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Abstract: In order to investigate the transverse flexural behavior of the UHPC waffle deck, a total of
six T-shaped UHPC beams, with varying longitudinal reinforcement ratios, were tested and analyzed.
The experiments, including material tests of UHPC and beam tests, were conducted. The material
tests of UHPC revealed that strain-hardening behavior in tension was exhibited, and the ratio of
uniaxial compressive strength-to-cubic compressive strength was 0.85. The beam tests showed
that all the T-shaped UHPC beams, even without longitudinal rebar, exhibited ductile behavior
that was similar to that of properly reinforced concrete beams. As the longitudinal reinforcement
ratio increased, more flexural cracks developed and a larger load-carrying capacity was provided.
Furthermore, the sectional analysis for the ultimate flexural capacity of T-shaped UHPC beams was
conducted. Simplified material models, under tension and compression, for UHPC were developed.
Based on the reverse calculation from the experimental result, the relation between reduction factor
to the ultimate tensile strength of UHPC, and longitudinal reinforcement ratios was formulated. As
a result, the predictive equations for the ultimate flexural capacity of T-shaped UHPC beams were
proposed, and agreed well with the experimental results in this study and existing studies, which
indicates good validity of the proposed equations.

Keywords: ultra-high-performance concrete (UHPC); flexural behavior; T-shaped beam; reinforce-
ment ratio; theoretical study

1. Introduction

Ultra-high-performance concrete (UHPC), as one kind of emerging fiber-reinforced
cementitious composite, characterized by its excellent mechanical performance and dura-
bility, was developed in 1970s [1–3], and has aroused interest all over the world in recent
decades. Different from conventional concrete, UHPC contains a matrix with densely
packed particles and a certain volume fraction of steel fibers. Attributing to the low water-
to-binder ratio and high compactness, UHPC has extremely low permeability [4], which
results in excellent durability. Moreover, UHPC exhibits ultra-high compressive and tensile
strengths, up to 150 MPa and 5 MPa, respectively, which are much larger than those of con-
ventional fiber-reinforced concrete (15–80 MPa in compression and 1–3 MPa in tension) [5].
Additionally, UHPC also exhibits strain-hardening behavior under tension, due to the ad-
dition of steel fibers [6], which also improves the ductility and energy dissipation capacity
of UHPC structural members [7]. Because of all these merits, as aforementioned, using
UHPC as bridge deck in the composite bridge has been demonstrated to be a promising
way to replace conventional concrete deck.
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The high strength of UHPC makes it possible to fabricate thinner and lighter bridge
deck with the same capacity as concrete deck. On the other hand, the reduced dimension of
the cross section results in the insufficiency of stiffness. Therefore, the concept of UHPC
waffle deck was proposed for both new construction and existing bridges [8,9] (Figure 1).
The conventional concrete deck is vulnerable to cracking, and then the hazardous substances
on the deck penetrate through the cracks and result in the durability problems of concrete
deck and steel, or prestressed concrete beams under the deck. Moreover, this technique does
not only improve the capacity and durability of the composite bridge, but also realizes rapid
construction by precast and assembly, and minimum disruption in traffic. So far, there have
been a number of experimental and analytical studies in this field [10–20], with an increasing
applications of UHPC waffle deck for new constructions and the replacement of concrete
deck in the existing bridges. The field evaluation of the first bridge, using prefabricated
UHPC waffle deck, was conducted by Honarvar et al. [21], and the design optimization was
suggested. Up to now, the longitudinal flexure [12–18,20], shear [19], fatigue behavior [10],
and connector of steel-UHPC waffle bridge deck [11] have already been reported, but it is
rare to see a study on the transverse flexural behavior. In essence, the transverse flexural
behavior of UHPC waffle deck could be idealized as the flexural behavior of T-shaped
UHPC beams, according to the equivalent strip width [9].
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So far, the flexural behavior of steel-reinforced UHPC beams with a rectangular
section has been widely studied [22–27]. The parameters, including reinforcement
ratio [22–24], fiber type [25], and content [26,27], were investigated by both experiments
and the analysis. However, there are few studies on the flexural behavior of T-shaped
UHPC beams. Shao et al. [28,29] studied the flexural behavior of T-shaped UHPC
beams by the bending tests and analysis, but the number of specimens were limited,
and the effect of longitudinal ratio on the flexural capacity of T-shaped UHPC beams
was not fully considered. In summary, previous studies indicated the improvement in
the flexural capacity, stiffness, and cracking behavior by using UHPC, but all of them
focused on the flexural behavior of UHPC beams with a rectangular section, and few
of them proposed predictive equations for flexural capacity with satisfied accuracy.
Furthermore, the effect of the longitudinal reinforcement ratio on the flexural capacity
of T-shaped UHPC beams was not adequately considered, which resulted in a lack
of theoretical basis for the design of UHPC waffle deck in the transverse direction.



