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Despite extensive research, the molecular mechanisms underlying the toxicity

of αSN in Parkinson’s disease (PD) pathology are still poorly understood. To

address this, we used a microarray dataset to identify genes that are induced

and differentially expressed after exposure to toxic αSN aggregates, which we

call exogenous αSN response (EASR) genes. Using systems biology approaches,

we then determined, at multiple levels of analysis, how these EASR genes could

be related to PD pathology. A key result was the identification of functional

connections between EASR genes and previously identified PD-related genes

by employing the proteins’ interactions networks and 9 brain region-specific

co-expression networks. In each brain region, co-expression modules of EASR

genes were enriched for gene sets whose expression are altered by SARS-CoV-

2 infection, leading to the hypothesis that EASR co-expression genes may

explain the observed links between COVID-19 and PD. An examination of the

expression pattern of EASR genes in different non-neurological healthy brain

regions revealed that regions with lower mean expression of the upregulated

EASR genes, such as substantia nigra, are more vulnerable to αSN aggregates

and lose their neurological functions during PD progression. Gene Set

Enrichment Analysis of healthy and PD samples from substantia nigra

revealed that a specific co-expression network, “TNF-α signaling via NF-κB”,
is an upregulated pathway associated with the PD phenotype. Inhibitors of the

“TNF-α signaling via NF-κB” pathway may, therefore, decrease the activity level
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of this pathway and thereby provide therapeutic benefits for PD patients. We

virtually screened FDA-approved drugs against these upregulated genes

(NR4A1, DUSP1, and FOS) using docking-based drug discovery and identified

several promising drugs. Altogether, our study provides a better understanding

of αSN toxicity mechanisms in PD and identifies potential therapeutic targets

and small molecules for treatment of PD.
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Highlights

1) Identifying mechanisms and critical pathways underlying

αSN toxicity could lead to the development of effective

treatments of PD.

2) Exogenous αSN toxic aggregates lead to alteration in the

expression of a group of genes that we called exogenous

αSN response (EASR) genes, which have functional

associations with key genes involved in PD.

3) The upregulated and downregulated EASR genes display

altered expression levels across 9 brain regions that are

associated with vulnerability to αSN aggregation in PD.

4) Entrectinib and Irinotecan are FDA-approved drugs that

bind and inhibit the NR4A1, DUSP1, and FOS proteins,

and therefore potentially decrease the activity of αSN
toxicity-related pathways in the substantia nigra.

Introduction

Parkinson’s disease (PD) is the second most destructive

neurodegenerative disorder. Its prevalence has grown

dramatically worldwide (Dorsey et al., 2018). The most well-

known symptoms of PD are depleted dopaminergic neurons in

substantia nigra, reduction of dopamine levels in the striatum,

and production of intracellular proteinaceous amyloid

aggregates, called Lewy bodies (LBs) and Lewy neurites

(LNs), which consist primarily of α-synuclein (αSN). αSN is

a conserved presynaptic protein with a molecular weight of

140 kDa and is very abundant (with a number density of more

than 1% of total proteins in the brain (Breydo, Wu and Uversky,

2012). αSN is an intrinsically disordered protein that can adopt

multiple structures under various physiological conditions,

including self-assembling into toxic amyloid aggregates.

Amyloid aggregation of αSN is a pivotal process in the

progression of PD and other related disorders. Intercellularly

aggregated αSN can spread from cell to cell via an exosome-

based delivery system, microtubule-based transport, or

receptor-mediated endocytosis (Christensen et al., 2016;

Emmanouilidou and Vekrellis, 2016; Dieriks et al., 2017).

Penetration of extracellularly-aggregated αSN into neurons

induces αSN fibrillation in the infected neurons and,

consequently, spreads neurodegeneration around the brain

(Hornedo-Ortega et al., 2016).

It has been proposed that intercellular transmission of αSN to

neighboring cells and across brain regions follows a

spatiotemporal pattern, which begins from the brainstem and

later spreads to more rostral sites of the brain (Braak et al., 2003).

Although the spread of αSN explains PD-related pathology and

symptom progression to an extent, the reason why certain kinds

of neurons and particular parts of the brain are distinctly further

vulnerable to synucleinopathy is not yet fully understood

(Henderson et al., 2019).

Furthermore, the spatiotemporal pattern of αSN spread

correlates with changes in gene expression in particular

regions of the brain (Nowakowski et al., 2017; Keo et al.,

2020). According to gene expression pattern analyses, these

spatial expression patterns could potentially be involved in PD

pathophysiology (Guo et al., 2019). Also, some PD-related genes

have brain region-specific expression patterns (Keo et al., 2020).

Characterizing the distinct expression patterns in different

parts of the brain helps to identify the factors contributing to cell

vulnerability to αSN aggregates. Here, we identified what we call

exogenous αSN response (EASR) genes using a microarray dataset

collected using SH-SY5Y cells that were treated with αSN
aggregates. We then applied system biology approaches to

find associations of EASR genes with PD-related genes.

