2002). Mezei

matrix is computed on 1172 high-resolution structures.

2.2.2 Preparation of training sets and testing sets

The docking decoy benchmarks described above are used to build

two testing sets, as follows. To eliminate overfitting, all complexes

used in either Glaser or Pons matrices (PDB codes for Mezei matrix

are not available) are removed from both Dockground decoy bench-

mark and CCD benchmark. Note that we did not exclude the com-

plexes used for computing CIPS matrix (i.e. the PPDB v5.0, see

Section 2.1.2) from the testing sets, because they fully cover the

structures used to build the CCD benchmark (i.e. the PPDB v2.0).

The reduced testing set Dockground_ decoy_ filtered (DF) contains

51 of 61 decoy sets. Of note, 419 of 5523 decoys are classified as

near-native. The reduced testing set CCDMintseris_ filtered (CF)

contains 66 of 84 complexes, namely, 132 of 168 decoy sets (see

above). It contains 611 (182) acceptable (medium quality) decoys

of 247, 258; 105 (51) decoy sets contain an acceptable (medium

quality) solution. See Supplementary Section S1.6 for decoys classifi-

cation. The PDB codes of the testing sets are reported on

Supplementary Tables S7 (DF) and S8 (CF).

Two training sets are defined, consisting of crystallographic

structures from PPDB v5.0 (see Section 2.1.2). Redundancy between

training sets and testing sets is removed as follows. Within PPDB

v5.0, 19 complexes of 230 are shared with DF, thus they are

removed from PPDB v5.0 and the remaining 211 are referred to as

PPDB5\DF. Similarly, the 65 complexes of PPDB v5.0 already pre-

sent in CF are removed and the remaining 165 are referred to as

PPDB5\CF.

We further check the structural similarity between training and

testing sets. For this purpose, we use PIFACE (Cukuroglu et al.,

2014), a database of clusters of redundant protein–protein inter-

faces. The redundancy is very low: 20 of 211 complexes in

PPDB5\DF are structurally redundant with some complexes of

DF (see Supplementary Table S9); 8 of 165 complexes in PPDB5\CF

are structurally redundant with some complexes of CF (see

Supplementary Table S10). Training sets are filtered further: each

complex of PPDB5\DF (of PPDB5\CF) belonging to the same struc-

tural cluster of DF (CF) is removed. The training sets obtained after

this two-step filtering procedure are referred to as PPDB5\DF(nr) (91

complexes) and PPDB5\CF(nr) (157 complexes).

Summarizing, we built two testing sets: DF and CF, and

four training sets: PPDB5\DF, PPDB5\CF, PPDB5\DF(nr) and

PPDB5\CF(nr). Testing on DF is done with a model computed on ei-

ther PPDB5\DF or PPDB5\DF(nr), and testing on CF is done with a

model computed on either PPDB5\CF or PPDB5\CF(nr) (see also

Section 3.3).

2.3 The CAPRI targets set
We select top predicted models for all protein–protein CAPRI tar-

gets from Round 7 on (http://www.ebi.ac.uk/msd-srv/capri). Targets

with no acceptable models are discarded, resulting in 28 targets (see

Supplementary Table S11) and 8213 models (1214 acceptable, 796

medium, and 225 high quality). Based on CAPRI evaluation

(Lensink et al., 2007; Lensink and Wodak, 2010, 2013; Lensink

et al., 2016), we could identify 10 easy (2857 models) and 9 difficult

(2405 models) targets (we could not find enough information to

classify the remaining 9 targets). The easy class contains 834 (598)

acceptable (medium quality) models; the difficult class 88 (15) ac-

ceptable (medium quality) models.