Materials 2021, 14, 5706 3 of 17

Therefore, it is necessary to clarify the flexural behavior of T-shaped UHPC beams and
propose predictive equations of the flexural capacity of T-shaped UHPC beams with
sufficient accuracy, for the design of the transverse direction of UHPC waffle deck.

The purpose of this study was to investigate the flexural behavior of T-shaped UHPC
beams with varying longitudinal reinforcement ratios via four-point loading tests. The
material model of UHPC was developed based on the compression and uniaxial tensile
tests. The relation between the reduction factor to the ultimate tensile strength of UHPC,
and the longitudinal reinforcement ratio was formulated. The sectional analysis on the
ultimate flexural capacity of T-shaped UHPC beams was conducted, and the predictive
equations for flexural capacity were proposed.

2. Material Tests
2.1. UHPC

The mix of UHPC in this study incorporates water, premixed binder, steel fibers and
polycarboxylate superplasticizer. The steel fiber used in this study is shown in Figure 2
and its properties are tabulated in Table 1. Two percent steel fibers in volume fraction of
2% was added. The mix proportion of UHPC, which was a kind of commercial product, is
shown in Table 2. UHPC in this study was mixed by a horizontal forced mixer with single
shaft. After setting, all UHPC beams and specimens for tensile and compression tests were
cured in an environment with a temperature of 20 ± 2 ◦C and a relative humid above 90%
for 28 days.
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Table 1. Properties of steel fibers.

Length (mm) Diameter (mm) Strength (MPa) Shape Surface

13 0.2 >2850 Straight Smooth

Table 2. Mix proportion of UHPC.

W/B 1

(%)

Unit Weight (kg/m3)

Water Binder Quartz Sand Steel Fiber Superplastizer 2

18 164.51 913.96 1096.75 158 4.57
1 W/B stands for water to binder ratio; 2 polycarboxylic acid superplasticizer (Model: 3301C, provided by Sika
AG company).

2.1.1. Compression Tests

Both cube and prism specimens with dimensions of 100 mm × 100 mm × 100 mm
and 100 mm × 100 mm × 300 mm, respectively, were prepared to obtain the compressive
properties of UHPC. In compression tests, six cubes and six prisms were tested. Table 3
summarizes experimental results of compression tests, in which the mean values of cubic
and axial compressive strength are 166.0 and 141.8 MPa, respectively. The ratio between
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axial and cubic compressive strength was 0.85, which is far greater than that of conventional
high-strength concrete [30].

Table 3. Compressive properties of UHPC.

Material

Cubic Compressive
Strength

Axial Compressive
Strength Elastic Modulus

Mean 1

(MPa)
C.V. 2

(%)
Mean 1

(MPa)
C.V. 2

(%)
Mean 1

(MPa)
C.V. 2

(%)

UHPC 166.0 4.0 141.8 4.2 5.2 × 104 1.1
1 Mean stands for mean value of samples; 2 C.V. stands for the coefficient of variation.

2.1.2. Tensile Tests

The uniaxial tensile tests of UHPC were conducted as shown in Figure 3. A total of
three specimens with dimensions as shown in Figure 3a were tested. The setup of tensile
tests is shown in Figure 3b. A load cell was employed to measure the axial load. Two linear
variable differential transformers (LVDT) were used to measure the axial deformation
within the gauge length. The tensile load was applied based on the displacement at the
speed of 0.1 mm/min. After the first cracking, the tensile stress continued to increase as
more cracks developed, whereas the tensile stress began to decrease when the localization
of cracks occurred. As a result, the mean value of first cracking, ultimate tensile strength
and the strain corresponding to the ultimate strength are 4.14 MPa, 8.42 MPa and 0.007,
respectively. Figure 3c shows the damaged UHPC tensile specimens after testing. Figure 4
shows the tensile stress–strain curves of UHPC. The key parameters in these stress–strain
curves are tabulated in Table 4.

Table 4. Tensile properties of UHPC.

Material
First Cracking Strength Ultimate Tensile

Strength (MPa)

Strain Corresponding to
the Ultimate Tensile

Strength

Mean 1

(MPa)
C.V. 2

(%)
Mean 1

(MPa)
C.V. 2

(%)
Mean 1

(MPa)
C.V. 2

(%)

UHPC 4.14 1.2 8.42 7.4 0.007 8.9
1 Mean stands for mean value of samples; 2 C.V. stands for the coefficient of variation.
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2.2. Rebar

All deformed rebar with a characteristic yield strength of 400 MPa were used in this
study. A total of five kinds of diameters of rebar, namely, 6, 10, 12 16, 20 and 22 mm, were
used in T-shaped beams. The rebars with diameters of 6 and 10 mm were used as stirrups
and steel mesh in flange in all beams, respectively. The rebars with diameters of 6, 12, 16,
20 and 22 mm were employed as tensile longitudinal reinforcement in the web of beams.
In tensile tests of rebar, 5 samples at each diameter were prepared. Table 5 summarizes the
tensile properties of these rebars based on tensile tests.

