
Reviewing Data Integrated for PBPK
Model Development to Predict
Metabolic Drug-Drug Interactions:
Shifting Perspectives and Emerging
Trends
Kenza Abouir1,2, Caroline F Samer1,3, Yvonne Gloor1, Jules A Desmeules1,2,3 and
Youssef Daali 1,2,3*

1Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency
Medicine, Geneva University Hospitals, Geneva, Switzerland, 2Institute of Pharmaceutical Sciences of Western Switzerland
(ISPSO), University of Geneva, Geneva, Switzerland, 3Faculty of Medicine, University of Geneva, Geneva, Switzerland

Physiologically-based pharmacokinetics (PBPK) modeling is a robust tool that supports
drug development and the pharmaceutical industry and regulatory authorities.
Implementation of predictive systems in the clinics is more than ever a reality, resulting
in a surge of interest for PBPK models by clinicians. We aimed to establish a repository of
available PBPK models developed to date to predict drug-drug interactions (DDIs) in the
different therapeutic areas by integrating intrinsic and extrinsic factors such as genetic
polymorphisms of the cytochromes or environmental clues. This work includes peer-
reviewed publications and models developed in the literature from October 2017 to
January 2021. Information about the software, type of model, size, and population model
was extracted for each article. In general, modeling was mainly done for DDI prediction via
Simcyp

®
software and Full PBPK. Overall, the necessary physiological and physio-

pathological parameters, such as weight, BMI, liver or kidney function, relative to the
drug absorption, distribution, metabolism, and elimination and to the population studied
for model construction was publicly available. Of the 46 articles, 32 sensibly predicted DDI
potentials, but only 23% integrated the genetic aspect to the developed models. Marked
differences in concentration time profiles and maximum plasma concentration could be
explained by the significant precision of the input parameters such as Tissue: plasma
partition coefficients, protein abundance, or Ki values. In conclusion, the models show a
good correlation between the predicted and observed plasma concentration values.
These correlations are all the more pronounced as the model is rich in data
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representative of the population and the molecule in question. PBPK for DDI prediction is a
promising approach in clinical, and harmonization of clearance prediction may be helped
by a consensus on selecting the best data to use for PBPK model development.

Keywords: physiologically-based pharmacokinetics, drug-drug interaction, clinical setting, metabolism, precision
dosing, transporters

INTRODUCTION

In more cases than expected, the therapeutical management
process involves a myriad of errors making drug-related
problems (DRP) a recurring reviewed subject. In general, a
large part of the DRP originates from drug prescribing issues
(Perry et al., 2020). Difficulties can range from prescribing an
inaccurate dose to inadequate administration frequency on top of
a known allergy or a drug-drug interaction (DDIs). Among these
risk factors, belonging to extremes of age, renal and liver
impairment, or having genetic variations, are likely to increase
developing DDI. Combination therapy is becoming increasingly
prevalent in managing concurrent or single disease (Bi et al.,
2018b), especially in geriatric patients. Previous Swiss studies
have shown that polypharmacy prevalence was 11.8% and that it
increased with age from 2.9% for age group 40–49 to 25.5% for
age group 65–81 (Castioni et al., 2017). Dechanont et al. showed
that DDI represents 1.1% of overall hospital admissions in this
population and that 22.2% of ADRs are related to DDIs.

Pharmacokinetic and Pharmacodynamic
Drug-Drug Interactions
A pharmacokinetic (PK) DDI occurs when a perpetrator drug
impacts the absorption, distribution, metabolism, or
elimination (ADME) of a victim drug in one or more of the
human body compartments. Pharmacodynamic (PD)
interactions occur when two medicines directly interact (for
example, on the same drug target) without altering the ADME
parameters. PK and PD interactions may enhance activity
(synergism) or decrease the effects (antagonism), affecting
plasma drug levels and effects and having more or less
severe consequences depending on the therapeutic margin of
a drug (Hanke et al., 2018). The clinical consequences of DDIs
can vary significantly in severity, from a simple rash to a life-
threatening event or a serotoninergic syndrome (Prieto Garcia
et al., 2018; Wang et al., 2019). The absorption of drugs and the
ability to metabolize them varies considerably from one
individual to another. The intrinsic difference between
individual patients is caused by the inheritance of variant
alleles, encoding drug-metabolizing enzymes. Genetic
variations are estimated to contribute 20–30% of the
variability in drug response (Sim et al., 2013).