To this end, we developed and analyzed two different

network models. First, we obtained PD-related genes and

concentrated on the protein-protein interaction network (PPI)

between these genes and the EASR genes to study the functional

connections between PD and αSN response at the protein level.

Then, we collected expression data of healthy brains from

different data sources and, at the expression level, studied

their transcriptomes and compared the expression patterns of

EASR genes between the distinct brain regions. Subsequently, we

developed the second network model by constructing the co-

expression network of EASR genes for each studied brain region

and examined pathways that were enriched in these networks.

We also studied the co-expression network of two brain regions,

the substantia nigra and amygdala, between PD and control

phenotypes, and characterized the enhanced activity of the

“TNF-α signaling via the NF-κB” pathway as a significant

pathway in substantia nigra-mediated αSN neurotoxicity
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during PD. Identifying this critical pathway could lead to the

development of effective treatment for PD patients. Furthermore,

our studies yielded important insights into the molecular

mechanisms underlying αSN toxicity and PD progression.

Finally, we applied docking-based virtual screening to identify

approved drugs that could potentially be repurposed for PD

treatment.

Methods

Data collection

Multiple datasets have been used in this study. All datasets

and analyses are summarized in the flowchart in Figure 1. To

identify the exogenous αSN response genes (EASR genes), we

used the GSE120569 dataset to detect transcriptional changes

induced by exogenous αSN. This dataset released expression data

of SH-SY5Y cells, which were exposed to the special aggregate of

αSN that produced during fibrillation condition (Lin et al., 2018).

Differentially expressed genes (DEGs) with a |fold change| > 1.

5 and p-value < 0.05 were considered to be part of the EASR

gene set.

To investigate the patterns of EASR gene expression in

different parts of the brain, we used expression data from the

Genotype-Tissue Expression (GTEx) project that

collected samples from 54 non-diseased tissue sites across

nearly 1,000 individuals. After preprocessing, we selected

samples that related to 9 different brain regions, including

the amygdala (by 68 samples), anterior cingulate cortex

(by 83 samples), caudate (by 109 samples), cerebellum (by

118 samples), frontal cortex (by 95 samples), hippocampus

(by 84 samples), hypothalamus (by 82 samples),

putamen (by 79 samples), and substantia nigra (by

57 samples). The UCSC Xena Browser (https://xenabrowser.

net/datapages/) was used to download the GTEx

expression data.

The UK Brain Expression Consortium (UKBEC) (http://

www.braineac.org) datasets include microarray expression data

of healthy (non-neurological) brain samples, which is available

through accession code. The UKBEC data cover 4 of the 9 brain

regions of interest in our study, including the frontal cortex,

hippocampus, putamen, and substantia nigra. These datasets

were used as validation sets.

Subsequently, we used the GSE114517 dataset to study the

expression patterns of EASR in different parts of the brain

FIGURE 1
Flowchart of this study. The flowchart represents all datasets and analyses that were used in the study.
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regions obtained from PD patients. This dataset contained

samples that match with two GTEx brain regions, substantia

nigra and amygdala.

Eventually, we also used PanglaoDB (https://www.

panglaodb.se/index.html) to obtain cell type gene expression

markers.

Network construction and topological
analysis

All network illustrations and analyses were performed

using Cytoscape version 3.7.2 (Shannon et al., 2003). The

methodology used was previously reported (Parsafar et al.,

2020). To identify the PD-related genes, we used the

DisGeNET platform (version 7.0, https://www.disgenet.org/

home/), which contains 1,134,942 gene-disease associations

(Piñero et al., 2015). Subsequently, a protein-protein

interaction (PPI) network between EASR and PD-related

genes was constructed using the stringApp plugin. A

confidence score ≥0.4 and a maximum number of

interactors = 0 were used as cutoffs (Doncheva et al., 2018),

so that no additional protein be added to the networks.

The topological characteristics of the resulting networks

such as degree, betweenness, or average shortest path

length, were examined using the NetworkAnalyzer and

cytoHubba plugins (Assenov et al., 2008; Chin et al., 2014).

Finally, the EASR co-expression network for each brain

region was constructed using Inetmodels (https://

inetmodels.com/). The node limit and the edge pruning

parameter (-Log10 Adjusted p-value) were taken as 25 and

2, respectively.

Gene expression analysis

To process PD RNA-seq data, we applied the commonly used

RNA-seq pipeline (Trimmomatic, HISAT2, HTSeq, and

DESeq2). First, we used Trimmomatic to obtain clean data

(clean reads) by trimming the paired-end raw reads and

removing the read containing adapter, poly-N, and low-

quality bases (Bolger, Lohse and Usadel, 2014).

Then, the cleaned data were mapped to the indexed

reference genome by applying Hisat2. HTSeq was then

applied to count the reads mapped to each gene (Anders,

Pyl and Huber, 2015). Moreover, sample-level quality control

was performed using Principal Component Analysis (PCA) to

identify any sample that needed to be excluded prior to

performing the expression analysis. Finally, we performed

differential gene expression analysis using the

DESeq2 package in R version 4.0.3 (Love, Huber and

Anders, 2014). Genes with p-value < 0.05 and |fold

change| > 1.5 were considered as a final DEGs.