Table 5. Tensile test results of steel bars.

Diameter (mm)
f y

1 f t
2

Usage SurfaceMean 3

(MPa)
C.V. 4

(%)
Mean 3

(MPa)
C.V. 4

(%)

22 470.5 0.2 651.0 0.0

Longitudinal
tensile bar Deformed

20 415.5 0.5 604.1 0.5
16 429.5 0.3 618.6 0.3
12 479.5 1.0 662.2 0.3
6 529.7 0.3 537.0 0.3

10 519.9 0.8 623.6 0.5 Steel in flange
1 f y stands for tensile yield strength; 2 f t stands for ultimate tensile strength; 3 mean stands for the mean value;
4 C.V. stands for coefficient of variation.

3. Experimental Program
3.1. Design of Beams

A total of six T-shaped UHPC beams, as listed in Table 6, including one without
longitudinal rebar (UT-00) and five beams with varying longitudinal reinforcement ratio
from 0 to 2.04% were prepared for loading tests. ‘UT’ stands for ‘UHPC beam with T-
shaped cross section’ and latter two digits stand for the diameter of longitudinal tensile bar.
In this study, the calculation of longitudinal reinforcement ratio (ρl) for T-shaped beams
followed Chinese code [30] and it could be expressed by Equation (1), as follows:

ρl =
As

bwh
(1)

where As is the total area of longitudinal tensile bars in web (mm); bw is the thickness of
web (mm); h is the total height of T-shaped cross section (mm). The experimental parameter
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in this study is the longitudinal reinforcement ratio. All beams had the same dimensions
and configurations as shown in Figure 5. The total height and width of T-shaped cross
section were 200 mm and 500 mm, respectively (h = 200 mm, bf = 500 mm). The shape
of web was not a rectangle, but a trapezoid. The flange was 60 mm thick (hf

′ = 60 mm)
and reinforced by the steel bar mesh with a size of 100 mm × 100 mm. The effective
height of T-shaped cross section (h0) was 165 mm in five beams with longitudinal rebar. To
prevent potential shear failure, singe-leg stirrups with diameter of 6 mm were arranged
with spacing of 100 mm in five beams with longitudinal rebar.

Table 6. Summary of beams.

Beam
L

(mm)
h

(mm)
h0

(mm)
bf

(mm)
bwh

(mm2)
Longitudinal Bar

As (mm2) ρl (%)

UT-00

3000 200 165 500 18,600

0 0
UT-06 28.27 0.15
UT-12 113.10 0.61
UT-16 201.06 1.08
UT-20 314.16 1.69
UT-22 380.13 2.04
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3.2. Experimental Setup

All T-shaped UHPC beams were tested under four-point loading, as shown in Figure 6.
A monotonic load at a speed of 0.2 kN/s, which was provided by a closed-loop controlled
hydraulic actuator (LETRY, Xian, Shaanxi Province, China), was applied at the center of the
spreader beam. Two bearings were set on the flange of beams and under the spreader beam
with a distance of 600 mm, while another two were set under the beam with a distance
of 2400 mm. The dimensions of load bearings and support bearing are the same, and are
200 mm× 500 mm× 200 mm. Two load bearings were directly sited on the flange of beams
while the two greased Teflon sheets were placed on the contact surface between the beam
and one support bearing to act as a sliding bearing. A total of five LVDTs, including two
LVDTs at the support bearings and the rest of three LVDTs at the locations as illustrated by
Figure 6, were implemented to monitor the deflection. One load cell was placed between
the load head and the spreader beam to monitor the applied load. Furthermore, as shown
in Figure 7, a number of electrical strain gauges were used in each beam to monitor the
strain data at different locations in steel bars. The experimental setup is shown in Figure 8.



Materials 2021, 14, 5706 7 of 17

Materials 2021, 14, x FOR PEER REVIEW 7 of 18 
 

 

beam to monitor the strain data at different locations in steel bars. The experimental setup 

is shown in Figure 8. 

 

Figure 6. Load pattern and location of measuring instruments for load and displacement. 

 

 

Figure 7. Locations of strain gauges on the rebar. 

 

Figure 8. Experimental setup. 

4. Experimental Results and Discussion 

4.1. Cracking Pattern and Failure Process 

All the T-shaped UHPC beams exhibited elastic, cracking, and yielding phases, 

which were also typical flexural behaviors of properly reinforced concrete beams. At the 

beginning of the loading tests, the load of all the beams was linear to mid-span deflection. 