Drug Metabolism and Transport
Drug metabolism is divided into phase I and phase II
reactions (Figure 1). Although most phase I metabolic
reactions are catalyzed by Cytochrome P-450 (CYP450),
the most studied metabolizing enzymes, other enzymes

such as oxidoreductase, esterases, and oxidases can also be
involved in phase I drug oxidation, reduction, and hydrolysis.
Phase II reactions are conjugation reactions in which phase I
metabolites or the parental compounds themselves undergo
glucuronidation, sulfonation, methylation, acetylation,
glutathione, and amino acids conjugation. The main
enzymes involved in phase II drug metabolism include
UDP-glucuronosyltransferases (UGTs), sulfotransferases
(SULTs), N-acetyltransferases (NATs), glutathione
S-transferases (GSTs), and various methyltransferases
(MTs) (Oda et al., 2015) In parallel to the metabolic
enzymes, membrane transporters also play a crucial role in
drug absorption, distribution, and elimination. In
complement to the metabolic phase I and phase II
elimination, the term phase III elimination is sometimes
used to describe the excretion of drugs and their
metabolites by carrier-mediated uptake of drugs (Döring
and Petzinger, 2014). Drug-transporters are membrane-
bound proteins expressed in various organs and play an
essential role in influencing drug absorption (phase 0) and
elimination (phase III) of drugs and their metabolites and
hence, therapeutic efficacy.

Genetic Polymorphism of Drug
Metabolizing Enzymes and Transporters
During the last decades, genes responsible for drug
metabolism and transport and their most common
functional variants have been identified based on the
sampling of extreme phenotypes. For instance, for the CYP
enzymes, four phenotypes with progressively increasing CYP
activity can be defined: poor metabolizers (PMs) lacking the
functional enzyme, normal metabolizers (NMs) homozygous
for normal alleles, intermediate metabolizers (IMs)
heterozygous for one deficient allele, or carrying two
alleles that result in reduced activity and ultra-rapid
metabolizers (UMs). The latter carry multiple gene copies
(Ingelman-Sundberg 2005). Based on similarities of the
sequence of genes encoding P450 enzymes, 18 CYP450
families are distinguished and branch out into 43
subfamilies (Waring 2020). All genes encoding P450
enzymes in families 1–3 are polymorphic (Zanger and
Schwab 2013). Up to now, more than 350 functionally
polymorphic CYPs (not counting the subvariants) that
affect the function and/or activity of the gene products
have been presented on the Human CYP allele
nomenclature committee web page (http://www.imm.ki.se/
cypalleles) (Zhou et al., 2009). The most important CYP
families related to drug metabolism are CYP1A, CYP2C-D-
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E, and CYP3A. Interindividual variability considerably marks
CYP1A2. Even though most of the CYP1A2 variability is due
to genetic elements, this enzyme’s activity and expression are
widely influenced by environmental factors. Cigarette
smoking and excessive consumption of broccoli, among
other things, are well-established CYP1A2 inducers
(Anttila et al., 2003; Vanduchova et al., 2016). CYP2C8,
CYP2C9, CYP2C18, and CYP2C19 are four highly
homologous genes that distinguish CYP2C subfamilies. Of
these four genes, CYP2C9 and CYP2C19, with a potential
functional impact on the drugs’ efficacy and adverse effects,
are the most clinically relevant. CYP2C9 is accountable for
15–20% of phase I metabolized drugs (Läpple et al., 2003).
CYP2E1 is responsible for the metabolism of 2.5% of
clinically relevant xenobiotics, mainly small molecules
(Hines 2008). CYP2D6 is the most polymorphic metabolic
enzyme, with over 145 different alleles to date (Gaedigk et al.,
2017). CYP3A subfamily enzymes include CYP3A4, CYP3A5,
CYP3A7, and CYP3A43. The first three shares 85% sequence
similarity responsible for 46% of the oxidative metabolism of
clinically relevant drugs (Williams et al., 2002). Besides the

CYPs mediated–DDI, the DDIs may be related to non-CYP
enzymes and transporters, the most important of which,
UGTs, uptake transporters (OATPs, OATs, and OCTs),
and efflux transporters (P-gp, BCRP). Comparably to
CYPs, UGT is principally located in the liver but can also
be found in other tissues. UGT1-UGT2 can be divided into 3
subfamilies UGT1A, UGT2A and UGT2B. The UGT1A1,
1A3, 1A4, 1A9, and 2B7 are the hepatic ones responsible
for conjugating 80% of common drugs known to be
glucuronidated. In addition, many drugs can act as UGT
inhibitors or inducers (Uchaipichat et al., 2006; Aceves Baldó
et al., 2013). Drug transporters are categorized into two
superfamilies: solute carrier (SLC) and ATP-binding
cassette (ABC). The SLC transporters are typically
involved in the uptake of drugs into the cells across the
basolateral membrane through facilitated diffusion or
secondary active transport. ABC transporters are efflux
transporters that utilize primary active transport. The well-
known transporters involved in DDIs are P-gp, BCRP (ABC
transporters), OATP1B1/OATP1B3, OAT1/OAT3, OCT2,
and MATE1/2K (SLC transporters).

