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Innate lymphoid type-2 cells (ILC2) are a population of innate cells of lymphoid origin that are
known to drive strong Type 2 immunity. ILC2 play a key role in lung homeostasis, repair/
remodeling of lung structures following injury, and initiation of inflammation as well as more
complex roles during the immune response, including the transition from innate to adaptive
immunity. Remarkably, dysregulation of this single population has been linked with chronic
lung pathologies, including asthma, chronic obstructive pulmonary disease (COPD) and
idiopathic pulmonary fibrotic diseases (IPF). Furthermore, ILC2 have been shown to
increase following early-life respiratory viral infections, such as respiratory syncytial virus
(RSV) and rhinovirus (RV), that may lead to long-term alterations of the lung environment.
The detrimental roles of increased ILC2 following these infections may include pathogenic
chronic inflammation and/or alterations of the structural, repair, and even developmental
processes of the lung. Respiratory viral infections in older adults and patients with
established chronic pulmonary diseases often lead to exacerbated responses, likely due
to previous exposures that leave the lung in a dysregulated functional and structural state.
This review will focus on the role of ILC2 during respiratory viral exposures and their effects
on the induction and regulation of lung pathogenesis. We aim to provide insight into ILC2-
driven mechanisms that may enhance lung-associated diseases throughout life.
Understanding these mechanisms will help identify better treatment options to limit not
only viral infection severity but also protect against the development and/or exacerbation of
other lung pathologies linked to severe respiratory viral infections.
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INTRODUCTION

Innate lymphoid type-2 cells (ILC2) are a rare population of lymphoid cells that unlike T cells or B
cells do not contain an antigen receptor and therefore respond to the immune environment within the
tissue compartment. Other ILC populations include ILC1 and ILC3 that differ by their transcriptional
regulation and the cytokines that they produce. ILC2 can be differentially characterized as lineage
negative, Sca-1+, GATA3+, ST2+, CD25+, ICOS+, and c-kit+ (1, 2). ILC2 differentiation can be driven
by innate cytokines, such as TSLP, IL-25, and IL-33, and are characterized by expression of GATA3
and production of cytokines, including IL-4, IL-5, IL-9, IL-13, as well as amphiregulin (AREG). They
develop from a common lymphoid progenitor (CLP) in the bone marrow that gives rise to the ILC2
lineage-specific progenitor (ILC2p). The development of this progenitor relies on GATA3 (3–7) and
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the transcription factor retinoic acid receptor-related orphan
nuclear receptor-a (RORa) (7, 8) which is also expressed in
common ILC progenitors (7) (Figure 1). Mjosberg et al.
identified that human ILC2 are also dependent on the
transcription factor GATA3 and the innate cytokine, TSLP (5).
In addition to inherent transcriptional properties, tissue-specificity
has also been shown to play a strong role in ILC2 effector functions
(9). Recent mouse studies have indicated that SCF/c-kit activation
of ILCp/ILC2 populations within lungs of allergic mice induces
important transcription factor expression, ID2 and GATA3, that
lead to differentiation and production of IL-5 and IL-13 by ILC2
(10). Thus, the differentiation of ILC2, while not completely
defined, appears to require multiple stimuli that likely help to
dictate its tissue function under diverse disease responses.