2.4 Scoring structural models
We will refer to a decoy set for a complex C, denoted XC, as the set

of docking solutions for C. X denotes the union of XC over all com-

plexes C of a given dataset. Interface residues and contacts are

defined in the same way for both experimental structures and dock-

ing decoys (see Section 2.1.1). A score S(x) for a decoy x is defined

in two steps. First, each interface contact of type hi; ji is assigned the

value Pi, j computed with Equation (1) (as illustrated on Fig. 1C and

D). Second, the score for the whole interface is computed according

to one of the following three scoring categories: (i) the sum of all Pi,

js at the interface; (ii) the sum of Pi, js between specific interface re-

gions (Levy, 2010): core/core (C–C), core/supportþ core (C–CS),

core/coreþ rim (C–CR) and core/interface (C–SCR); (iii) the

propensity-based descriptors (see Supplementary Table S2), which

are computed either on the whole interface or on propensity patches,

and expressed as either the sum of Pi, js or as contact counts (see

Supplementary Section S1.3 for details). The final score assigned to

x is averaged over the interface [scoring category (i)] or its regions

[scoring categories (ii) and (iii)]. Unless specified otherwise, the

score S(x) of x is computed according to (i), namely

S xð Þ ¼ 1

n

X

hi;ji
ni;jPi;j; with n ¼

X

hi;ji
ni;j; (5)

where Pi, j is defined in Equation (1) and ni;j is the number of hi; ji
contacts.

2.5 Availability and implementation
CIPS is available at http://www.lcqb.upmc.fr/CIPS. It is written in

Cþþ and Perl and is supported on GNU/Linux and Mac OS X.

Instructions to install and use the package are provided in

Supplementary Section S1.11. In this work, the ASA is computed

with NACCESS (Hubbard and Thornton, 1993), but this is not a
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requirement; the user can force CIPS to use the open-access library

FreeSASA (Mitternacht, 2016). Experiments were run on an Intel

Xeon CPU with 3.50 GHz speed. The computational bottleneck is

interface calculation: it took 1 s (small complex<500 residues) to

7 s (large complex>2000 residues). The computation of the con-

tacts and of CIPS scores [see Equation (5)] does not add significant

overhead (<0.1 s).

3 Results

The prediction of protein binding sites, successfully realized by sev-

eral methods based on the observation that interface residues exhibit

a compositional bias and undergo slower evolution (Lichtarge et al.,

1996; Jones and Thornton, 1997; Zhou and Shan, 2001; Armon

et al., 2001; Lichtarge and Sowa, 2002; Pupko et al., 2002; Caffrey

et al., 2004; Neuvirth et al., 2004; Fernandez-Recio et al., 2005;

Liang et al., 2006; Innis, 2007; Leis et al., 2010; Zhang et al., 2010;

Segura et al., 2011; Jordan et al., 2012; Andreani et al., 2012; Laine

and Carbone, 2015; Maheshwari and Brylinski, 2015; Aumentado-

Armstrong et al., 2015), is not sufficient to correctly discriminate

near-native conformations from a set of docking decoys (Lopes

et al., 2013). This task requires joint information coming from both

protein partners. A test on the Dockground decoy benchmark (Liu

et al., 2008) shows that pair potentials pinpoint good quality models

with higher precision with respect to residue propensities (see

Supplementary Fig. S7). Docking scores realized with existing

knowledge-based methods take into account the distribution of

amino acid pairings, rather than residue distribution, at the inter-

face. Nevertheless, both pieces of information might be used jointly

to accurately select docking decoys. To corroborate this idea, we

compare CIPS model with other pair potentials (Moont et al., 1999;

Glaser et al., 2001; Pons et al., 2011; Mezei, 2015), on two decoy

sets and on selected models from CAPRI competition. The import-

ance of re-ranking structural models after docking calculations has

been explicitly addressed in CAPRI competition (Lensink et al.,

2016), where several groups specifically focused on models scoring

could contribute to. Among the best performing ones, we mention

HADDOCK, CLUSPRO and SWARMDOCK. Notice that energy-

based terms are often coupled with scores derived from knowledge-

based potentials. Combination of CIPS with atomic potentials

(Krissinel and Henrick, 2007; Pierce and Weng, 2007) highlights the

complementarity of the two approaches (statistical and energy-

based) in capturing correct binding modes.