FIGURE 1 | Overview of drug metabolism and transport in the liver. Drug metabolism is divided into phase 1 and phase 2 reactions. In phase 1 reactions, polar
functional groups are unmasked or introduced to the molecules through oxidation, reduction and, hydrolysis. The so formed phase 1metabolites can be readily excreted
or can undergo subsequent conjugation reaction with hydrophilic moieties (phase 2 reactions). Transporters play a complemental role to the phase 1 and 2 assuring the
phase 0 (uptake) and phase 3 (export) crucial to the drug elimination by metabolism.
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Predictive Models
Improvement in computational tools led to predictive models
used in clinical pharmacology. The main modeling approaches
are quantification of structure-activity relationships (QSAR),
quantitative systems pharmacology (QSP), and
Pharmacokinetic modeling (PK modeling). QSAR is based on
physicochemical and structural properties and identifies and
explains intra- and inter-individual variability. QSP describes
drug activity as a perturbation of a biological system. PK
modeling aim to explain all PK characteristics of a drug and
describe substrate’s and inhibitor’s, time-variable concentrations
(Figure 2). Classical PK models are static mathematical models
typically used to describe the relationship between the plasma or
relevant tissue concentration of the drug and time. Over time, the
classical approach based on a central compartment representing
plasma linked to one or two peripheral compartments via rate
constant evolved towards multicompartmental models referred
to as physiologically based pharmacokinetic (PBPK) (Jones and
Rowland-Yeo, 2013). Unlike other approaches, PBPK describe
time-variable concentrations of the substrate in the different
organs of the body. Comparatively to classical PK, it is a
bottom-up, dynamic approach integrating drug-specific data
and species physiology (system data, independent from the
drug) to assess the impact of single and or combined intrinsic
and extrinsic factors such as genetics, physiology, diseases, or co-
treatments, on drug PK and PD properties in a population of
individuals rather than an average subject. It divides the body into
anatomically and physiologically meaningful compartments
integrating system specificities and drug properties (Jones and
Rowland-Yeo, 2013). PBPK models are built based on the same

mathematical framework as classical PK models. PBPK
numerous compartments correspond to the different organs or
tissues in the body and incorporate biological and physiological
components of each. These compartments include the central
tissues of the body, namely, adipose, bone, brain, gut, heart,
kidney, liver, lung, muscle, skin, and spleen, and are linked by the
circulating blood system PBPK model structure is built upon the
system properties composed of two parts, the anatomical one, and
the drug-specific one. The system-related components consist of
an anatomical part that describe the species-specific physiological
parameters and a drug-specific part that describes the individual’s
drug’s ADME properties (Jones and Rowland-Yeo, 2013).
Therefore, the “system” operates the importance of
demographic, anatomical, and physiological variables such as
hepatic blood flow, CYP abundance, liver volume, and liver/renal
function as a function of disease or age.

Building a “system” property to PBPK models allows for
quantitative assessment of the impact of the covariates cited
previously. PBPK modeling strategy relies on the iterative
“Learn, confirm, and refine” approach (Darwich et al., 2017).
The PBPK model is developed and validated in a healthy
volunteer population starting from available data on the
literature and/or on data collected in preclinical studies or
from in vitro experiments. Following models building,
simulations are run in the target population using relevant
“system” and “drug” specific parameters. PBPK is an
established tool that is now accepted by the regulatory
authorities such as the Food and Drug Agency (FDA),
European medicines agency (EMA), and Japanese
Pharmaceuticals and Medical Devices Agency (PMDA)

FIGURE 2 | PBPK model components. PBPK models are separated into three main components: the drug, the system and the trial. Drug data include
physicochemical and experimental or predicted ADME data. System data include physiological data which relevant for the ADME properties of drugs. Trial data include
information on trial design such as administration route, dose regimen or trial duration (adapted from (Jamei 2016))
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(Shekhani et al., 2020). It provides a mechanistic framework for
predicting the time course of systemic and tissue exposure and
drug response to various routes of administration and dosing
regimens in different populations (age, gender, ethnic groups,
healthy volunteers, diseases) (Manolis and Pons, 2009). Open
platform initiatives such as PK-Sim and various PBPK platforms
such as SimCYP® and GastroPlus® have been developed. They are
user-friendly, do not require coding capabilities, and allow easy
handling of physiology-based modeling (Rowland et al., 2011).