ILC2 are considered the innate counterpart of Th2 cells based
on their expression of the transcription factor GATA3 and the
production of Th2-type cytokines. It has been suggested that
ILC2 are far more potent than CD4+ T cells in their induction of
type 2 cytokines; in fact, it is estimated that ILC2 produce 10
times more cytokine than T cells on a per cell basis (11). Innate
lymphoid cells play key roles in lymphoid tissue development as
well as the initiation of inflammation and more complex roles
during the immune response, including the transition from
innate to adaptive immunity and chronic inflammation (12,
13). Interestingly, ILC2 may be necessary during early-life for
development of the lung and are known to assist in repair and/or
remodeling of the lung following injury. However, the numbers
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increase in the lung during pathogen infections or damaging
responses that may require repair of the epithelium. The
increased numbers and activation of ILC2 can also lead to
chronic disease phenotypes and lead to lung destruction (14–
17). TSLP, a cytokine responsible for ILC2 differentiation,
appears to be required for initiation/persistence of airway
remodeling during chronic allergic asthma (18). The early
over-expression of specific cytokines by ILC2 can lead to
eosinophilia (IL-5), mucus production (IL-13) and lung
remodeling (amphiregulin, AREG). Additionally, studies have
suggested that there are subsets of ILC2 that perform different
roles in repair and disease with differential contributions to
disease phenotypes and ILC2 may have plasticity to allow them
to respond appropriately into ILC2 subtypes based upon the
immune environment. The effects of early-life pathogenic ILC2
induction may be long-lasting and have an impact on the lung
environment well into adulthood as well as contributing to
chronic diseases associated with aging. For example, early-life
respiratory insults have been linked with an enhanced likelihood
of developing asthma and chronic obstructive pulmonary disease
(COPD) through long-term lung remodeling (19–21). In
addition, ILC2 are known to lead to acute exacerbation of
COPD through increased numbers of cells during viral
infection leading to enhanced inflammatory damage and in
some cases conversion from ILC2 to pro-inflammatory ILC1
(16, 22). Furthermore, as the lung ages, a loss of lung function
occurs along with decreased elasticity and changes in the
FIGURE 1 | Development of Type 2 Innate lymphoid cells (ILC2). ILC2 promote type 2 inflammation and tissue repair. They are mainly involved in the immune
response against extracellular parasites. Common lymphocyte progenitor differentiates into ILC progenitor. GATA-3 is the central transcription factor required for their
maintenance and survival. ILC2 are activated by IL-25, IL-33, and TSLP; upon infection they secrete IL-4, IL-5, IL-9, IL-13 and Amphiregulin (Areg). Exaggerated
ILC2 immune responses can lead to the development of asthma. CLP, Common lymphoid progenitor; CHILP, Common helper and Innate lymphoid progenitor;
ILCP, Innate lymphoid cell progenitor; GATA3, GATA-binding protein 3; ID2, inhibitor of DNA binding 2; NKP, NK precursor; NK, Natural killer cell; PLZF,
promyelocytic leukemia zinc finger protein.
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immune response (23) with ILC2 activation leading to enhanced
viral-induced damage especially in patients with underlying
disease. Interestingly, ILC progenitors in aged mice are
increased in bone marrow, but reduced maintenance and
function of the cells were observed in the lung (24). Several
pulmonary diseases occur during aging and whether the
prevalence of ILC2 activity alters the severity of these diseases
is presently unclear.

In this review, we will focus on the role of ILC2 during
respiratory viral exposures and their effects on the induction and
regulation of lung pathogenesis to provide insight into ILC2-
driven mechanisms that may enhance lung-associated diseases
throughout life. Understanding these mechanisms will be crucial
for developing therapeutic as well as prophylactic treatments to
protect against initial viral disease as well as the development
and/or exacerbation of other lung pathologies linked to severe
respiratory viral infections.
ILC2 IN THE DEVELOPING LUNG

Lung ILC2 are tissue-resident lymphocytes that develop early,
arising in the fetal mouse lung by embryonic Day 17.5 (25)
persisting throughout life (25, 26). Studies have shown that
newborn mouse lungs contain very few lymphocytes (27).
During the first 3 weeks of life, T, B, and natural killer (NK)
cells steadily increase to adult levels, while ILC2 increase more
rapidly and reach the adult level by Postnatal (PN) Day 8 and
further increase between 10 and 14 days of age when they return
to adult equivalent levels (27). The most active phase of lung
development (alveolar septation) occurs through the second
postnatal week in mice and until 2 to 3 years in humans (28–
30) which coincides with the early-life lung predisposition to a
type 2 immune environment. ILC2 expansion begins soon after
birth when neonatal mouse lungs are activated by IL-33 which
persistently alters ILC2 activation and responsiveness
throughout life (25, 27, 28, 31–34). Furthermore, Rock and
colleagues have identified ILC2 production of IL-13 as being
critical for lung regeneration following pneumonectomy lung
injury (35). While ILC2 first appear during fetal hematopoiesis,
their presence in tissues is established during early postnatal
development through rapid expansion, priming, and acquisition
of tissue-defining genes (25). This led to the discovery that there
are three distinct waves of ILC2 development during early-life
that include 1) dispersal into tissues, 2) expansion and activation
of tissue-specific transcriptional programs, and 3) homeostatic
maintenance with differences in local regulation of survival and
turnover throughout life (25). Multiple other studies have shown
that many of the ILC2 present in the adult lung were cells that
developed during the perinatal period (27, 31, 33). Upon the first
breath after birth, IL-33 is spontaneously released from the
epithelium which leads to rapid expansion and activation of
lung ILC2 (7, 28, 32, 33). In one study, IL-33 production led to a
marked increase in ILC2 numbers by PN Day 7 that continued to
increase until stabilized by 6 weeks of age (32). Additionally, it
was determined that IL-13+ILC2 began to expand at PN Day 3,
peaked around PN Day 10, and started to decline at PN Day 14
Frontiers in Immunology | www.frontiersin.org 3
dependent on IL-33. A similar study by de Kleer et al. supports
these findings by showing that type 2 immune cells, including
ILC2, accumulate in the lungs at PN Day 3 which leads to
enhancement of Th2 responses compared to weanling and adult
mice dependent upon IL-33 signaling (28). Importantly, it has
been determined that IL-33 activation of ILC2 during the mouse
neonatal period has long-lasting effects on ILC2 activation into
adulthood which leads to heightened IL-13 production (33).
However, it was also observed that a lack of IL-33, using IL-33-
deficient mice, had no obvious negative effects on alveolarization
(32), indicating that the IL-33 signaling pathway during early-life
may be more important for induction of the ILC2-driven type 2
immune response while lung development may be occurring
through an alternative or compensatory pathway.