3.1 Local geometry of interface contacts and the

propensity of residues to be at the interface
Contact propensities allow to capture the tendency of two amino

acids to set up inter-protein contacts. They account for the variability

in the number of contacts, which depends on the number of residues

at the interface and, possibly, on their volume and degree of exposure

to the solvent. The contact propensity we define on hi; ji is the contri-

bution of two terms [see Equation (1)]. The first one is contact-based

[ci;j , see Equation (3)] and expresses the tendency of i and j to make a

contact (see Fig. 1A, left); this factor regards two proteins as paired

upon complex formation. The second term is residue-based [ri, j, see

Equation (4)] and expresses the likelihood of i and j to be located at

the interface rather than on the rest of the protein surface (see Fig. 1A,

right); it is defined on single proteins, without knowing the partner.

These two factors constitute the key ingredients modelling protein–

protein interactions. Other important observations help us to refine

the model. Namely, our definition of contact propensity takes into

account the local connectivity of i and j at the interface (see Fig. 1A,

centre). The number of per-residue contacts changes according to the

amino acid (see Supplementary Fig. S1). Based on the observation

that residues making a lot of contacts tend to have lower contact pro-

pensity, a connectivity factor is included [see Equation (3)] to correct

for this bias (see Section 2.1 and Supplementary SectionS1.1). Notice

that most interfaces contain at least one residue making at least five

contacts (see Supplementary Fig. S2).

3.2 A matrix of combined interface propensities
Propensity values Pi, j computed with Equation (1) on PPDB v5.0 re-

sult in the propensity matrix reported on Figure 1B (see

Supplementary Table S4). It will be referred to as CIPS: Combined

Interface Propensity for decoy Scoring. The pattern shown by CIPS

matrix essentially points out that: (i) there is a strong tendency of

hydrophobic residues to be paired in the interaction; (ii) aromatic

residues (i.e. W and Y) play a crucial role in binding, with both

hydrophobic and positively charged residues, and (iii) oppositely

charged residues tend to be in contact, whereas residues with the

same charge are not. Detailed inspection of the matrix shows that

R-R is more favourable than K-K: this is due to their different inter-

face propensity and connectivity factor ai;j (see also Negi and Braun,

2007 and Supplementary Table S1).

We study the distribution of the values associated to the amino

acid pairs to test whether our statistical model for the interface con-

tact frequencies well describes the data. We observe that contact

propensities (i.e. the values ci,j for the amino acid pairs hi; ji) are

roughly partitioned in two halves, representing contacts occurring at

the interface respectively less often (ci;j < 0) or more often (ci;j > 0)

than expected (see Supplementary Fig. S3). This observation sup-

ports the consistency of our definition. This is not the case for

Glaser et al. (2001). The above test highlights that all-atom struc-

tures, implicitly considered in our computation of inter-protein con-

tacts, are more accurate compared to methods approximating a

residue with a single atom (Cb or Ca) (Moont et al., 1999), possibly

weighted by the side chain volume (Glaser et al., 2001). To test the

robustness of CIPS further, we replace residue–residue with atom–

atom contact counts in Equation (1), by keeping the same distance

threshold (see Section 2.1.1). The matrix obtained conserves the

qualitative behaviour of CIPS, but the signal is less sharp (see

Supplementary Fig. S4). Then, we test the effect of including hydro-

gen atoms on the structures [the Open Babel toolbox (O’Boyle et al.,

2011) is used]. The change in the matrix pattern is negligible (see

Supplementary Fig. S5).

We compare the performances among the matrix built with the

contact-based term alone, the one where the expected contact fre-

quency is weighted by the connectivity factor and the one where the

residue term is included (i.e. CIPS). Note that the first case corres-

ponds to a standard pair potential, defined on a given set of experi-

mental complex structures, where the amino acid pairing at the

interface is modelled according to the number of contacts per amino

acid. The inclusion of ai;j allows to better discriminate, with respect

to the other matrices, near-native decoys on DF and medium quality

decoys on CF. The inclusion of ri, j boosts CIPS discriminative

power, which turns out to outperform all existing methods (see

Supplementary Fig. S8 and compare Supplementary Table S12 with

Tables S15–17).

3.3 Scoring protein docking decoys at large scale
The ability of contact propensities to recognize docking structures

close to the experimental one relies on capturing the relative
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orientation of protein partners. To discriminate such conformations,

we make use of Equation (5) to score a docking structure, i.e. the

average propensity value at the interface.