Despite significant scientific advances over the past 50 years
and improved knowledge of enzymes and drug metabolism and
disposition, DDI still represents an issue. In addition, many
questions and challenges about the interplay between DDI and
metabolic enzymes/transporter’s genetic variation arise.
Therefore, it has become urgent for health to predict
vulnerability to DDIs that cause adverse effects. Here we
discuss the performance of the PBPK for predicting DDIs and
the different sources of information used to build PBPKmodels to
show what needs further investigation. Therefore, we have built a
specific knowledge base to document predictions using PBPK,
including peer-reviewed publications and models developed in
the literature from October 2017 to January 2021. PubMed
searches were conducted using “physiologically based
pharmacokinetics” and “modeling” in the manuscript’s
abstract or title. Articles were selected for review if published
in English and focused on PBPK modeling applied to human
pharmaceutical products. The publication was characterized
according to the class of medicines to which it related. In
addition, information about the software, type of model, size,
and population model was extracted for each article
(Supplementary Material). The final aim was to build a
repository of available PBPK models developed to date to
predict DDIs in the different therapeutic areas by integrating
intrinsic and extrinsic factors such as genetic polymorphisms of
the CYPs/transporters or environmental clues.

DISCUSSION

Related to what has been recently described in the literature (Min
and Bae, 2017), a review of recent models suggests that the majority
of PBPK models published after October 2017 are designed for the
assessment of DDI (68%) followed by dose adaptation for pediatric,
and then hepatic and renal failure. Most (73%) of the models were
developed using the Simcyp simulator. One of the unique features of
this software compared with other PBPK simulation software is that
it predicts drug fate in an average population and in “outlier”
individuals (Rostami-Hodjegan, 2012). Analysis of the published
models also revealed that most of them were built according to a
distribution model called full PBPK. This is an entirely mechanistic
model where each organ is represented as a compartment instead of
the simplified model. In the simplified model, the organs can be
grouped into one or two symbolic compartments, called “minimal
PBPK” (Kuepfer et al., 2016). An advantage of the full PBPK
strategy is that it simulates the exposure of a drug or its
metabolites in specific tissues that are not accessible to clinical
sampling.

Additionally, depth analysis of the report pointed out the
integration of the genetic aspect to the PBPK model in 23% of
them. As described above, CYP450 isoenzymes are characterized
by significant genetic polymorphism. Since CYP450 isoenzymes
functionality is critical to its impact, genetic polymorphism may
influence their magnitude (Tod et al., 2013). Although now
incorporated in some guidelines, the impact of
pharmacogenetic factors on the interaction between a drug
and CYP450 isoenzymes (drug-gene interaction [DGI]) does
not consider the change in the magnitude of the interaction
depending on the genotype in question. This interaction is rarely
considered in clinical practice, and systematic evidence of such
critical pharmacogenetics effects on DDIs is lacking.
Polymorphism also plays a crucial role in the metabolism of
drugs with multiple metabolic pathways.

In this optic, Bi et al. (Bi et al., 2018b) assessed the role of
previously unrecognized OAT2 transporter-mediated hepatic
uptake in the pharmacokinetic of high permeability-low MW
acidic and zwitterionic drugs (ECCS 1A) such as tolbutamide and
warfarin. To do so, they selected 25 ECCS 1A drugs and tested
transport activity using an in-vitro transport-transfected cell. The
majority of drugs selected showed an active uptake by plated
human hepatocytes. The data collected from in-vitro experiments
were used to power supply the models with additional data
related to the transport. The simulation was run considering
the uptake transport alone, the metabolism alone, and the
interplay between them. The transporter-enzyme interplay
approach improved prediction accuracy compared to the other
two approaches (average fold error � 1.9 and bias � 0.93). Bi and
coauthors underscored the importance of transporters in
evaluating and predicting the drug PK and suggest the lack of
transporters consideration in the field.