Utilizing an ROR-a lineage tracing model, it has been
identified that the neonatal mouse lung consists of distinct
ILC2 subsets that have either proinflammatory (Th2 cytokine-
expressing) or tissue-repairing (AREG-expressing) properties
(7). In addition to these two subsets, it was also shown that the
neonatal lung contains an ILC progenitor population (IL-
18Ra+/ST2-) that is similar to adult lung ILC progenitors
capable of differentiating into multiple different ILC
populations. The two distinct neonatal ILC2 effector subsets
can be further identified by the genes expressed (7). Both
subsets express equal amounts of Id2, Gata3, Thy1, and Il1rl1
(St2) but can be further divided into Il5+/Il13+/Arg1+/Klrg1+
proinflammatory ILC2 or Areg+/Icos+ tissue-repairing ILC2.
Interestingly, it has been determined that only the Il5+/Il13
+/Arg1+/Klrg1+ proinflammatory ILC2 subset is dependent on
IL-33 regulation (7) and the activation pathway for the Areg
+/Icos+ tissue-repairing ILC2 subset has yet to be elucidated.
These findings, along with those by Saluzzo et al. that determined
that IL-33 is not required for alveolarization (32), suggest a
possible role for Areg+/Icos+ tissue-repairing ILC2 in the lung
developmental process. Furthermore, a recent mouse study
indicated that bronchopulmonary dysplasia (BPD), a severe
complication of the respiratory system seen in preterm infants,
was induced by IL-33/ILC2 signaling caused by an arrest in the
process of alveolarization, determining a major destructive role
of tissue-resident IL-13+ILC2 in the lung (36). This
differentiation could help to identify mechanisms for divergent
responses caused by alterations in ILC2 during early-life. It is
realistic to assume that in some instances, a loss of AREG+ ILC2
may be detrimental whereby in other cases, the enhancement of
IL-13+ ILC2 may be differentially regulated and detrimental.
Thus, preferential differentiation of ILC2 that produce IL-13
may be inappropriate and pathologic leading to inflammation
and altered lung development. Furthermore, these early
developmental changes likely have long-term effects on
childhood and adult lung function.
ROLE OF ILC2 IN TH2-INDUCTION
DURING RESPIRATORY VIRAL INFECTION

Respiratory infections are responsible for significant healthcare
burden throughout the world largely due to the development of
April 2021 | Volume 12 | Article 675169
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lower respiratory tract infections (LRTIs), including
bronchiolitis and pneumonia. LRTIs are the leading cause of
infectious death in children under the age of five (37).
Approximately 80% of LRTI cases are caused by viruses.
Among the most prevalent are infections with respiratory
syncytial virus (RSV), rhinovirus (RV), and influenza virus. A
study evaluating infants hospitalized due to bronchiolitis
determined that disease correlated with increased numbers of
ILC2 in the nasal passages (38). A mouse study evaluating the
immune response to influenza was the first to identify the
previously unknown non-T/B cell innate lymphoid “natural
helper cell” (ILC2) involvement in respiratory viral infection
(39). This latter study determined that IL-13-producing ILC2
were activated through IL-33 production from alveolar
macrophages following NLRP3-inflammasome activation by
the influenza virus leading to airway hyperreactivity (AHR)
(39). Further studies using animal modeling, have discovered
that ILC2 are increased in the lungs following other respiratory
virus infections, such as RSV and rhinovirus infection (11, 40–
48). Also, of note, early in life males are more susceptible to
severe disease caused by respiratory viruses compared to females.
In the case of early-life RSV, males are hospitalized at 2:1 ratio
compared to females due to lower respiratory tract diseases,
including bronchiolitis and pneumonia (49). Females tend to
have stronger Th1 responses than males, with higher levels of
inflammatory markers and viral infection clearance (50, 51)
which may induce better protection against infection.
Furthermore, clinical studies in children have identified
increased atopic diseases in boys compared to girls (50, 52). In
support of these findings, blood ILC2 numbers have been shown
to be increased in neonates compared to adults with neonatal
males having significantly higher levels of ILC2 than neonatal
females although no differences were observed in adult men vs
woman (53). Interestingly however, testosterone down-regulates
ILC2 function, type 2 cytokine production, and expansion during
asthma, possibly explaining a reduction in asthma in males post-
puberty compared to females (54, 55). Supporting these
observations are animal studies that supplement with
testosterone to down-regulate ILC2 function and attenuate Th2
cytokine driven allergic disease (54). Thus, age-associated ILC2
function related to early-life viral responses may be mitigated
later in life by sex-associated mechanisms in males.