When they were loaded to the cracking flexural capacities, the first flexural crack was 

developed in the mid-span. As the loading progressed, more and more cracks were de-

veloped and propagated to the top of the beams in the pure flexural zone. Additionally, a 

sound similar to tearing cloth could be heard during the loading tests, because of the pull-

ing off of steel fibers. Before the yielding of longitudinal bar, the crushing of the outermost 

fibers in flanges  was not observed in the beams with longitudinal reinforcement. As for 

the beam without a longitudinal bar (UT-00), few cracks were developed in the pure flex-

ural zone, and propagated into the flange. Consequently, the outmost UHPC in the flange 

was crushed and significant deflection occurred. Figure 9 shows the cracking pattern of 

all the beams after the loading tests, in which blue and red bold lines represent normal 

flexural cracks and localized cracks, respectively. As the longitudinal reinforcement ratio 

Figure 6. Load pattern and location of measuring instruments for load and displacement.

Materials 2021, 14, x FOR PEER REVIEW 7 of 18 
 

 

beam to monitor the strain data at different locations in steel bars. The experimental setup 

is shown in Figure 8. 

 

Figure 6. Load pattern and location of measuring instruments for load and displacement. 

 

 

Figure 7. Locations of strain gauges on the rebar. 

 

Figure 8. Experimental setup. 

4. Experimental Results and Discussion 

4.1. Cracking Pattern and Failure Process 

All the T-shaped UHPC beams exhibited elastic, cracking, and yielding phases, 

which were also typical flexural behaviors of properly reinforced concrete beams. At the 

beginning of the loading tests, the load of all the beams was linear to mid-span deflection. 

When they were loaded to the cracking flexural capacities, the first flexural crack was 

developed in the mid-span. As the loading progressed, more and more cracks were de-

veloped and propagated to the top of the beams in the pure flexural zone. Additionally, a 

sound similar to tearing cloth could be heard during the loading tests, because of the pull-

ing off of steel fibers. Before the yielding of longitudinal bar, the crushing of the outermost 

fibers in flanges  was not observed in the beams with longitudinal reinforcement. As for 

the beam without a longitudinal bar (UT-00), few cracks were developed in the pure flex-

ural zone, and propagated into the flange. Consequently, the outmost UHPC in the flange 

was crushed and significant deflection occurred. Figure 9 shows the cracking pattern of 

all the beams after the loading tests, in which blue and red bold lines represent normal 

flexural cracks and localized cracks, respectively. As the longitudinal reinforcement ratio 

Figure 7. Locations of strain gauges on the rebar.

Materials 2021, 14, x FOR PEER REVIEW 7 of 18 
 

 

beam to monitor the strain data at different locations in steel bars. The experimental setup 

is shown in Figure 8. 

 

Figure 6. Load pattern and location of measuring instruments for load and displacement. 

 

 

Figure 7. Locations of strain gauges on the rebar. 

 

Figure 8. Experimental setup. 

4. Experimental Results and Discussion 

4.1. Cracking Pattern and Failure Process 

All the T-shaped UHPC beams exhibited elastic, cracking, and yielding phases, 

which were also typical flexural behaviors of properly reinforced concrete beams. At the 

beginning of the loading tests, the load of all the beams was linear to mid-span deflection. 

When they were loaded to the cracking flexural capacities, the first flexural crack was 

developed in the mid-span. As the loading progressed, more and more cracks were de-

veloped and propagated to the top of the beams in the pure flexural zone. Additionally, a 

sound similar to tearing cloth could be heard during the loading tests, because of the pull-

ing off of steel fibers. Before the yielding of longitudinal bar, the crushing of the outermost 

fibers in flanges  was not observed in the beams with longitudinal reinforcement. As for 

the beam without a longitudinal bar (UT-00), few cracks were developed in the pure flex-

ural zone, and propagated into the flange. Consequently, the outmost UHPC in the flange 

was crushed and significant deflection occurred. Figure 9 shows the cracking pattern of 

all the beams after the loading tests, in which blue and red bold lines represent normal 

flexural cracks and localized cracks, respectively. As the longitudinal reinforcement ratio 

Figure 8. Experimental setup.