A complementary analysis of the clinical PK-DDI studies by
Huth et al. evaluated via a hybrid bottom-up and top-down
strategy the effect of DDI inducers or inhibitors of the CYP3A
and CYP2C9 enzymes on the systemic exposure of the
immunosuppressant Siponimod (Huth et al., 2019). Clinical
PK data from single and multiple ascending doses, absolute
bioavailability, human ADME, and fluconazole DDI study
results were used as bases in the PBPK model building. In
addition, the model was verified by fitting the predicted and
observed PK profiles. Simulated DDI potential of fluconazole
(CYP3A4 and CYP2C9 inhibition effect) and rifampicine
(CYP3A4 and CYP2C9 induction effect) on the systemic
exposure of Siponimod after oral administration was
compared with the respective clinical study. The Final PBPK
model was used to assess Siponimod DDI potential as substrate at
a steady state in the presence of specific CYP3A4/CYP2C9
inhibitors for six clinically relevant CYP2C9 genotypes. What
has been highlighted by these simulations is that when CYP2C9
metabolic activity is decreased (as is the case for CYP2C9 PMs
(*3/*3)), CYP3A4 becomes the primary pathway for drug
clearance. Thus, the introduction of strong CYP3A4 inhibitors
increases DDI risk in CYP2C9*3/*3 subjects compared to other
genotypes. This illustrated the impact when both CYP2C9 and
CYP3A4 pathways are less functional or inhibited. Moreover,
Huth and co-authors with these findings laid the foundation for
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DDI drug labeling recommendations, as they established the
relevant influence of CYP2C9 polymorphism on the DDI
behavior of Siponimod.

Similarly, Gong et al. addressed, with a hybrid bottom-up and
top-down full PBPKmodel, the case of BMS-823778, a potent and
selective inhibitor of a microsomal enzyme regulating the tissue
concentration of biologically active cortisol (Gong et al., 2018). In
vitro permeability of BMS-823778 was determined in a Caco-2
cell bi-directional permeability assay and effective permeability
was predicted with a Simcyp built-in algorithm based on in vitro
Caco-2 permeability results. Tissue:plasma partition coefficients
(Kp) in various organs including liver, kidney, spleen, adipose,
bone, heart, gut, muscle and skin were directly taken from a rat
tissue distribution study. Steady state volume of distribution (Vss)
was predicted based on the individual input Kp values in the
aforementioned tissues with a global Kp scalar of 1, using the
Rodgers and Rowland method in Simcyp. All these
physicochemical properties and ADME parameters were used
to construct the initial model. BMS-823778s major metabolism
pathway is CYP2C19, supported by other minor pathways,
mainly CYP3A and UGT1A4 (Cheng et al., 2018).
Comparative simulations leveraging available
pharmacogenetics and PK from clinical studies in healthy
subjects, Caucasian, Chinese and Japanese with various
CYP2C19 and UGT1A4 functionality were performed to catch
the inter-populational PK variability. The verified model was
applied to simulate BMS-823778 PK and predict potential DDIs
resulting from a CYP3A4 strong inhibitor in subjects with
CYP2C19 and UGT1A4 genetic polymorphisms. The in-vivo
clearance of BMS-823778 and CYP2C19 predicted phenotype
were directly correlated. Described clinical pharmacogenetics
studies did not demonstrate an impact of UGT1A4
polymorphism on BMS-823778PK. In contrast, the model
described the PK profile in subjects with the predicted
CYP2C19 PM phenotype and UGT1A4*1/*2 genotypes, who
had a 50% increase in exposure BMS-823778 compared to
those with normal UGT1A4 activity. With this particular
example, the research group has once again demonstrated the
place of pharmacogenetics in PBPK models development and the
performance of predicting the magnitude of PK and DDI when it
is challenging or not feasible in clinical settings.

This is particularly the case for pediatric populations, as
illustrated by Zakaria et al. (Zakaria and Badhan, 2018). In
African pediatric population groups, the study described an
effective PBPK model for predicting the impact of dosage
regimen alterations on target seven-day lumefantrine plasma
concentrations involving the CYP2B6. A process of five stages
was followed for model development, validation, and refinement.
The authors started by applying the lumefantrine compound file
to healthy, South African, and Ugandan populations and
opposing the obtained results to PK data from clinical studies.
The second step consisted of modeling lumefantrine-efavirenz
interaction and comparison with clinical data of two published
studies for validation and refinement. Following this, the model
has been applied in the pediatric population and validated against
clinical data. Finally, the polymorphic nature of CYP2B6 was also
taken into account in the model. Therefore, this study focused on

predicting the risk of efavirenz-mediated DDIs on lumefantrine
pharmacokinetics in African pediatric population groups
considering the polymorphic nature of CYP2B6. After
predicting the risk, Zakaria and co-workers proposed adapting
of the dosage regimen to avoid the observed phenomenon.
Indeed, they demonstrated that an extension of the current
artemether-lumefantrine treatment regimen from 3-days to 7-
days would counteract the reduction in efavirenz metabolism
common with the *6/*6 genotype and hence enhance the
attainment of target day-7 lumefantrine concertation in both
*1/*1 and *6/*6genotype groups, thereby reducing the risk of
recrudescence.