As described in Section 2.2.2, two distinct training sets are used,

named PPDB5\DF and PPDB5\CF, for testing on Dockground_

decoy_ filtered (DF) and CCDMintseris_ filtered (CF), respectively.

Note that they guarantee unbiased testing (see Section 2). Thus, two

new matrices are computed: CIPSDF on PPDB5\DF and CIPSCF on

PPDB5\CF. These matrices highlight the robustness of CIPS. Indeed,

the correlation between CIPS and CIPSDF and between CIPS and

CIPSCF is very high, with q ¼ 0:99 and q ¼ 0:95, respectively.

We observe that removing structural redundancy at the interface

does not considerably affect the results (see below).

CIPS matrices and the pair potentials proposed by Glaser et al.

(2001), Pons et al. (2011) and Mezei (2015) are used to score DF

and CF. Correlations between the four propensity matrices are re-

ported in Supplementary Table S5. We also consider an ‘ideal ma-

trix’, describing pair potentials fitting the characteristics of the

docking decoys we want to test (see Supplementary Section S1.8).

We compute it [with Equation (S1)] in three scenarios (DF, CF with

acceptable decoys and CF with medium quality decoys), the idea

being to identify possible biases in near-native structures towards

specific amino acid pairings. The discriminative power of this ideal

matrix provides upper limits to the results obtainable with predic-

tions. Note that a similar study was already proposed with DECK

method (Liu and Vakser, 2011).

In the following, we measure the accuracy of the scoring schemes

we tested with the criteria described in Supplementary Section S1.9.

3.3.1 Dissecting how different parts of the interface contribute

to binding specificity

We ask whether either all interface contacts play a role in the specifi-

city of the interaction, only the “propensity-favourable” part of

them, or those connecting specific interface layers. We show that (i)

the whole interface is important for the interaction specificity, (ii) all

contacts, propensity-favourable or not, contribute to the recognition

of true interfaces and (iii) propensity values provide more accurate

discrimination compared to contact counts. To answer (i), we check

whether focusing on specific interface layers allows to capture

enough, possibly stronger, information for the discrimination of true

interactions. We employ the support-core-rim model (Levy, 2010)

(see Section 2). Contacts involving core residues are the most

abundant at the interface (see Supplementary Fig. S9). Hence, we

evaluate the effect of considering only core–core contacts, by pro-

gressively adding contacts involving support and rim. The analysis

with CIPS shows that contacts involving core residues explain only

part of the interaction, and that the best performance is obtained by

including all interface contacts (see Supplementary Fig. S10). This

effect remains consistent across different pair potentials (see

Supplementary Table S14). To answer (ii) and (iii), we apply four

propensity-based descriptors to the discrimination of true inter-

actions (see Supplementary Section S1.3 and Supplementary Table

S2). Two of them are computed on the whole interface; the other

two are computed on patches connected to the protein partner by

high propensity contacts (see Supplementary Section S1.4 for their

definition). We consider either propensity values or the number of

contacts with very high propensity value. We use normalized scores

because they are invariant upon re-scaling, which is essential for our

definition [see Equation (1)], and do not depend on interface size.

Supplementary Figure S13 and Supplementary Tables S15–17 show

the results obtained on DF and CF using the descriptors. “Total

propensity” outperforms the other three. On DF, its predictive

power reaches the ‘ideal’ result when patches are used (compare

CIPSDF and “decoy-based” on Supplementary Fig. S13A).

3.3.2 Scoring of all-atom docking decoys:

Dockground_ decoy_ filtered

To evaluate CIPSDF (see Section 2.2.2) on structures obtained with a

full-atom model, we consider the Dockground decoy benchmark

(Liu et al., 2008). Comparison of the discriminative power of the

propensity matrices is reported in Figure 2A (top). CIPSDF shows to

be a well-designed pair potential, able to dissect native from non-

native interfaces and to assign the highest scores to docking con-

formations that are close to the correct structure. CIPSDF performs

better than Glaser, Mezei and Pons matrices. Note that the correl-

ation with the decoy-based propensity is higher for CIPSDF matrix

compared to the other three (see Supplementary Table S6). CIPSDF

performance (AUC 0.87) is very close to the ideal result (AUC 0.90)

and the elimination of 19 complexes from the dataset of experimen-

tal structures does not affect much the outcome (compare CIPS and

CIPSDF curves in Fig. 2A). The discriminative power of Pons matrix

is remarkable too (AUC 0.83). The results are coherent when rank-

ing of near-native decoys is measured (compare Supplementary

Tables S15 and S20). CIPSDF assigns top 10% rank to 233 (56%)

near-native decoys, Pons to 205 (49%), Mezei to 174 (42%) and

Glaser 130 (31%), the ideal performance attaining 74% of near-

native decoys ranked on top 10% (see Supplementary Table S15).