Gene functional annotation

To further understand the biological functions of the proteins

involved in each network, we ran Hallmark pathway and Gene

Ontology (GO) analyses, including Molecular Function (MF),

Biological Process (BP), and Cellular Component (CC)

enrichment analyses using the enrichR and clusterProfiler R

packages (Yu et al., 2012). We used a threshold p-value <
0.05 to identify statistically significant pathways and GO

functions. To examine pathway enrichment between control

and PD conditions, Gene Set Enrichment Analysis (GSEA)

was performed using the Broad Institute’s Molecular

Signatures Database (MSigDB Hallmark) and GSEA software

(v4.1.0) (Subramanian et al., 2005; Liberzon et al., 2011, 2015). In

addition, in this study, a false discovery rate (FDR) < 0.05 was

used to determine statistically significant enrichments. Results of

these analyses were plotted in R 3.6.1 using ggplot2 (Wickham,

2011) and using the Circular R package (Lund et al., 2017).

Statistical analyses

All statistical analyses were performed with R version

4.0.3 and the Bioconductor http://bioconductor.org/

packages. Gene-gene expression-based correlation was

performed using the https://CRAN.R-project.org/package=

Hmisc/ Hmisc and Corrplot R packages https://CRAN.R-

project.org/package=corrplot/ to calculate Spearman’s

correlation and to perform visualization, respectively. We

applied Corrplot with hierarchical clustering and set the

significance level (p-value) to 0.01. In addition, we used the

Complexheatmap package https://jokergoo.github.io/

ComplexHeatmap-reference/ to visualize all heatmaps. We

also employed ggplot2 to apply analysis of variance

(ANOVA) and Student’s t-test to assess and visualize the

statistical difference in multi and two groups, respectively.

A p-value < 0.05 was considered a significant level.

Virtual screening of FDA approved drugs

We performed docking-based virtual screening to find new

inhibitors that could target the pathways and proteins that were

identified in our analyses. To this end, molecular structures of

drugs that were approved by the FDA prior to 2021 with

molecular weight ≤2000 g/mol were downloaded from

e-Drug3D (https://chemoinfo.ipmc.cnrs.fr/MOLDB/index.php).

The structures were then optimized using Open Babel in PyRx.

Subsequently, proteins structures were downloaded from

(https://www.rcsb.org/). Afterward, using AutoDockTools (AD

T, 1.5.6), the structures were prepared for the molecular docking

study, and nonessential chains, water, and ligand molecules, if

present, were eliminated. The final structures were converted into
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PDBQT format. Docking simulations for all ligands in the

prepared library and the selected proteins (NR4A1, DUSP1,

and FOS) was performed by AutoDock Vina 1.1.2 in the

PyRx software. Visual illustration of the drug-protein

interactions were generated with Discovery Studio visualizer

19.1.0.219 (https://discover.3ds.com/discovery-studio-

visualizer-download).

Results

Exogenous αSN related (EASR) genes have
functional links to PD-related genes

To identify the genes which were differentially expressed

(p-value < 0.05, and fold change >1.5) in response to exposure to

FIGURE 2
EASR genes and their functional relation to PD-related genes. (A) Heatmap of the scaled expression level of differentially expressed genes
(p-value < 0.05, and fold change > 1.5) in response to exogenous αSN oligomers. Heatmap displays 44 upregulated and 26 down-regulated genes
that are considered EASR genes. (B) Hallmark pathway enrichment analysis represents EASR genes are significantly enriched only for hypoxia,
reactive oxygen species pathway, and interferon-alpha response. (C) The PD-EASR subnetwork of 8 overlapped genes (between PD-related
and EASR genes) and their connections. The PD-EASR network was constructed and visualized by StringApp in the Cytoscape software, which
represents protein-protein interactions between PD-related and EASR genes. (D) The Degree distribution shows that most nodes have only small
degrees, while a few nodes have vast degrees. This property indicates that the PD-EASR network is a scale-free network. (E) Average shortest path
length frequency. The PD-EASR network’s average shortest path length-frequency shows that 91.8% of the nodes were communicated together by
less than three steps. This feature confirms that the PD-EASR network has functional convergence. (F)GO: BP and (G)Hallmark pathway enrichment
analysis. Neuron death (GO:0070997) and Apoptosis pathway are the most significantly enriched GO: BP and Hallmark pathway.
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exogenous αSN aggregate species, we used GSE120569 datasets

(Lin et al., 2018). Microarray data analyses led to discovery of

70 DEGs, including 44 upregulated and 26 down-regulated genes

(Figure 2A and Supplementary Data S1). We consider these

exogenous αSN response genes (EASR genes). Enrichment

analysis revealed that EASR genes were primarily associated

with the “hypoxia”, “reactive oxygen species” pathway, and

“interferon alpha response” (Figure 2B and Supplementary

Data S1).