As with CYP2B6, CYP2D6, the most polymorphic metabolic
enzyme, is of significant interest when predicting the impact of
genetic on the vulnerability and magnitude of DDI. Storelli et al.
highlighted the pharmacogenetics testing significance by comparing
the magnitude of predicted and observed CYP2D6mediated DDIs in
different CYP2D6 genotypes using PBPK modeling (Storelli et al.,
2019). This work consisted of the first study evaluating the usefulness
of PBPK in predicting gene-drug-drug interactions with specific
CYP2D6 inhibitors and substrates. The group’s predictions and
observations converged on the following rule of thumb: the higher
the CYP2D6 activity, the greater the magnitude of the interaction.
Authors faced underpredictions of the DDI when using the bottom-
up approach on Simcyp with the experimental KI values in the case of
duloxetine and paroxetine models. To solve this, they opted to
optimize the models and used, for DDI modeling, KI values
obtained from in vivo DDI studies, rather than in-vitro ones were
analyzed and adapted via a sensitivity analysis. The new KI value was
then verified with a set of independent DDI data (in-vivo optimized
KI values). Through this work, the authors illustrate that in-vitro
models, although beneficial for collecting information, may not
describe specific mechanisms and therefore generate a margin of
error in the prediction. Therefore, the comparison of simulated data
with clinical data is crucial in the model’s validation and refinement.
This study illustrates PBPK modeling performance in predicting of
CYP2D6 genetic polymorphism effect on DDIs using verified initial
models and rich PK from dedicated genetic trials to predict the effect
of genotype on drug and substrate exposures.

Similarly, Chen et al. evaluated the systemic exposure of the
tyrosine kinase inhibitor gefitinib in CYP2D6 UM and NM (Chen
et al., 2018). Itraconazole DDI studies assessed the effect of the
CYP2D6 genotype on gefitinib PK. Predictions showed that the
gefitinib area under the curve (AUC) in CYP2D6 UM was
reduced by 39% compared to NM. However, these changes were
considered of limited impact because the reduced exposure was still
above gefitinib in vitro IC90 for the patients of interest. Thus, the
authors underline some challenges encountered with drugs identified
as highly variable, like gefitinib, when it comes to PK and intersubject
drug exposure. The present study demonstrated the unique potential
of PBPK in predicting drug-drug interactions in pharmacogenomic
subpopulations that could be hard to study due to low allele
frequencies in a patient population. Authors suggest PBPK
modeling as an alternative to conducting an actual clinical trial in
these cases.

In a context of sinogliatin late-stage development and PBPK
model development for study design and dose selection, Song
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et al. (Song et al., 2018) propose an effective strategy based on
mechanistic insight into human drug metabolism and
pharmacokinetic properties from preclinical in vitro and in
vivo data using algometric scaling (AS), in vivo-to in vitro
extrapolation (IVIVE) and steady-state concentration-mean
residence time (Css-MRT). As described in the paper, The AS
method provided the group for the model development with
human clearance and steady-state volume distribution after
intravenous administration. The IVIVE strategy allowed the
verification of the in-vitro metabolic data and confirmed the
predominant CYP enzyme involved in in vivo metabolism and
corresponding fraction. Concerning the Css-MRT approach, it
provided the knowledge on the interspecies difference that
enabled selection of the optimal species to construct the
preclinical PBPK model in some first in human studies.
Instead of basing the model construction of literature research,
authors implemented the available models with the collected
parameters obtained from human major pharmacokinetic
parameters analysis. The developed model successfully
predicted human PK and evaluated the effects of extrinsic
(e.g., DDI) and intrinsic (e.g., hepatic cirrhosis, CYP genetic)
factors on drug exposure supporting the development of the drug
candidate.

PBPK modeling is an assessed tool applicable to complex
interactions investigation implying multiple drugs and genetic
polymorphism, yet some authors propose its application for
Physico-chemical DDI detection. The research article by Türk
et al. (Türk et al., 2019) described, via whole-body PBPK models,
CYP2C8 and organic-anion–transporting polypeptide (OATP)
1B1-based DDGIs involving the perpetrator drug gemfibrozil and
the two victim drugs repaglinide and pioglitazone. PK-Sim and
Mobi modeling software were used for the model development,
and model construction relied on extensive literature research on
the physicochemical and ADME processes of the drugs of
interest. When available, system-dependent parameters were
taken as provided by the simulation software; otherwise, they
were collected from the literature. A total of 103 Clinical studies
were digitalized from the literature and divided into an internal
dataset for model building and parameter optimization and an
external dataset for model evaluation. In the process of complex
DDI modeling, the group demonstrated that a simultaneous
administration of gemfibrozil might decrease the poor
solubility of itraconazole, causing a decrease in absorption and
thereby a decrease of the plasma concentrations of itraconazole
and its metabolite. The same phenomenon was observed with
pioglitazone when co-administered with gemfibrozil plus
itraconazole. Through these two examples, the group
illustrates that PBPK modeling is a valuable tool to develop
and test hypotheses for unexpected clinical findings and raise
awareness of the possibility of solubility interactions often
put aside.