By removing even structural redundancy at the interface, as

described in Section 2.2.2, the training set PPDB5\DF(nr) is used

to compute a new matrix called CIPSDF(nr). The correlation

between CIPSDF(nr) and CIPSDF is high (q ¼ 0:95). We observe that

the effect of structural redundancy is negligible (compare CIPSDF

and CIPSDF(nr) performances in Supplementary Fig. S11A and

Supplementary Table S18).

3.3.3 Scoring of coarse-grain docking decoys:

CCDMintseris_ filtered

Despite the optimal parameters for CIPS have been tuned on DF (see

Supplementary Section S1.2 and Supplementary Table S3), its rela-

tive performance compared to other propensity matrices is robust.

We show this with CIPSCF (see Section 2.2.2) on CF; this control

allows us to demonstrate that the propensity we define is actually

able to dissect good signal from noise, even for coarse-grain con-

formations. We perform two separate evaluations by assuming in

turn that a “near-native” decoy is either an acceptable or a medium

quality solution according to CAPRI definition (Lensink et al.,

2007) (see Supplementary Section S1.6). The results obtained by the

four propensity matrices are reported in Figure 2B and C (top). As

expected, compared to DF, all matrices exhibit worse performances

on CF, due to a docking schema applied to a coarse-grain resolution

of the structures. A general improvement is observed when going

from acceptable to medium quality decoys. CIPSCF is very precise in

discriminating near-native structures from the whole set of decoys,

especially for medium quality ones (AUC 0.83). CIPSCF and Pons as-

sign the highest number of near-native structures to the top 10%

ranking; CIPSCF outperforms all other methods on top 20% ranks

and below (see Supplementary Tables S16 and S17). The results are

in agreement with the fact that CIPS highly correlates with the

decoy-based matrices (see Supplementary Table S6). The discrimina-

tive power of the decoy-based matrix is strikingly higher than statis-

tical potentials, especially for medium quality structures (see

Supplementary Fig. S13C and compare Supplementary Tables S16
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and S17 with Supplementary Tables S21 and S22). Conversely, CIPS

is robust with respect to the set of complexes used: inclusion of

structures of CF in the computation of the propensity matrix lead to

a very slight difference in performance (compare CIPS and CIPSCF

curves in Fig. 2B and C). Similar to DF, we test the elimination of

structural redundancy at the interface (see Section 2.2.2) and use the

training set PPDB5\CF(nr) to compute a new matrix called

CIPSCF(nr). The correlation between CIPSCF(nr) and CIPSCF is very

high (q ¼ 0:98). Structural redundancy does not have perceivable ef-

fects on the results (compare CIPSCF and CIPSCF(nr) on

Supplementary Fig. S11 and Supplementary Table S18).

3.3.4 Comparison between CIPS and atomic potentials

Docking decoys are often ranked according to energy functions or

atomic potentials. To corroborate the performances we obtained on

DF and CF, we compare the above results with the predictive power

of atomic potentials. We select two tools widely used in the scientific

community for this purpose: PISA (Krissinel and Henrick, 2007),

combining energetic and entropic terms weighted by the number of

contacts; and ZRANK (Pierce and Weng, 2007), a sum of energy

terms, where weights are learnt from decoy sets built on 15 com-

plexes of PPDB v1.0 (Chen et al., 2003).

PISA outperforms ZRANK on DF, yielding 0.19 higher AUC

(see Supplementary Fig. S12A) and ranking 25% more near-native

decoys on top 10% (see Supplementary Table S19). On CF, atomic

potentials show good performances (see Supplementary Fig. S12B).