4. Experimental Results and Discussion
4.1. Cracking Pattern and Failure Process

All the T-shaped UHPC beams exhibited elastic, cracking, and yielding phases, which
were also typical flexural behaviors of properly reinforced concrete beams. At the beginning
of the loading tests, the load of all the beams was linear to mid-span deflection. When
they were loaded to the cracking flexural capacities, the first flexural crack was developed
in the mid-span. As the loading progressed, more and more cracks were developed and
propagated to the top of the beams in the pure flexural zone. Additionally, a sound similar
to tearing cloth could be heard during the loading tests, because of the pulling off of
steel fibers. Before the yielding of longitudinal bar, the crushing of the outermost fibers
in flanges was not observed in the beams with longitudinal reinforcement. As for the
beam without a longitudinal bar (UT-00), few cracks were developed in the pure flexural
zone, and propagated into the flange. Consequently, the outmost UHPC in the flange
was crushed and significant deflection occurred. Figure 9 shows the cracking pattern of
all the beams after the loading tests, in which blue and red bold lines represent normal
flexural cracks and localized cracks, respectively. As the longitudinal reinforcement ratio
increased, more and more flexural cracks developed and distributed along the span. As for
the T-shaped UHPC beam without longitudinal reinforcement (UT-00), few cracks were
developed and localized, leading to flexural failure.
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4.2. Load vs. Mid-Span Deflection Curves

Based on the load vs. mid-span deflection curves of all the T-shaped UHPC beams,
as shown in Figure 10, all the beams exhibited obvious ductile behavior. In the RC design
theory, the minimum longitudinal reinforcement ratio is required to prevent the sudden
failure of RC structural members, due to the tensile stress in concrete being transferred to
the longitudinal rebar at the moment of concrete cracking. This principle is determined
by the brittle nature of concrete. Different from RC structural members, UT-00 still exhib-
ited ductile behavior, even without longitudinal rebar, attributing to the ductile tensile
stress–strain relationship of UHPC. It also manifests that the principle of the minimum
longitudinal reinforcement ratio in the RC design may not be applicable to UHPC struc-
tural members, but the longitudinal reinforcement ratio increases the dispersion of cracks
and limits the localization of cracks. As for the rest of the beams with longitudinal rebar,
the load and deformation capacities increased as the longitudinal reinforcement ratios
increased. Figure 11 shows the relationship between the peak loads of the beams and the
longitudinal reinforcement ratios (ρl). It manifests that the peak load is almost linear to the
longitudinal reinforcement ratio.
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5. Theoretical Studies on Ultimate Flexural Capacity

To further study the flexural behavior of T-shaped UHPC beams with varying lon-
gitudinal reinforcement ratios, a section analysis was conducted to correlate with the
experimental results and clarify the effects of parameters in constitutive models of UHPC.

5.1. Basic Assumptions

The following assumptions were determined to predict the flexural capacity of T-
shaped UHPC beams:

1. The plane of the cross section remains plane after flexural deformation.
2. The compression model of UHPC is formulated by Equation (2), as illustrated by

Figure 12a:

σc =

{
Ecεc (εc ≤ ε0)

fc − Ec1(εc − ε0) (ε0 < εc ≤ εcu)
(2)

where σc and εc are the compressive stress and strain, respectively; fc is the axial compres-
sive strength, which is 141.8 MPa; ε0 is the strain corresponding to the axial compressive
strength, which is 0.0027 in this study; εcu is the ultimate compressive strain of UHPC,
which is 0.0055 in this study [29]; and Ec and Ec1 are the moduli of the ascending and
descending branches, and are 5.26 × 104 MPa and 2.98 × 104 MPa, respectively.

3. Based on the tensile test results of UHPC, the simplified tension model of UHPC
adopted Equation (3), as shown by Figure 12b.

σt =


Ecεt (εt ≤ εtc)

ftc + Ec2(εt − εtc) (εtc < εt ≤ εt0)
ft − Ec3(εt − εt0) (εt0 < εt ≤ εtu)

(3)

where σt and εt are the tensile stress and strain, respectively; ftc is the tensile cracking
stress, which is 4.12 MPa in this study; εtc is the tensile cracking strain, which is
0.00008; ft is the ultimate tensile strength, which is 8.42 MPa in this study, according
to the UHPC tensile tests; εtp is the first cracking strain; εt0 is the strain corresponding
to the ultimate tensile strength, which is 0.007 in this study, according to the tensile
test results; εtu is the ultimate tensile strain of UHPC, which is 0.05; and Ec, Ec2, and
Ec3 are the moduli of elasticity, and ascending and descending branches, which are
5.26 × 104 MPa, 0.69 × 104 MPa, and 0.17 × 104 MPa, respectively.
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4. The constitutive model of the steel bar adopted the bi-linear model [30], as shown in
Figure 12c, and can be expressed by Equation (4), as follows:

σs =

{
Esεs

(
εs ≤ εy

)
fy

(
εy ≤ εs ≤ 0.01

) (4)

where σs and εs are the stress and strain in steel rebar, respectively; Es is the elastic
modulus of steel rebar, which is 2 × 105 MPa in this study; and fy and εy are the yield
strength and strain of rebar, respectively.
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Figure 12. Material models. (a) Compression model of UHPC; (b) tensile model of UHPC; (c) model of steel rebar.