Respiratory Syncytial Virus
The secretion of innate cytokines, such as IL-25, IL-33, and
TSLP, following infection of airway epithelial cells by RSV, leads
to the initial activation of the immune response, including the
activation of ILC2 (56). While epithelial cells have been directly
shown as the main source of these innate cytokines, the brush
cells within the lung may also contribute to ILC2 induction in a
similar manner as the IL-25 released by tuft cells in the intestine
(57) and require further evaluation to expand upon lung ILC2
biology. Importantly, elevated levels of ILC2 were identified in
nasal aspirates of infants hospitalized with severe RSV compared
to infants with moderate disease and correlated with increased
TSLP and IL-33 (58). Stier et al. (11), link the early induction of
effector ILC2 to the development of AHR and mucus production
Frontiers in Immunology | www.frontiersin.org 4
associated with RSV through TSLP-driven induction of IL-13-
producing ILC2 (11). Administering an anti-TSLP antibody after
RSV infection significantly reduced the levels of IL-13-producing
ILC2 suggesting a potential therapeutic target. Studies have also
shown that RSV driven IL-33-activated ILC2 were crucial for the
development of airway inflammation, including eosinophilia and
AHR, through ILC2-specific IL-13 production (59). RSV-
induced IL-33 appears to be regulated by the type 1 interferon
(IFN)/STAT1 pathway with deletion of STAT1 promoting ILC2
activation and Th2 cytokine production (60). Interestingly, age-
related IL-33 production was shown to be necessary to induce
ILC2 following neonatal but not adult RSV infection that led to
Th2-driven immunopathology (41). It has also been identified
that ILC2 numbers remain increased in mouse lungs as far out as
4 weeks post-infection following neonatal RSV infection of 7 day
old mice along with increased expression of Il33 and Tslp, and
the effector cytokines, Il5 and Il13 (43, 44). Studies by Fonseca
et al. have identified that ILC2 upregulation following RSV in
both neonates and adult mice can be driven by uric acid
pathways and innate cytokines (e.g. IL-1b, CCL-2, IL-33)
that promote ILC2/IL-13-driven Th2 response and
immunopathology (43, 45). Finally, ILC2 may regulate RSV-
induced CD4+T cell expansion and cytokine expression
(especially IL-4/IL-5/IL-13) via OX40/OX40L interaction (61).
These findings suggest a strong correlation between ILC2 and the
development of severe respiratory disease following early-life
RSV infection.

Rhinovirus
In addition to RSV-driven immunopathology, ILC2 have also
been implicated in pathologies related to early-life rhinovirus
(RV) infection (40, 42, 46–48). Similar to RSV studies, it was
determined that rhinovirus infection in neonatal mice led to
increased IL-13-producing ILC2 that was not seen in mature
mice (47). However in this instance, IL-25 was shown to be the
key cytokine responsible (47). Further evaluation of this pathway
revealed that following neonatal RV infection both IL-33 and
TSLP are required for IL-25-induced ILC2 production of IL-13
leading to immunopathology but TSLP was necessary for
maximal ILC2 gene expression even in the presence of IL-25
and IL-33 (40). These results suggest that this group of alarmin
cytokines cooperate and regulate each other during respiratory
viral infections to expand and fully activate ILC2 populations.
One suggested mechanism for the severe disease observed in
neonates compared to adults is a lack of a strong Th1/IFN-g
immune response. Immature mice do not induce this pathway
whereas adult mice induce strong IFN-g following RV infection
(48). This study showed that administration of IFN-g
immediately following RV infection of neonatal mice
attenuated signs of immunopathology suggesting that the lack
of IFN-g is correlated with severe disease. Furthermore, a direct
effect of IFN-g on ILC2 was suggested since there was a reduction
in IL-13-producing ILC2 without altering the expression of IL-
25, IL-33 or TSLP (48). Importantly, studies that limit ILC2
induction, utilizing an ROR-a inhibitor (SR3335) or genetic
deletion of ROR-a, either using complete knockout mice (ROR-
asg/sg) or conditional knockout mice to target only ILC2 (Rora/
April 2021 | Volume 12 | Article 675169
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Il7rCre+), led to protection from severe disease induced by RV
infection (42, 46). Unlike RSV infection (43, 45), RV infection
did not drive IL-1b, and neonatal infection in mice lacking IL-1b
signaling (NLRP3-/- mice or chemical inhibition of IL-1b) led to
enhanced RV-induced Th2 cytokine expression and mucus
metaplasia (62). In contrast, another study indicated that
NLRP3-inflammasome activity and IL-1b were required for
RV-induced airway inflammation and AHR in adult mice (63).
The discrepancy between these latter studies may be due to
neonatal vs adult mice used in the studies as they also show that
adult mice induce IL-1b to a greater extent than neonatal mice
following RV infection.