As a narrow therapeutic index drug, warfarin prescription
demands a personalized medicine approach to tackle the
interindividual variability and balance the therapeutic benefits
and bleeding risk. Individualization is made based on genetic
variants in CYP2C9 and vitamin K epoxide reductase (VKORC1).
As stated by Bi et al. (Bi et al., 2018a), another specificity to this

drug is that it is a racemic mixture of R- and S-enantiomers where
CYP2C19 and other CYP enzymes metabolize R-warfarin, and S-
warfarin is metabolized at 20% by CYP2C9. In this context and
following this clinical observation, authors developed a bottom-
up full PBPK model to evaluate the potential role of transporter-
mediated hepatic uptake in the disposition of both warfarin
enantiomers. The authors performed an in-vitro -in vivo
extrapolation implementing the models with in-vitro obtained
transporter kinetic data in primary human hepatocytes.
Comparatively, to when OAT2-CYPs interplay was considered,
when only CYP-mediated metabolism was assumed, authors
faced an underprediction of oral clearance of both
enantiomers. Despite the lack of clinical data needed to
validate the model, the model developed with the OAT2-CYPs
interplay recovered clinical pharmacokinetics, drug-drug-
interactions, and CYP2C9 pharmacogenetics. Overall, Bi et al.
have succeeded in demonstrating the utility of in-vitro data-
informed- mechanistic modeling and simulations to enable the
deconvolution of transporter-enzyme interplay and its role in
governing drug pharmacokinetics, especially for untestable
scenarios.

Clinical Perspectives
As described above, a considerable part of xenobiotic
biotransformation depends on the metabolizing enzymes and
transporters. This has an impact not only on drug design but also
on drug response. In this context, the regulatory authorities such
as the FDA and the EMA have required systematic risk-based
methodologies to evaluate drug parameters during the drug
development process (Jamei, 2016). PBPK is used for
mechanistic studies, aiding clinical development decisions, or
drug discovery in the pharmaceutical industry. At the research
and drug development, PBPK has already proven itself and is now
an integral tool in drug discovery and development. It is a good
tool for optimizing clinical trial designs, dose selection, and PK
extrapolation from the general population to more specific ones.
PBPKmodeling can also be applied as an alternative to DDI trials
in some special populations where actual DDI trials are hard to
conduct due to logistical and ethical reasons (Huang et al., 2013).
New drug application approval packages include preclinical and
clinical investigation data. The potential effect of a newmolecular
entity on the metabolism or transport of other drugs, as well as
the risk of being affected by other drugs, including recommended
clinical index substrates and specific inhibitors or inducers of
drug-metabolizing enzymes, are tested prior to the marketing
authorization application. In addition to being used as the basis
for new drug labels and summaries, the findings of those
investigations are made available in the scientific handbooks
and databases (Reis-Pardal et al., 2017). This provides
healthcare prescribers and providers with the know-how to
use the medicine safely and effectively. These data are also a
primary source of information for PBPK simulation for treatment
adaptation and dose prediction (Kuepfer et al., 2016). PBPK
model’s part on the drug parameters is built and optimized to
obtain the right absorption, distribution, metabolism, and
elimination profiles. When physicochemical or ADME
parameters are not available, they can either be predicted by
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the software according to implementedmathematical formulas or
extrapolated from in-vitro model measurements (Emoto,
Murayama et al., 2009). Different in-vitro systems are available
to collect data and allow model enrichment to obtain the best
predictive results. These systems include microsomes,
recombinant enzymes, hepatocytes, and liver cells. Although
different from each other, they all have the advantage of
reducing the risk associated with potential adverse effects in
humans, limiting costs, and having the potential for
widespread use (Stillhart et al., 2019). The study population is
critical in the prediction process, along with the parameters
related to the molecule studied and the galenic formulation of
interest. Therefore, different virtual populations have been
developed and are available within the PK modeling software.
A virtual population is characterized by its demographic
parameters such as mean age, the proportion of females and
males, but also by physiological and pathophysiological
parameters (Hartmanshenn et al., 2016). Organ size, blood
flow, and protein abundance parameters, for example, are data
that are modified to represent the target population and best
predict pharmacokinetics. More recently and with the emergence
of knowledge in pharmacogenetics, many simulations have been
performed during drug development to predict the vulnerability
to DDI in groups of patients with different genotypes (Pastino
et al., 2000; Wu et al., 2014; Djebli et al., 2015; Toshimoto et al.,
2017). Faced with this advance, many groups are trying to apply
the same principle to personalized medicine and are thinking of
implementing a pharmacokinetic prediction model based on
patient X-specific data within prescription support software.
This means individualizing the drugs PK prediction PK by
creating a computer model replicating the patients attributes
able to affect drug exposure: virtual twin appraoch (Polasek
et al., 2018).