The results obtained from SH-SY5Y cell line as a

catecholaminergic line which is able to differentiate to adult

neuronal phenotypes including dopaminergic, adrenergic, or

cholinergic. Therefore, we first investigated whether the

collected EASR genes were specific for dopaminergic,

adrenergic, or cholinergic neurons. Our results showed that

none of the EASR genes was specific marker for each

phenotype of neuron cells (Supplementary Data S2).

Accordingly, regardless of the cell model used, the EASR

genes could be employed to examine the response to αSN in

the different cell types in the brain.

To identify functional links between PD and EASR genes, we

obtained PD-related protein-coding genes from the DisGeNET

database. We then constructed a PD-EASR network, employing

70 EASR and 1917 PD-related genes (Supplementary Data S3,

our data updated on 08/22/2021). The final PD-EASR network

contained 1929 nodes (PD-related and EASR genes) and

49,654 edges (Supplementary Figure S1 and Supplementary

Data S4). This network represented the protein-protein

interactions between 66 EASR genes and 1871 PD-related,

that 8 of them were common between the EASR and PD-

related genes, including TXNRD1, ASAP1, ISG20, OGG1, FTL,

NEDD9, PAEP, and GRAP2 (Figure 2C). In addition, the PD-

EASR network contained 66 EASR genes, of which 45 EASR

genes did not show any protein interaction with each other.

Therefore, EASR genes may play intermediate roles in the PD-

EASR network, which links to PD-related genes rather than

directly interacting with each other.

To further study the topological characteristics of the PD-

EASR network, and the functional links between PD-related and

EASR genes were demonstrated. We carried out a network

analysis in which we measured topological parameters, such

as degree and the average shortest path length. In the PD-

EASR network, the degree distribution revealed that many of

nodes have a small number of degrees (655 nodes with degree of

1–19), and only a few nodes have high number of degrees

(59 nodes with degree >200), suggesting that the PD-EASR

network is a scale-free and very robust network (Figure 2D).

Additionally, the frequency of the average shortest path length

revealed functional convergence among the PD-EASR network,

so that almost 91.8% of the nodes were linked by less than three

steps (Figure 2E).

To uncover the functional activity of this biological network,

we performed enrichment analysis for the core PD-EASR

network. We observed that neuron death (GO:0070997) and

response to oxidative stress (GO:0006979) were the most

significant GO: BP of the PD-EASR network (Figure 2F and

Supplementary Data S4). Oxidative stress and cell death are two

common features of PD (Dionisio et al., 2021, Amaral and

Rodrigues, 2021). Moreover, pathway enrichment analysis

highlighted other pathways, including “allograft rejection”,

“coagulation”, “complement”, “inflammatory response”, “TNF-

α signaling via NF-κB”, “PI3K AKT mTOR,

mTORC1 signaling”, and “UV response UP” (Figure 2G and

Supplementary Data S4).

We conclude that the EASR genes are linked to neuronal

death through neurotoxicity pathways, such as oxidative stress

and inflammatory-related signaling pathways.

Expression pattern of the EASR genes
associate with different regions of the
brain

To find more clues about the reasons for different responses

to toxic αSN at various parts of the brain, we explored 1) the

expression pattern of EASR genes in the brain regions, and 2)

identified co-expression modules and networks that are involved

in each region, and also 3) determined co-expression network-

related pathways which could contribute to αSN vulnerability.

We also studied the putative roles of αSN-related genes and brain
region co-expression networks in PD.

Firstly, we examined the expression level of these genes in

different brain regions. GTEx data (https://gtexportal.org/

home/) was utilized to examine the expression pattern of

the EASR genes in 9 brain regions, including the amygdala,

anterior cingulate cortex, caudate, cerebellum, frontal cortex,

hippocampus, hypothalamus, putamen, and substantia nigra

(Figure 3A). The Sixty-nine upregulated and downregulated

EASR genes (Figure 2A and Supplementary Data S1) were

mapped on the GTEx expression matrix (all genes except

OR8U8), and we observed significant differences in the

mean expression of both groups of genes (Figures 3A,B,

ANOVA, p-value < 0.05).

We observed that some parts, such as substantia nigra,

frontal cortex, and cerebellum had the lowest mean expression

level in the group of upregulated genes (Figure 3B). As

mentioned, degeneration of dopaminergic neurons in the

substantia nigra is a primary symptom of PD. Besides, during

PD, cerebellum loses its neurological function (Azizi, 2021). On

the other hand, caudate and putamen had the highest expression

level of upregulated EASR genes (Figure 3B). Note that oxidative

damage and mitochondrial dysfunction are reported to be lower

in caudate and putamen than in substantia nigra (Venkateshappa

et al., 2012). Different expression levels of upregulated EASR

genes in the substantia nigra and putamen were also observed in

the UKBEC dataset (Figure 3C). Therefore, it seems that the
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levels of upregulated EASR genes in these brain regions may play

important roles in the sensitivity to αSN aggregates.