Influenza Virus
Interestingly, while influenza infection is typically associated
with Th1-type immune responses, one of the first studies to
identify the role of lung ILC2 during viral-induction of Th2
cytokines was found using influenza (39). The authors identified
a lymphoid cell of non-T/B cell origin within the lungs, termed
“natural helper cells” which induced IL-13 in response to IL-33
following influenza A infection in mice that led to AHR (39).
These results were confirmed by another mouse study that
showed ILC2 produced significant Th2 cytokines following
pandemic influenza infection (pH1N1) along with increased
IL-33 in the lungs and were responsible for the development of
AHR, independent of adaptive immunity (64). Another study
revealed that c-kit⁺ IL-5-producing ILC2 were activated by IL-33
released from NK T cells and alveolar macrophages and led to
eosinophil accumulation (65). A recent mouse study determined
that type 1 IFN deficiency leads to ILC2 activation and type 2
immunopathology during influenza A virus infection (66).
Furthermore, this study found that type 1 IFN directly
negatively regulates both mouse and human ILC2 through
regulation of IL-33. Additionally, the authors show that IFN-g
and IL-27 also regulate ILC2 in a STAT1 dependent manner (66)
similar to that observed during RSV infection. However, a
contradictory study showed that lack of IFN-g led to
protection from lethal infection with pandemic H1N1 and that
this was dependent on ILC2 production of IL-5 and AREG which
led to increased tissue integrity and reduced immunopathology
(67). It is important to note that the latter study did not show
differences in IL-13+ ILC2 populations whereas the previous
study indicated reduction of IL-13 by the presence of type 1 IFN
but not IFN-g. These studies suggest that type 1 IFN and IFN-g
have different regulatory actions during influenza virus infection
and that they appear to modify ILC2 with vastly different results
supporting the possibility that there are subsets of ILC2 that are
proinflammatory (IL-13+) and another that is responsible for
lung repair (AREG+).

SARS-COV-2 Induced ILC2
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)
is the newly identified b-coronavirus responsible for the
pandemic viral pneumonia known as COVID-19. The risk for
severe illness with SARS-CoV-2 increases with age, with older
adults (>65 years) having five times more probability of
developing severe COVID-19 disease (68). It has been reported
Frontiers in Immunology | www.frontiersin.org 5
that there is an increased level of systemic IL-33 in the serum and
plasma of severe COVID-19 patients, together with an increased
number of circulating ILC2 (69). Furthermore, it has been
reported that increased levels of IL-18, IL-13, and IL-6 were
increased along with accumulation of ILC2 during COVID-19
that could be linked with the severity of the diseases. A separate
study reported increased circulation of ILC2 in moderate but not
severe COVID-19 patients suggesting that ILC2 could be
differentially regulated based on the severity of the diseases.
Low ILC2 could be a marker of severe infection (70). This latter
concept may be consistent with reports that ILC2 numbers are
decreased by IFN-g during influenza-induced disease and
correlated to more severe disease phenotypes (67). In fact, an
original report suggested that ILC2 were responsible for
promoting epithelial repair post-influenza infection allowing
tissue homeostasis to be reestablished (71). Thus, while ILC2
may provide signals that promote inflammation and pathology,
such as IL-13, they likely also have important roles in
development and tissue repair early in life and during severe
viral-induced epithelial cell damage, perhaps through the
differential production of AREG.
TRAINED ILC2 IMMUNITY AND
EXACERBATED LUNG DISEASE

Lasting Impact of Activation of ILC2 in
Lung Development and Viral Infections
A strong Th2-immune environment in early-life appears to
promote preferential development of Th2 responses that may
have long-term consequences on pulmonary diseases (6, 27, 32,
72, 73). Numerous studies suggest that IL-13+ILC2 are
responsible for a persistent inflammatory lung environment
following early-life viral infection that exacerbates secondary
responses later in life (41, 43, 44). Studies have also shown that
induction of IL-33 within the lung during early-life leads to
enhanced activation of ILC2 which persists well into adulthood
(33, 34) and therefore may promote lung structure and
functional changes. Furthermore, recent studies have identified
that frequent intranasal papain administration, or IL-33
administered in the presence of retinoic acid, may train ILC2
into an “exhausted” phenotype which induces IL-10 that could
be harnessed as a potential treatment option for allergic
responses to overcome the inflammatory effects of these
cells (74).