Based on the drug and population parameters, PBPK aims to
optimize individual drug dosing regimens and ensure
therapeutics safety and efficacy. Other methods with the same
goal are currently used in the clinic, including therapeutic drug
monitoring (TDM). TDM is based on laboratory measurements
of a chemical parameter in the patient’s biological fluids at crucial
times to maintain drug concentrations within a targeted
therapeutic window (Ghiculescu, 2008). This clinically
implemented drug individualization approach, in contrast to
PBPK, is a short-term solution to facilitate dosing and account
for DDI. Although it compensates for inter and intra-individual
variability in drug response, the measures implemented are only
temporary and must be reevaluated for slight changes in intrinsic
or extrinsic factors (Ghiculescu, 2008). However, when TDM is
available, the generated data can be introduced into a PBPK
model to make the prediction more robust. Thus, a
multidisciplinary approach combining knowledge of
pharmaceutics, pharmacokinetics, and pharmacodynamics is
essential to predict the most appropriate drug response in
specific individuals.

In a study by Glassman et al., clinical pharmacist’s detection of
DDI on drug pairs was 44% (Glassman and Balthasar, 2019) and
went up to 66% in another study by Weidemann et al. (Weideman
et al., 1999). Despite the pharmacological knowledge of pharmacists

and physicians, detection tools seem necessary to reduce DDIs,
especially for new drugs on the market or complex treatments.
Clinical decision support systems are the product of computerized
physician order entry (CPOE) implementation combined with the
transition from manual order entry to electronic health records
(EHR). They have considerably improved the systematic screening
and detection of DDIs and decreased prescribing problems and
DDIs (Nuckols et al., 2014). Computerized systems implemented
with decision-support provide automatic alerts to the prescriber
based on analysis of clinical data in CPOE (Riedmann et al., 2011).
Alerts can be related to clinical issues such as duplicate therapy, drug
allergies, or potential DDIs. Although very advantageous, they have
several limitations. First, it provides support only at the step of
prescribing, taking into account relevant biochemical parameters in
aminimal number of cases. In addition, it has been reported that this
type of system generates “alert fatigues," causing them not to
consider the recommendations issued by the program at all
(Kuperman et al., 2007). For drugs for which polymorphic
enzymes/transporters are the main clearance factors, PBPK
simulations can be used to give a genotype-specific dose and
dose adjustment recommendation. This would be an essential
step in precision medicine without performing DDI studies for
all the genotypes involved. Accordingly, integrating prediction
software with prescribing support software may be of great
benefit and a big step forward in personalized medicine
(Venkatakrishnan and Rostami-Hodjegan, 2019).

CONCLUSION

Current treatment regimens rely on the anticipated relationship
between drug doses, plasma levels, and desired effect. Current
perspectives in individualized therapy and personalized medicine
aim to quantify anticipated changes in patients, evolving from
prediction in general populations to individual patient responses
and modeling. This review provides an overview of PBPK model
development and its integration into the application for PK
predictions and decision-making tools. Forty-six PBPK
modeling papers on the prediction of DDI potentials were
identified, and the advantages of PBPK modeling, including
accounting for time-varying changes and inter-individual
variability, were highlighted. In investigating DDI potentials
using PBPK modeling, a limited number of drug-metabolizing
enzyme-mediated DDIs has been considered by the published
studies. Moreover, the simulations were performed mainly on
healthy adult populations. Therefore, to broaden the scope of
PBPK modeling in predicting DDIs, more information about the
physiological properties of the organism and the incorporation of
environmental and pathophysiological conditions into disease
states is needed (Lenoir et al., 2020; Magliocco et al., 2020). In
addition, it must be taken into account that the patient genetic
makeup, concerning their drug-metabolizing enzymes and
transporters, determines the relationship between drug doses
and plasma concentration and thus therapeutic effect.
However, many data are required to implement predictive
systems in clinics, and genetic knowledge of CYP450 alone is
insufficient to predict DDI. Despite its remaining challenges,
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PBPK for DDI prediction represents an excellent asset for
regulatory authorities and drug development and a promising
approach in clinical practice in the frame of model-informed
precision dosing and individualized therapy.
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