5.2. Definition of Ultimate Limit State

Based on the experimental phenomenon, as observed during the beam tests, the
ultimate limit state of the flexure-dominated UHPC T-shaped beam was defined as that the
longitudinal bar in tension was yielded and the outmost compression fiber of UHPC was
crushed, as illustrated in Figure 10. The distribution of actual stress along the beam height
is shown in Figure 13b.
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(c) equivalent stress block.

5.3. Equivalent Stress Block in Tension and Compression

For simplicity of calculation, the distribution of compressive and tensile stress can
be converted into equivalent stress block, based on integration, so that the resultant
force and the location of the action point of the resultant force remain the same. As
shown in Figure 13c, the resultant force of compression (Fc) can be express by Equation (5),
as follows:

Fc =
∫ xc

0
σc(εc)b(x)dx (5)

where σc(εc) is the compressive stress in the compression zone, which is the function of
compressive strain (εc); and b(x) is the function of the height (x) to the neutral axis. In this
study, the neutral axis is at the level of the flange, so that b(x) could be a constant of bf. The
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height from the action point of the resultant force of compression and the neutral axis (xc1)
could be derived by Equation (6), as follows:

xc1 =

∫ xc
0 σc(εc)b f xdx

Fc
(6)

The compressive strain (εc) at the arbitrary height of x on the neutral axis in the
compression side could be expressed by the following equation:

εc = κx (7)

where κ is a proportional constant. The strain of the outmost fiber on the compression
side is the ultimate compressive strain of εcu. Therefore, Equation (8) could be expressed
as follows:

εcu = κxc (8)

Based on Equations (7) and (8), the arbitrary height to the neutral axis (x) could be
calculated as Equation (9), as follows:

x = εc
xc

εcu
(9)

By differentiating Equation (9) with respect to εc, it could be derived as Equation (10),
as follows:

dx =
xc

εcu
dεc (10)

By substituting Equation (10) into Equation (5), Fc could be rewritten as Equation (11),
as follows:

Fc = b f
xc

εcu

∫ εcu

0
σc(εc)dεc (11)

Therefore, Equation (6) could be converted to Equation (12), based on Equation (11).

xc1 =
b f

(
xc
εcu

)2 ∫ εcu
0 σc(εc)εcdεc

Fc
(12)

Based on dimensional analysis, Equations (11) and (12) could be converted in to
Equations (13) and (14), as follows:

k1 fc =
1

εcu

∫ εcu

0
σc(εc)dεc (13)

k2 =

∫ εcu
0 σc(εc)dεc

εcu
∫ εcu

0 σc(εc)dεc
(14)

where k1 and k2 are constants; and fc is the axial compressive strength. Then, Equations (11)
and (12) could be simplified into Equations (15) and (16), as follows:

Fc = b f xck1 fc (15)

xc1 = xck2 (16)

As shown in Figure 13c, the bending moment, resulting from the compression, could
be formulated by the following equation:

Mc = b f xck1 fc(xck2) = α fcb f x
(

xc −
x
2

)
(17)

where x is the total height of the equivalent compression block; α is the ratio of the
equivalent stress to fc; and β is the ratio of the height of the equivalent stress block to the
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actual height of the compression zone. Then, α and β could be formulated by Equation (18)
and (19), based on Equation (17).

α =
k1

β
=

k1

2(1− k2)
(18)

β =
x
xc

= 2(1− k2) (19)

Based on the constitutive model of UHPC under compression, α and β were adopted
as 0.82 and 0.83, respectively.

As for the equivalent stress block under tension, a reduction factor of k was induced,
to simplify the actual tension distribution to the equivalent stress block. Then, the resultant
force under tension (Ft) could be formulated by Equation (20).

Ft = k ftbwhw + k ftb f

(
h f −

x
β

)
(20)

where k is the reduction factor to the ultimate tensile strength of UHPC; ft is the ultimate
tensile strength; bw is the width of the web; hw is the height of the web; bf is the width of
the flange; and hf is the height of the flange.

5.4. Predictive Equations for Flexural Capacity of T-Shaped UHPC Beams

As shown in Figure 10, Equation (21) could be formulated based on the equilibrium of
internal forces acting on the cross section.