The phenomenon of “trained immunity” or immunological
recall of innate cells, such as myeloid cells (macrophages,
dendritic cells, etc.), NK cells and innate lymphoid cells, has
been explored in recent years. In the case of ILC2, neonatal
“training” has been suggested to impact the activity of these cells
during immune responses in adulthood (33, 34, 75). As noted
previously, acute expansion and activation of ILC2 occurs shortly
after birth and lineage tracing studies determined that 40-70% of
these postnatally-derived ILC2 were present in the adult lung
(25). This and many other studies have determined that the
activity of these cells is dependent on their exposure during the
April 2021 | Volume 12 | Article 675169
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early postnatal period. Intranasal administration of allergen or
IL‐33 to mice led to ILC2 expansion and activation in the lung
which persisted for up to 1 year after initial administration (34).
Importantly, using 5-bromo-2′-deoxyuridine (BrdU)-labeling,
the studies show that these were long-lived ILC2 and upon an
unrelated allergen challenge or IL-33 administration later in life
showed exacerbated responses due to ILC2 production of IL-5/
IL-13. Likewise, Steer et al. showed that neonatal mouse lung
ILC2 activation by IL-33 has significant effects on ILC2 activity
during adulthood (33). Most neonatal lung ILC2 incorporated
BrdU and persisted into adulthood. Adult lung BrdU+ ILC2
responded more intensely to IL-33 treatment compared with
BrdU– adult lung ILC2. In IL-33-/- mice, lung ILC2 developed
normally but because they are not activated during the neonatal
period, they have a dampened response in adulthood compared
with WT ILC2 (33). Together, these results suggest that
activation of lung ILC2 by IL-33 during early-life may “train”
ILC2 within the lung that become long-lived resident cells that
have stronger type 2 responses to challenges later in life. As
indicated in the previous sections, early-life respiratory viral
infections likely enhance disease associated “training” that can
influence later disease phenotypes (41, 43, 44, 46).

Viral-Induced Asthma Exacerbations
Asthma often starts during early childhood and according to the
Centers for Disease Control, 1 in 12 children (~8%) had asthma in
2017. Asthma exacerbation can be life threatening and often
requires hospitalization (76). Viral-induced exacerbation in
established pediatric asthmatics is of great concern causing over
80% of exacerbation in these patients with RSV and RV as the
most common causes (77). In a cross-sectional, analytical study of
children 5-15 years of age that were admitted to the hospital for
exacerbated asthma, 20% of those were due to viruses, especially
RV and RSV (78). Furthermore, males were hospitalized to a
greater extent than females, with boys accounting for ~57% of
patients (78) supporting previous findings that males are more
susceptible to both viral infection and childhood asthma. The role
of ILC2 in asthma and airway disease has been studied recently
and reviews describing their role have previously been published
(79–82). In severe steroid resistant asthma, ILC2 numbers
correspond to the severity of disease exacerbation
demonstrating a systemic effect of the disease process (83, 84).
The Th2 immune response has been correlated with these
exacerbations and since respiratory viral infections enhance Th2
responsiveness of ILC2, it is likely that these cells play a crucial
role in exacerbation of asthmatic disease (85). One study first
identified that patients with asthma that were subsequently
exposed to RV experienced greater RV-induced morbidity and
had higher viral loads than their healthy counterparts with
increased nasal and bronchial Th2 cytokine levels (86). In
addition, asthmatic patients also had increased nasal IL-33
following RV infection. To further explore these findings,
human bronchial airway epithelial cells were exposed to RV that
led to the induction of IL-33. When the RV-infected epithelial cell
supernatants were co-cultured with human ILC2, a strong
induction of IL-5 and IL-13 was observed indicating an IL-33/
ILC2 pathway activation following RV infection in humans (86).
Frontiers in Immunology | www.frontiersin.org 6
Mouse models have been developed to begin to unravel the
mechanisms of viral-induced asthma exacerbation (87–91). For
example, studies have identified that RV leads to the exacerbation
of previously established ovalbumin allergy through macrophage/
epithelial CCL2-signaling (89) and eotaxin release from
macrophages (88). Another study determined that influenza
infection potentiates the exacerbation of house dust mite
allergic responses (HDM) (91). However, so far, animal studies
supporting direct ILC2 involvement in respiratory viral
exacerbation of asthma have been limited and require further
investigation as this could lead to discovery of new therapeutic
targets. In a mouse study evaluating influenza-induced
exacerbation of HDM allergic responses, it was determined that
CD4+ T cells were the major source of IL‐5 and IL‐13 early
during the exacerbation (Day 4) but at later timepoints (Day 7-
11), ILC2 contributed more to the total number of IL‐5/IL‐13-
producing cells (92). ILC2 appear to be a major source of IL-5 and
IL-13 as assessed by the intensity of intracellular cytokine staining
(92), indicating higher cytokine production per cell as previously
suggested (11). These studies support a role for ILC2 at the time
of severe exacerbation as complications and hospitalization
during asthma exacerbation often occurs 7-10 days post-viral
infection (76). Thus, targeting ILC2 promoting mechanisms may
provide a therapeutic option for Th2-associated asthmatic
disease. Recent clinical trials using either anti-TSLP or anti-IL-
33, which should target ILC2 development and activation, are
only now reaching Phase 2/3 human studies but show some
promise possibly through regulation of ILC2 function.