Moreover, based on GTEx data, there were a highly

heterogeneous expression pattern of EASR genes in different

regions of the brain (Supplementary Figure S2), suggesting EASR

genes may not be functionally homogeneous. In the next step, to

examine whether EASR genes could be functionally associated

with each other, we measured Spearman’s correlation in each

region of the brain. Although most EASR genes showed

significant (p-value < 0.05) correlations with each other, their

correlation coefficients were weak to moderate (correlation

coefficient values (r) between |0.1| and |0.4|) (Supplementary

Figure S3), suggesting that EASR genes had separate functional

modules. Consequently, it seems that the expression level of

individual EASR genes is not sufficiently indicative to identify the

causes of PD vulnerability in different regions.

EASR co-expression modules are
associated with PD and enriched for
protein processing and COVID-19 related
terms

In addition to the region-specific expression of EASR genes,

we extracted and analyzed co-expressed networks for all

9 regions of the brain and examined their functional

annotation. We reconstructed networks by top 25 co-

expression genes using the Inetmodels (considering positive

and negative correlations) for each region. The constructed

networks had 654–808 nodes and 9,007–10889 edges,

respectively (Figures 4A,B). We also examined whether each

region-specific co-expression network has a common sub-

network with the PD-EASR network. Our study identified on

average 119 common nodes and 4.7% similarity between the PD-

EASR and each co-expression network among 9 regions

(Figure 4C and Supplementary Figure S4). Therefore, in each

brain region, the expression of EASR genes significantly

correlated to some of the PD-related genes (Supplementary

Figure S5). Consequently, exogenous aggregated αSN leads to

changes in the genes set that are associated with PD through both

the PPI network and the EASR co-expression network in every

brain region.

Additionally, we performed enrichment analysis for all EASR

co-expression networks. We found that genes that correlated to

EASR genes significantly enriched for “MYC targets V1”,

“protein secretion”, “TNF-α signaling via NF-κB”, and

“reactive oxygen species pathway” (Figure 4D and

Supplementary Data S5).

Moreover, all the EASR co-expression networks were

associated with protein processing related GO-terms, such as

“translational termination” (GO:0006415), “cellular protein

complex disassembly”, “translational elongation”, “co-

translational protein targeting to the membrane” (GO:

0006613), “protein targeting to ER” (GO:0045047), and

“establishment of protein localization into the endoplasmic

reticulum” (Figure 4E and Supplementary Data S5).

FIGURE 3
Expression pattern of EASR genes in different brain regions. (A) 9 brain regions that were selected for this study. (B) Mean expression of
downregulated and upregulated EASR genes in each brain region of the GTEx non-neurological healthy samples (illustrated by colors). The
expression level of both downregulated and upregulated EASR genes were significantly different across GTEx brain regions (ANOVA, p-value < 0.05).
(C) Validation across healthy samples in UK Brain Expression Consortium (UKBEC). Downregulated and upregulated EASR gene expression
levels were significantly different across UKBEC brain regions (ANOVA, p-value < 0.05). Putamen was represented the higher expression levels of
upregulated EASR genes than substencia nigra in both datasets.
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Interestingly, we also observed that co-expression networks were

significantly enriched for viral-related processing, such as viral

transcription (GO:0019083) and viral life cycle (Figure 4E and

Supplementary Data S5).

Accordingly, we were interested in examining possible links

between the EASR co-expression network and COVID-19.

Several studies have confirmed a link between COVID-19 and

PD (Antonini et al., 2020; Cilia et al., 2020; Leta et al., 2021).

Furthermore, it has been suggested that the dopamine synthesis

pathway is involved in the pathophysiology of COVID-19

(Antonini et al., 2020). However, the molecular mechanisms

of association between PD and COVID-19 have not been fully

understood. Therefore, we investigated whether the αSN could be

associated with the pathophysiology of COVID-19. To this end,

we performed a “COVID-19 Related Gene Sets 2021” enrichment

analysis and observed that all EASR co-expression networks

encompass genes whose expression levels are altered by SARS-

CoV-2 infection (Figure 4F and Supplementary Data S5).

FIGURE 4
Analysis of region-specific EASR genes co-expression networks. Radar plot demonstrating the number of (A) co-expression network’s nodes
and (B) Edges in different brain regions. (C) Radar plot showing the number of PD-related genes present in each region’s specific co-expression
network. (D)Hallmark pathway enrichment analysis of co-expression network, across all 9 brain regions, illustrated by heatmap of -log10 adj p-value.
(E) GO: BP enrichment analysis of co-expression network, across all 9 brain regions, illustrated by heatmap of -log10 adj p-value. Also, the
“COVID-19 Related Gene Sets 2021″ enrichment analysis represented all EASR co-expression networks enriched for some important COVID-19
related terms, such as (F) Genes whose expression is altered by SARS = COV-2 infection, and (G) “COVID19-All 332 protein host PPI” gene sets. F-G
circular bar plots demonstrating -log10 adj p-value of each term.
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In addition, affinity-purification MS studies have identified

332 high-confidence protein-protein interactions between

human proteins and SARS-CoV-2 (Gordon et al., 2020).