Esε′s A′s + α fcb f x = k ftbwhw + k ftb f

(
h f −

x
β

)
+ fy As (21)

where εs
′ is the compressive strain of rebar in compression side; As

′ is the total area of rebar
on the compression side; and As is the total area of rebar under tension. Based on the strain
distribution as shown in Figure 13a, it could be formulated by Equation (22), as follows:

ε′s =
xc − a′s

xc
(22)

where as
′ is the height of the centroid of rebar under compression to the outmost fiber of

UHPC under compression; xc is the actual height of the compression zone; εcu is the ultimate
compressive strain of UHPC, and is 0.0055 in this study. By substituting Equation (22)
into (21), a quadratic equation about x could be obtained, formulated as Equation (23),
as follows:

A·x2 + B·x + C = 0 (23)

in which A, B and C are parameters, which are expressed by Equation (24), as follows:
A =

α fcb f
β +

k ftb f
β2

B = 1
β

(
Esεcu A′s − fy As − k ftbwhw − k ftb f h f

)
C = −Esεcu A′sa′s

(24)

By solving the quadratic equation about x, the height of the compressive equivalent
stress block could be determined, and then the ultimate flexural capacity of T-shaped
UHPC beams (Mu) can be calculated by Equation (25), as follows:

Mu = α fcb f β
(

x
β −

x
2

)
+ Esε′s A′s

(
a′s − x

β

)
+ fy As

(
h− a′s − x

β

)
+k ftbwhw

(
hw
2 + h f − a′s

)
+ k ftb f

(
h f − x

β

)(
βh f−x

2β

) (25)
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In order to calculate Mu, an unknown factor of k should be determined in advance.
In this study, the value of k was determined by reverse calculation from the experimental
results. For different T-shaped UHPC beams, with different longitudinal reinforcement
ratios, the value of k varies linearly with the longitudinal reinforcement ratio (ρl), as
tabulated in Table 7, and shown in Figure 14. Hence, the reduction factor of k was fitted
to be a linear equation about the longitudinal reinforcement ratio (ρl), as expressed by
Equation (26), as follows:

k = 0.6013ρl − 0.1099 (26)

Table 7. Comparison between predicted and experimental ultimate flexural capacity.

Beam x
(mm) k Mu_cal

(kN.m)
Mu_exp
(kN.m) Mu_cal/Mu_exp

UT-00 6.91 −0.11 9.78 10.17 0.96
UT-06 7.28 −0.12 12.92 11.88 1.09
UT-12 8.48 0.26 21.84 22.73 0.96
UT-16 9.75 0.54 29.97 30.02 1.00
UT-20 11.60 0.91 41.18 41.31 1.00
UT-22 13.05 1.12 51.12 50.72 1.01
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Then, the predicted ultimate flexural capacity of T-shaped UHPC beams (Mu_cal)
could be calculated based on Equation (25) and (26). Mu_cal, as well as the experimental
ultimate flexural capacity (Mu_exp) in this study, are tabulated in Table 7, and Figure 15
compares the Mu_cal and Mu_exp of all the beams in this study. The average value of the
Mu_cal-to-Mu_exp ratio is 1.00, and the coefficient of variation of the Mu_cal-to-Mu_exp ratio
is 4.63%, manifesting that the proposed equations agree well with the experimental results.
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5.5. Validity of Proposed Equations

The existing experimental results about T-shaped UHPC beams [29,31,32] were em-
ployed to verify the validity of the proposed equations. The key parameters, and ex-
perimental and predicated ultimate flexural capacity of nine T-shaped UHPC beams are
summarized in Table 8. Figure 16 compares the Mu_cal and Mu_exp of these nine beams in
previous studies [30–32], as well as six beams in this study. It indicates that the proposed
equations exhibit high accuracy for predicting the ultimate flexural capacity of T-shaped
UHPC beams.

Table 8. Validation of proposed equations in previous studies.

Ref. ID x (mm) k Mu_cal
(kN.m)

Mu_exp
(kN.m) Mu_cal/Mu_exp

[29]
B-S65-16 13.49 0.37 53.19 56.16 0.95
B-S65-20 16.44 0.64 79.98 87.21 0.92

[31]

T-1 30.38 0.95 160.61 172.94 0.93
T-2 44.23 1.64 238.17 236.43 1.01
T-3 48.76 2.04 256.84 286.47 0.90
T-4 59.73 2.54 340.77 297.32 1.15
T-5 48.18 1.64 275.65 281.61 0.98

[32]
T1 20.49 0.62 108.22 105.12 1.03
T2 38.76 2.07 192.62 179.42 1.07
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6. Discussion

The effect of reinforcement ratio, fiber content, and strength grade on the flexural
behavior of UHPC beams with a rectangular section has been extensively studied [22–27].
However, a few studies on the flexural behavior of UHPC beams with a T-shaped section
were carried out. A drawback of the existing study is the limited specimens and insufficiency
in investigating the effect of the longitudinal reinforcement ratio on the flexural behavior
of T-shaped UHPC beams, which results in unsatisfied accuracy for the existing predictive
equations of the flexural capacity of T-shaped UHPC beams.