ZRANK is more precise in discriminating medium quality structures

(see Supplementary Table S19); this improved behaviour might be

due to the learning step performed on docking decoys. Note that the

training set used in ZRANK does not contain complexes from PPDB

v2.0. By comparing CIPSDF with PISA and CIPSCF with ZRANK,

we observe that propensity matrix and atomic potential perform-

ances are close to each other. On DF, CIPSDF outperforms atomic

potentials both in global decoy classification (see Fig. 2A) and in the

ranking within each decoy set (see Table 1). In contrast, CIPSCF dis-

plays better decoys classification than ZRANK, but the latter better

ranks near-native decoys on CF. This is particularly true on medium

quality structure classification where for the top 20% ranks,

ZRANK outperforms CIPSCF.

Fig. 2. Discriminative power of pair potentials, of atomic potentials, and of the combination of the two on all-atom versus coarse-grain decoys datasets. ROC

curves are computed on the union of the decoy sets and AUC values are reported for each method. (A–C) The score used is the average contact propensity at the

interface [see Equation (5)]. Dotted lines refer to the performances of the decoy-based potential, a propensity defined as the log-ratio between the contact fre-

quency on near-native and non–near-native decoys (see Supplementary Section S1.8). (D–F) The best performing pair potentials and atomic potentials on

Dockground_ decoy_ filtered (DF) and CCDMintseris_ filtered (CF), and their combination. PISAþCIPSDF and ZRANKþCIPSCF are defined as in Equation (S1). (A and D)

Analysis of DF. (B and E) Analysis of CF, with acceptable decoys labelled as near native. (C and F) Analysis of CF, with medium quality decoys labelled as near native. ROC

curves and AUC values are computed with the R packages ROCR (Sing et al., 2005 and Tuszynski, 2014) (Color version of this figure is available at Bioinformatics online.)

Table 1. Ranking of near-native decoys on all-atom versus coarse-grain decoys datasets

Top percentage rank Dockground_ decoy_ filtered CCDMintseris_ filtered (acceptable) CCDMintseris_ filtered (medium quality)

PISA CIPSDF PISAþCIPSDF ZRANK CIPSCF ZRANKþCIPSCF ZRANK CIPSCF ZRANKþCIPSCF

Top 1% 5 6 8 (63) 8 3 5 (18) 14 2 7 (22)

Top 10% 44 56 65 (90) 36 32 42 (66) 57 40 57 (78)

Top 20% 64 73 79 (94) 48 53 62 (90) 71 64 77 (90)

Top 30% 74 82 87 (98) 60 69 76 (96) 80 80 88 (94)

Top 40% 81 89 90 (98) 67 78 81 (96) 86 90 93 (98)

Top 50% 87 94 95 (100) 74 85 88 (98) 86 93 96 (98)

Entries represent the percentage of near-native decoys placed on each top percentage rank. The number reported in parentheses is the percentage of complexes

having at least one near-native decoy placed on each top % rank. Bold values indicate best performance.
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3.3.5 Combination of CIPS with atomic potentials reaches optimal

discrimination of near-native decoys

We show how a combination of pair potentials and energy functions

can improve both decoy classification and ranking. The ideal situ-

ation is the one where the two approaches capture distinct interface

features. To check for this, we compute the correlation between the

ranking assigned by pair potentials and atomic potentials, respect-

ively, to all decoys of DF and CF (see Supplementary Table S23).

Correlations are positive but low: 0.35 between PISA and CIPSDF

and 0.12 between ZRANK and CIPSCF, hinting that the two

approaches might use complementary information.

We combined pair potentials and atomic potentials (see

Supplementary Section S1.5) and evaluate the discrimination of

near-native decoys on DF and CF (see Fig. 2). PISAþCIPSDF per-

forms better on DF than either PISA or CIPSDF alone;