Targeting these proteins might have therapeutic potential

against COVID-19 infection (Gordon et al., 2020). We

observed all EASR co-expression also significantly enriched

for “COVID19-All 332 protein host PPI” gene sets that reveal

a link between PD and COVID-19 through αSN aggregates

(Figure 4G and Supplementary Data S5).

αSN-related co-expression network
revealed the role of TNF-α signaling in PD

To identify the pathological function of the EASR co-

expression network in substantia nigra, we used the

GSE114517 dataset and performed GSEA between PD and

healthy control (HC) conditions. We observed that the EASR

co-expression network was significantly (FDR <0.05) enriched
and up-regulated in 3 hallmark pathways (Figure 5 and

Supplementary Data S6), including “TNF-α signaling via NF-

κB” (NES = 2.00, FDR = 0), “P53 pathway” (NES = 1.78, FDR =

0.004), and “hypoxia pathway” (NES = 1.61, FDR = 0.025). We

also performed GSEA using all coding genes in substantia nigra

to elucidate whether the three observed pathways were the main

pathways that dysregulated during PD. We identified

16 pathways that were significantly upregulated in PD,

including “TNF-α signaling via NF-κB” (NES = 2.2974796),

“IL6 JAK STAT3 signaling” (NES = 2.1603885), “allograft

rejection” (NES = 1.9858677), “inflammatory response”

(NES = 1.8908404), “epithelial-mesenchymal transition”

(NES = 1.850037), “angiogenesis” (NES = 1.8474189), “TGFβ
signaling” (NES = 1.7642163), “interferon-gamma response”

(NES = 1.6653343), “hypoxia” (NES = 1.626201),

“complement” (NES = 1.6150334), “P53 pathway” (NES =

1.5878932), “apoptosis” (NES = 1.5682892), “KRAS signaling

UP” (NES = 1.56), “IL2 STAT5 signaling” (NES = 1.56),

“coagulation” (NES = 1.53), and “interferon alpha response”

(NES = 1.4) (Supplementary Figure S6 and Supplementary Data

S7). Consequently, a region-specific EASR co-expression

network is associated with the upregulation of main pathways

in the pathogenesis of PD.

We also applied the same analysis for the EASR co-

expression network in the amygdala and, interestingly, found

no pathway to be significantly enriched in PD phenotype

(Supplementary Data S6). Therefore, these results suggest that

the vulnerability to the toxic forms of αSN in the substantia nigra

is because of region-specific gene expression patterns and an

EASR-related co-expression network.

Drug discovery

Finally, we performed DEG analysis and observed that

66 nodes of the EASR co-expression network in

substantia nigra were significantly dysregulated. Across the

FIGURE 5
Gene Set Enrichment Analysis of the EASR co-expression network. The analysis demonstrates that TNF-α signaling via NF-κB (A,B), P53 pathway
(C,D), and hypoxia (E,F) are significantly enriched in substantia nigra of PD phenotype. FDR <0.05 was considered as a statistically significant level.
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EASR co-expression network, nine genes were dysregulated in

the “TNF-α signaling via NF-κB” pathway, of which eight genes

were upregulated, including DNAJB4, KLF2, KLF4, PPP1R15A,

FOS, DUSP1, IER5, and NR4A1, and only NR4A2 were

downregulated (Figure 6A). Since the “TNF-α signaling via

NF-κB” pathway was the main enhanced pathway during PD

and was the significantly enriched pathway for eight brain

regions, it seems that inhibition of this pathway can be an

appropriate approach to counteract the neurotoxic effect of

αSN and also reduce the severe effects of COVID-19 on PD

patients. However, our study revealed that except for FOS, none

of the upregulated genes were targeted by FDA-approved drugs.

Of the two FDA-approved drugs against FOS (nadroparin and

pseudoephedrine), only Pseudoephedrine can cross the blood-

brain barrier (BBB). Therefore, we conducted virtual screening

on FDA-approved drugs to identify new inhibitors for NR4A1

(PDB: 3V3E), DUSP1 (PDB: 6D66), and FOS (PDB: 1S9K) using

their available structures. We performed docking simulations

and then ranked the drugs according to binding affinity, focusing

on the top 50 ranked drugs. Next, the common drugs considered

as “TNF-α signaling via NF-κB” pathway inhibitors (Figure 6B

and Supplementary Data S8). Our results represented 11 overlap

FIGURE 6
Discovery of best inhibitors for TNF-α signaling via NF-κB pathway. (A) The violin plot demonstrates the distribution of log2 expression of nine
dysregulated genes (|fold change | > 1.5 and p-value < 0.05) in the TNF-α signaling via NF-κB pathway in the PD compared to the control samples. (B)
Venn diagram represents the overlapping top 50 inhibitors between NR4A1, DUSP1, and FOS. Eleven overlapping drugs were obtained for further
analysis, including adapalene, Deslanoside, Digitoxin, Digoxin, Entrectinib, Irinotecan, Lurasidone, Naldemedine, Nilotinib, Rimegepant, and
Ubrogepant. (C)Heatmap showing Affinity binding energy between common eleven inhibitions and NR4A1, DUSP1, and FOS proteins. (D) The visual
illustration showed the binding energy of Entrectinib and Irinotecan with studied proteins. The docked pose of drugs and each protein showed the
key hydrogen-bonds area using docking results generated with Discovery Studio visualizer 19.1.0.219 as a free resource.
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drugs (Figure 6B) with the highest binding affinity between