Based on the existing studies, tension and compression tests were performed on the
UHPC, incorporating steel fiber with a 2% volume content. The tensile test results show
that the tensile cracking and ultimate tensile strength of the UHPC adopted in this study
are 4.14 and 8.42 MPa, respectively. After the first cracking, the tensile strain-hardening
behavior was started, and continued to the ultimate tensile strength. Based on the tensile
stress–strain curves from the tensile tests, it is found that the strain corresponding to
the ultimate tensile strength is 0.007, which agrees well with the value described by the
American design code [9]. The cubic and axial compressive strengths were obtained via
cube and prism compression tests, and are 166.0 and 141.8 MPa, respectively. This indicates
that the axial compressive strength of UHPC in this study is 85% of the cubic compressive
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strength, due to the end effect. The elastic modulus of UHPC in this study is 5.2 × 104 MPa,
which is higher than that of high-strength concrete.

To investigate the effect of the longitudinal reinforcement ratio on the flexural behav-
ior of T-shaped UHPC beams, a total of six beams, including one without longitudinal
reinforcement (UT-00) and the rest of five with varying longitudinal reinforcement ratios,
were designed and fabricated. UT-00 and another beam with a longitudinal rebar with
a 6 mm diameter (UT-06) was used to investigate whether shear tension failure exists in
the UHPC beams. The experimental results revealed that two beams exhibited obvious
yield points and plateau stages, which were similar to the properly reinforced concrete
beam. This indicates that, different from the design theory of the RC structural member,
the low limit for longitudinal reinforcement in T-shaped UHPC beams may not exist. As
the longitudinal reinforcement ratio increases, the number of cracks, the yield, and the
ultimate load of the beams increases. Further, the ultimate flexural capacity of six beams is
almost linear to the longitudinal reinforcement ratio, which is also in accordance with the
design theory of the RC structural member.

Sectional analysis was employed to predict the flexural capacity of T-shaped UHPC
beams, by developing constitutive models of UHPC under tension and compression. The
constitutive model of UHPC under tension adopted a tri-linear model, by considering
the strain-hardening effect that was observed in the tensile tests. The material model
of UHPC in compression adopted bi-linear models, which was also widely used in the
existing research [22,23,29]. Based on the reverse calculation from the experimental results,
it was found that the tension carried by UHPC varies from the longitudinal reinforcement
ratio, and the reduction factor to the tensile strength of UHPC was formulated to be
linear to the longitudinal reinforcement ratio. This indicates that the tension carried by
UHPC decreases as the longitudinal reinforcement ratio increases, because the tension
carried by rebar increases as the longitudinal reinforcement ratio increases. By taking
the relationship between the reduction factor and the longitudinal reinforcement ratio
into consideration, the predictive equations for the ultimate flexural capacity of T-shaped
UHPC beams were proposed, and agreed well with the experimental result in this study
and previous studies [29,31,32]. The other constitutive models of UHPC, with different
linearity, have not been used to verify the validity of the proposed equation in this study;
this could be the objective of a future study.

7. Conclusions

This study presents an experimental and theoretical study on the flexural behavior
of T-shaped UHPC beams with varying longitudinal reinforcement ratios. Based on the
experimental results and proposed theoretical equations, the following conclusions could
be drawn:

(1) The tensile stress–strain relationship and compressive properties of UHPC were
obtained based on uniaxial tension and compression tests. The strain-hardening
behavior under tension was exhibited, and the cracking and ultimate tensile strength
of UHPC were 4.14 and 8.42 MPa, respectively. The strain corresponding to the
ultimate tensile strength of UHPC was 0.007. The axial compressive strength was 85%
of the cubic compressive strength.

(2) Six T-shaped UHPC beams exhibited similar flexural behavior to that of properly
reinforced concrete beams—elastic, cracking, and yielding phases. As the longitudinal
reinforcement ratio increased, the number of cracks and load-carrying capacity also in-
creased. The localization of cracks in T-shaped UHPC beams with low reinforcement
ratios became more and more significant. As for the T-shaped beam without longi-
tudinal reinforcement, it also exhibited obvious ductile behavior, indicating that the
principle of the minimum reinforcement ratio in the reinforced concrete design may
not be applicable to UHPC structural members, but the longitudinal reinforcement
ratio increases the dispersion of cracks and limits the localization of cracks.
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(3) Based on the assumptions, and the simplified material model of UHPC under tension
and compression, resulting from the material test results, the predicted equations for
the ultimate flexural capacity of T-shaped UHPC beams were proposed, by inducing
the reduction factor to the ultimate tensile strength of UHPC. It was found that the
value of the reduction factor is almost linear to the longitudinal reinforcement ratio.
By comparing with the experimental results in this study and previous studies, the
proposed equations agree well with the experiments, indicating good validation.
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