ZRANKþCIPSCF performs better on CF than ZRANK and CIPSCF

alone. PISA is always the best choice on DF when combined to any

pair potential (see Supplementary Figs S15A and S16A and

Supplementary Table S24). Conversely, on CF, ZRANK outper-

forms PISA when coupled to any pair potential (see Supplementary

Figs S15B and C and S16B and C and Supplementary Tables S25

and S26). The relative performance of pair potentials remains con-

sistent on combined scores, showing that CIPS provides the best dis-

crimination compared to the other matrices. Combined scores

always perform better, compared to atomic potentials and pair po-

tentials used alone, and almost reach the theoretical limit set by

decoy-based propensities, especially on DF (see Fig. 2A). On CF, the

difference in performance between the decoy-based matrix and pair

potentials is more evident (see Fig. 2B and C). However,

ZRANKþCIPSCF discriminates medium quality decoys consistently

better than ZRANKþPons. By combining atomic potentials and

CIPS as above, selection of near-native docking solutions is possible

with high precision (see Table 1). On DF, picking the top 10%

ranked decoys allows to retain 65% of near-native solutions and to

have at least one near-native for 46 out of 51 complexes (90%). On

CF, top 10% ranked decoys contain 42% and 57% of acceptable

and medium quality structures, respectively. They represent 69 out

of 105 decoy sets with at least one acceptable solution, 40 of them

having also one medium quality solution.

3.4 Scoring high-quality structural models: CAPRI

targets
CIPS performance is assessed on the top 10 models produced by

CAPRI participants, for 28 targets (see Section 2.3). We use the

near-native solution classification provided on CAPRI rounds.

Evaluation on this testing set is reported on Figure 3 and Table 2

(see Supplementary Fig. S17 and Supplementary Table S27 for de-

tails). CIPS outperforms the other three propensity matrices, yield-

ing at least 0.08 higher AUC (when acceptable or better decoys are

considered as near native). We identify 10 easy and 9 difficult tar-

gets (see Supplementary Table S11). The performances of the four

propensity matrices are reported on Supplementary Figure S18 and

Supplementary Table S28. CIPS equals or outperforms existing pair

potentials, irrespective of the quality of the solutions and on the con-

formational change upon binding.

3.5 Classes of complexes where CIPS fails
CIPS almost always assigns high score to near-native structures.

When it fails, the best rank assigned by CIPS to a near-native is not

far from the best rank assigned by other methods. In Supplementary

Figures S21–25, we illustrated this observation on each decoy set of

the CF dataset.

CIPS behaves better on DF rather than on CF. Namely, on DF,

for 50 (for 44) out of 51 decoy sets, 75% of the near-native poses

are ranked on top 50% (on top 20%). We recall that DF poses have

been generated by full-atom docking while coarse-grain docking

generated CF poses. This means that the quality of the poses might

influence CIPS ranking.

In the attempt at characterising the decoy sets where CIPS does

not perform well in CF, we defined three classes of decoy sets based

on CIPSCF ranking of near-native poses (see Supplementary Section

S1.10). For each class, we computed the physico-chemical properties

of the experimental interface and concluded that CIPS fails to rank

near-native solutions on top when the interface is enriched in

charged residues and in contacts between opposite charges (see

Supplementary Fig. S26, top left). Note that the same observation

holds true for the decoy set in DF that was not ranked properly by

CIPS, also presenting a highly charged experimental interface.

Finally, we observed that the interface size does not affect

CIPSCF performance.

4 Discussion

It has been shown that protein–protein interfaces span a wide range

of sizes, which are not related to binding strength, and that the apo-

lar tendency is variable (Nooren and Thornton, 2003). We analyse

in depth the characteristics of the interface by identifying groups of

contacts that are susceptible to carry the strength of the interaction,

we study which part of it is the most specific and we find that all

contacts are important for recognition. Focusing only on sub-

regions of the interface hinders the discriminative power of

knowledge-based methods for decoy scoring. We demonstrate that

Fig. 3. Discriminative power of pair potentials on 28 CAPRI targets. Scores

are defined as for Figure 2. Acceptable (left) and medium quality (right)

decoys are labelled as near native (Color version of this figure is available at

Bioinformatics online.)