Viral-Exacerbated COPD and ILC2
Chronic obstructive pulmonary disease (COPD) is characterized
by severe chronic airway epithelial inflammation that leads to
airway remodeling (93), characteristic thickening of the airway
wall, increased layers of airway smooth muscle, and increased
extracellular matrix (94). It has been reported that worldwide the
prevalence of COPD in the population over 40 years is higher in
smokers and ex-smokers, and the prevalence increases
significantly among persons over 60 years of age (95). While
continuous exposure to inhaled irritants that damage the airway
function and structure are associated with all causes, the most
significant risk factor for COPD is smoking, with ~50% of
smokers developing COPD. Respiratory viral infections have
been linked with worse outcomes than bacteria exacerbation
episodes (96). A recent review of respiratory virus in COPD
patients showed that the most common lower respiratory tract
virus infections identified in acute exacerbation (AE-COPD)
patients were RV (16.39%), RSV (9.9%), and influenza virus
(7.83%). Overall, coronaviruses were more frequently detected
in the upper respiratory tract than any other virus (97). A recent
clinical study indicated increased serum IL-33 levels and numbers
of peripheral blood ILC2 in AE-COPD when compared with
COPD stable patients and healthy controls (22). When the
signature transcription factors were analyzed, they observed
increased expression of Gata3 and Rora in the ILC2 sorted
from AE-COPD compared with healthy controls and stable
COPD patients. Moreover, the expression of these transcription
factors was upregulated in the ILC2-sorted cells from stable
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COPD patients compared with healthy controls (22), suggesting
that the proliferation and activation of ILC2 are associated with
AE-COPD and that active ILC2 could be involved in the
pathogenesis of COPD. While ILC2 have been most notably
explored in COPD patients and in animal modeling, ILC3 and
production of IL-17 has also been suggested. Importantly, ILC2
exposure to IL-12 during viral exacerbation can mediate
conversion to IFN-g-producing ILC1 correlated with the
severity of COPD exacerbations, demonstrating that ILC2
plasticity exists (16).

Lung ILC2-related enzyme arginase 1 (Arg1) is upregulated in
asthmatic, idiopathic pulmonary fibrosis (IPF), and COPD
patients and is a marker for lung ILC2 (98). Arg1 is part of the
L-arginine metabolic pathway and drives collagen synthesis as
well as bioenergetic pathways critical for cell proliferation (99). It
has been shown that Arg1 ILC-intrinsic deletion abrogated type
2 lung inflammation by decreasing ILC2 proliferation and
activation (100). Furthermore, the latter demonstrated that
tissue samples from COPD and IPF patients presented ILC2-
arginase positive staining, suggesting that ILC2 in COPD and
IPF could be targeted with inhibitors of Arg1 to control ILC2-
induced disease responses. To understand the role of ILC2 in the
development of COPD, an experimental mouse model of COPD
(exposure to cigarette smoke for 12 weeks) was performed using
ILC2-deficient mice (Rorafl/fl/Il7rCre). Cigarette smoke-exposed
Rorafl/fl/Il7rCre mice were protected from emphysema
development but interestingly presented increased IL-33, IL-13,
and ILC2 numbers (101). However, it should be noted that there
was no viral infection of these animals and the subsets of ILC2,
such as Areg+ILC2, were not examined. Overall, the role of ILC
populations in the development or exacerbation of COPD has
not been clearly defined and will require future investigation but
correlations suggest ILC subsets are involved in COPD
pathogenesis, especially AE-COPD groups.