NR4A1, DUSP1, and FOS, including adapalene (DB00210),

deslanoside (DB01078), digitoxin (DB01396), digoxin

(DB00390), entrectinib (DB11986), irinotecan (DB00762),

lurasidone (DB08815), naldemedine (DB11691), nilotinib

(DB04868), rimegepant (DB12457), and ubrogepant

(DB15328) (Figures 6B,C). Based on DrugBank information

(https://go.drugbank.com/), 5 drugs (adapalene, entrectinib,

irinotecan, lurasidone, and nilotinib) cross BBB and during

PD could find use as inhibitors of the “TNF-α signaling via

NF-κB” pathway. Docking simulations indicated entrectinib and

irinotecan had the lowest negative energy for NR4A1, DUSP1,

and FOS (Figures 6C,D).

Discussion

PD is the second most common age-related

neurodegenerative disorder, characterized by a broad

spectrum of motor and non-motor symptoms. So far, there

are no effective preventive or curative therapies for PD

(Iarkov et al., 2020), and current treatments only counteract

dopamine loss. Thus, approved therapies target the final

phenotypes and signaling cascades that cause neuronal death

instead of the primary elements.

αSN is one of the principal factors associated with the onset

and progression of PD (Davidi et al., 2020). However, the

underlying molecular mechanisms of αSN toxicity and the

spatial distribution of neuronal loss in the brain are not well

understood. Here we used an microarray study (GSE120569) to

identify EASR genes. We reasoned that these genes, which are

affected by αSN aggregation, might provide insights into

molecular mechanisms of αSN toxicity and lead to effective

treatments. Therefore, we applied systems biology approaches

to characterize EASR genes functions in different brain regions

and their association to PD.

In the first step, we constructed a PD-EASR network by

mapping PD-related and EASR genes on the human PPI

network. Subsequently, we examined the topological features

of the PD-EASR network. This revealed that the PD-EASR

network is a scale-free network, which is a common

characteristic of biological networks (Uversky and Giuliani,

2021). Also, to fully understand the functional links between

PD-related genes and EASR genes, we performed enrichment

analysis for the core PD-EASR network, representing its function

in neuron death (GO:0070997). The pathway enrichment

analysis suggested that the association between “apoptosis”,

“inflammatory response”, and “reactive oxygen species”

pathways through the core PD-EASR network leads to loss of

neurons in PD.

By identifying the functional connection between EASR

genes and PD, we next examined the expression of these

genes in different brain regions to determine whether EASR

genes have region-specific expression patterns. We observed that

the mean expression of upregulated and downregulated EASR

genes were significantly different across all 9 regions of a healthy

brain. Specifically, cerebellum, frontal cortex, anterior cingulate

cortex, and substantia nigra, showed the lowest mean expression

level of upregulated-EASR genes. Although cerebellum function

in PD has not been fully clarified, it has been demonstrated that

morphological and functional modifications of the cerebellum

are associated with αSN aggregation in patients with

synucleinopathies (Seidel et al., 2017), and its neurological

function would be lost during disease progression (Azizi,

2021). Furthermore, the frontal cortex is dysfunctional in PD,

leading to cognitive impairment in these patients, such as

visuospatial dysfunction or slowed thinking (Parker et al.,

2013). Likewise, there is disruption of anterior cingulate

cortex activity in PD patients, which could be connected to

language or executive dysfunctions in PD (Vogt, 2019). More

recently, cortical dysfunction has been shown to be involved in

the PD-induced chronic pain model in mice (Zhou et al., 2021).

Therefore, it seems that the lower expression level of

upregulated-EASR genes (under healthy conditions) could

contribute to higher vulnerability to exogenous aggregated αSN.
On the other hand, caudate and putamen (which compose

the dorsal striatum) had the highest expression level of

upregulated-EASR genes. The striatum is connected to the

substantia nigra through the nigrostriatal pathway, one of the

four major dopamine pathways (Iyer et al., 2021). However,

unlike the substantia nigra, it has been reported that oxidative

damage and mitochondrial dysfunction in the striatum (caudate

and putamen) were lower in the PD brains (Venkateshappa et al.,

2012). To confirm these results, we used UKBEC expression data,

which reported on 4 regions of our studied brain regions. Thus,

our findings of UKBEC only confirmed the higher expression

level of upregulated-EASR genes in putamen compared to

substantia nigra. Consequently, it seems that with the

increased expression level of upregulated-EASR genes, brain

regions are more resistant to the exogenous αSN-induced
changes, specifically among substantia nigra and putamen,

which are connected to each other. However, collecting and

studying more samples from healthy and PD brains regions in

the future could provide a more accurate view of the expression

pattern of EASR genes and their functions in different brain

regions.