Table 2. Ranking of near-native models of 28 CAPRI targets

Acceptable Medium quality

Top percentage rank Glaser Mezei Pons CIPS Glaser Mezei Pons CIPS

Top 1% 0 0 1 1 0 0 0 0

Top 10% 8 11 9 11 6 10 8 9

Top 20% 18 23 22 27 14 21 19 24

Top 30% 32 35 35 42 26 33 32 38

Top 40% 44 47 49 56 38 43 46 52

Top 50% 57 58 62 69 52 56 58 65

Entries represent the percentage of near-native decoys placed on each top

percentage rank. Bold values indicate best performance.
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capturing information coming from both amino acid specificity at

the interface and their coupling in the interaction allows to discrim-

inate high-quality structural models, among thousands of decoys,

with high precision. Taking into account the level of connectivity of

each residue type further refines the method. Previous studies (Pons

et al., 2011) defined a performing propensity matrix based on the

interface random model instead of the contact random model used

in CIPS. Interface residues and contacts are detected with the same

criterion for the two approaches and their difference in performance

is mainly due to the introduction of the interface residue propensity

in CIPS. We find out that CIPS is more powerful than three other

propensity matrices available in the literature and two widely used

atomic potentials: PISA (Krissinel and Henrick, 2007) and ZRANK

(Pierce and Weng, 2007). On Dockground decoy benchmark, CIPS

alone performs far better than a learning method previously pro-

posed (Fink et al., 2011). A decoy-based potential, directly using ex-

perimental information on the complexes to be evaluated and

representing the physico-chemical properties of the interaction con-

tacts, allowed us to check how our method behaves with respect to a

reference. We observe that a score defined as the combination of

CIPS and atomic potentials almost reaches the “ideal” performance.

This effect is more evident on the decoys obtained with a full-atom

model. Note that no refinement is applied on coarse-grain struc-

tures, thus clashes might occur; moreover, on some structures of CF,

the conformational change is not negligible (see Supplementary

Section S1.7), but CIPS copes well with it (see Supplementary Fig.

S14 and Supplementary Table S13). DF is an easier testing set com-

pared to CF. On DF, decoys are selected by knowing the experimen-

tal structure; on CF, they are filtered according to a coarse-grain

energy function. We observe that the total number of interface con-

tacts well discriminates near-native solutions in DF (AUC 0.82), sug-

gesting that normalized scores are needed to partially get rid of the

bias associated to decoys pre-selection.

The construction of ‘ideal matrices’ for DF and CF (see

Supplementary Fig. S6) leads us to observe that amino acid pairings

involving aromatic residues and hydrophobic contacts are more

abundant at near-native interfaces compared to non-near-native

ones. Surprisingly, contacts between oppositely charged residues do

not discriminate true interactions. This might be due to the inclusion

of a Coulomb energy term in the docking procedure, which might

drive the search towards wrong conformations with lots of positive/

negative contacts. Instead, interaction specificity might be the result

of a complex combination of signals at the interface, as suggested by

our analysis performed with propensity-based descriptors. Note that

the low specificity associated to positive/negative contacts in near-

native conformations is in contrast with the pattern observed on

most of the propensity matrices found in the literature, including

CIPS (compare Fig. 1 and Supplementary Fig. S6B). Consistently,

we observed that CIPS predictions are worse on highly charged

interfaces (see Section 3.5), so alternative methods might be de-

signed in this case.

5 Conclusion

Protein partner prediction is a fundamental problem in biology that

needs to be tackled with robust computational pipelines, the first

steps being docking calculations and filtering out incorrect conform-

ations. CIPS is a valuable method for systematically screening the

large amount of poses returned by large-scale cross-docking. It is

fast, accurate and robust upon decrease of protein structure reso-

lution; thus, it can be safely employed for scoring structural models

obtained with coarse-grain docking methods. Further applications

of the method might be CIPS direct inclusion in the docking proced-

ure, similarly to Mintseris et al. (2007), to guide and speed up the

search within the conformational space. From a broader point of

view, CIPS can be seen as a method able to add constraints to the de-

grees of freedom of the quaternary structure. The usage of statistical

methods have been successfully employed in the protein folding

problem (Süel et al., 2003; Weigt et al., 2009; Marks et al., 2012).

An emerging field of research focuses on the application of co-

evolution methods to inter-protein contacts, but the problem has

been shown to be much harder to solve (Wilkins et al., 2013; Hopf

et al., 2014). Pair potentials could contribute in a completely novel

manner to protein complex design.
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