We also extracted EASR genes co-expression modules,

analyzed co-expressed networks for the healthy brain regions,

and then determined which pathways of substantia nigra co-

expression network are changed during PD. The “TNF-α
signaling via NF-κB” pathway turned out to be the most

significant upregulated pathway (FDR = 0 and NES = 2.3) in

the substantia nigra of PD patients. This result is supported by

other in vivo and in vitro studies that show NF-κB to be

dysregulated and activated in PD (Baiguera et al., 2012; Liu

et al., 2014; Parrella et al., 2019; Bellucci et al., 2020; Wang et al.,
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2020). Furthermore, it has already been shown that active

phosphorylated NF-κB (or RelA) is present in the nucleus of

neurons and glial cells of the substantia nigra in PD patients

(Ghosh et al., 2007; Garcia-Esparcia et al., 2014). Some studies

suggested that NF-κB is affected in αSN -related neuronal loss

(Togo et al., 2001; Bellucci et al., 2020). However, the molecular

connection between αSN aggregation and TNF-α signaling via

the NF-κB pathway has not been fully elucidated.

Pathway enrichment studies on EASR genes showed no

association between EASR genes and the “TNF-α signaling via

NF-κB” pathway. However, this association was seen in both the

PD-EASR network and region-specific EASR co-expression

network in healthy substantia nigra, amygdala, cortex, and

putamen. Although the genes that altered in response to

exogenous αSN were not directly involved in the “TNF-α
signaling via NF-κB” pathway, they could be connected and

could affect this pathway through a protein/region-specific co-

expression network. Given that the EASR co-expression network

in the amygdala has no significant alteration in this signaling

pathway, it seems that the region-specific gene expression pattern

in substantia nigra leads to higher vulnerability to exogenous

αSN in PD.

Identifying and understanding molecular mechanisms

behind the toxicity of αSN aggregation could pave the way

towards more efficient treatments for PD patients. Hence,

drugs that inhibit the TNF-α signaling via the NF-κB
pathway, as a key pathway involved in αSN toxicity, could be

an effective therapeutic approach for PD. Furthermore, our

results represented EASR genes co-expression networks as a

molecular mechanism to link PD and COVID-19. It has

already been reported that PD patients with COVID-19

present aggravated parkinsonian symptoms, and higher

mortality has been reported in patients with advanced PD

(Antonini et al., 2020; Cilia et al., 2020; Sulzer et al., 2020;

Zhang et al., 2020; Leta et al., 2021). Nevertheless, there is still

controversy over this, and the effect of COVID-19 on increasing

mortality in PD patients is still debated (Fearon and Fasano,

2021). Accordingly, considering the COVID-19 pandemic,

modifying a substantial nigra-related co-expression network

by inhibiting TNF-α signaling via the NF-κB pathway, as the

most significant upregulated pathway during PD, could also

reduce COVID-19 symptoms in PD patients. Our virtual

screening identified several FDA-approved drugs that could

inhibit three upregulated proteins in this pathway, including

NR4A1, DUSP1, and FOS.

Targeting the αSN neurotoxicity pathway runs counter to

most existing treatments that try to restore the dopaminergic

system (Iarkov et al., 2020). Therefore, our treatment strategy

could inhibit the primary signaling cascades which lead to PD

symptoms. Moreover, multiple targets screening, such as

targeting multiple proteins of a pathway or multiple

pathways of disease, is a novel concept for drug

repurposing, which, like drug combination screening, could

increase therapeutic efficacy (Cheng, Kovács and Barabási,

2019; Liang et al., 2021). Accordingly, we performed screening

on FDA-approved small molecules and identified 11 common

drugs with significant binding affinity for NR4A1, DUSP1, and

FOS proteins. Among these entrectinib and irinotecan had the

lowest binding energy for NR4A1, DUSP1, and FOS and can

cross the BBB, making them potential candidates for PD

treatment.

Another point is that this study was based on the SH-SY5Y

cells line only. However, our examinations have shown that

the EASR genes are not specific markers for dopaminergic,

adrenergic or cholinergic neuron phenotypes. Therefore,

regardless of the cell model, we could use the EASR genes

for subsequent analyses. We reasoned that these genes could

provide insights into molecular mechanisms of αSN toxicity

and lead to discover new effective treatments. Moreover, in the

next step of our study, we used the expression data of healthy

brain tissue with various types of cells. Therefore, the effect of

cell-specific pathways that are related to each glia or neuron

cells has not been evaluated and needs more studies in the

future.

In conclusion, we determined functional cross-links

between EASR and PD-related genes in PPI and region-

specific co-expression networks. Our finding identified

genes and pathways that could be involved in toxicity and

different vulnerability to exogenous αSN. Furthermore, we

highlighted exogenous αSN effects in different brain regions

by characterizing interactions between EASR genes and

pathways in healthy brain regions. Also, these results

suggest that an increase in the “TNF-α signaling via NF-

κB” pathway during PD could be one of the effects of

exogenous αSN through the EASR genes co-expression

network. In total, our observations provide a better insight

into the pathology of exogenous αSN and may point the way

towards future new treatments.
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