ILC2 and Idiopathic Pulmonary
Fibrosis (IPF)
Interstitial lung diseases can cause significant morbidity primarily
in older individuals when accompanied by compromised lung
function. Idiopathic pulmonary fibrosis (IPF) is likely the most
severe form of interstitial disease. Several risk factors have been
linked with the development of IPF, including smoking,
environmental inhaled exposures, chronic viral infections,
genetics and comorbidities (102). Hallmarks of Aging:
abnormal telomere shortening, mitochondrial dysfunction,
cellular senescence, impaired autophagy, and epigenetic
reprogramming, among others, are suggested to be essential
during IPF pathogenesis (103). Furthermore, IPF has been
linked with IL-13 and TGF-b production and ILC2 have been
recognized as an essential source of these cytokines within the
lung (10, 104). Increased levels of epithelial-derived cytokines IL-
33, TSLP, and IL-25, critical activators, and recruiters of ILC2,
have been detected in lung tissue and/or bronchoalveolar lavage
(BAL) fluid of IPF patients (17, 105, 106). Together, these data
suggest that ILC2 could play a critical role in the pathophysiology
of IPF. A mouse model of bleomycin-induced pulmonary fibrosis
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showed a similar trend, with increased expression of IL-33 in the
lung (107). In this latter study, bleomycin-induced pathology was
not affected by deficiency of the IL-33 receptor (ST2) that is
associated with ILC2 activity. Interestingly, the delivery of IL-33,
using adenovirus-targeted delivery, during bleomycin treatment,
showed a synergistic effect on airway inflammation, collagen
accumulation, upregulation of heat shock protein 70 (HSP70),
TGF-b, IL-6, CCL2/MCP-1, MIP-1a and TNF-a, but did not
alter type 2 cytokines (107). Another bleomycin study in mice
determined that fibrosis development was dependent on IL-33/
ST2 signaling and that the adoptive transfer of ILC2 into the lung
during treatment led to enhanced disease (108). In addition,
systemic sclerosis patients were found to have increased tissue
ILC2 that correlated with both fibrotic skin lesions as well as the
presence of interstitial lung disease (109). Acute exacerbation of
IPF (AE-IPF) is associated with increased mortality. In a clinical
study where AE-IPF patients were tested to identify the pathogen
(e.g. virus vs bacteria) involved in exacerbation, viral-positive
nasopharyngeal swabs were reported in 60% of these patients
(110), suggesting that respiratory virus incidence in the
development of AE-IPF is higher than bacterial infection. As
described above, RSV and RV immunopathology is highly linked
to ILC2 activation and recruitment and therefore, these viruses
could promote further acceleration of the fibrotic responses.
Other viral infections including herpes viruses and
cytomegalovirus have been implicated in the progression of
IPF. However, no data have established a link of these latter
viral infections with ILC2 biology. Additional investigations into
the role of ILC2 in promoting lung remodeling may identify them
as having an important role in the progression of interstitial lung
diseases. Thus, while a causal effect of ILC2 for the development
of pulmonary remodeling has not been established, the ability of
ILC2 to produce IL-13 and/or AREG that can promote
myofibroblast activation provide a rationale for further
investigating their role in these chronic remodeling diseases.
STRATEGIES TO MITIGATE ILC2-
INDUCED PATHOLOGY

Over the past several years a number of therapeutic targets have
been advanced to clinical trials that can impact ILC2 activation,
expansion, and mediator release that effect clinical disease. Two
targets, TSLP and IL-33, appear to have significant impact on the
development of chronic severe asthma responses, especially
related to exacerbations. As indicated in the previous pre-
clinical research, ILC2 likely play a critical role in not only
maintaining a Th2 phenotype in the lung, but also for directing
an inappropriate anti-viral response that leads to a worsening of
the tissue responses. While the clinical studies have not reported
ILC2-associated changes specifically, the biology would predict
that there would be a significant effect on ILC2 over time,
allowing a more appropriate immune environment. TSLP and
IL-33 inhibition may alter ILC2 biology and therefore target their
development, however, complementary targeting of ILC2
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products may be more successful. The ability to target IL-13
biology has already been shown to be effective in chronic Th2-
mediated disease, including asthma, with the IL-4Ra antibody,
Dupilumab. While all of these ILC2-related targets hit many
aspects of chronic disease biology, their role in long-term disease
mitigation likely impacts ILC2 as one of the central components
of disease severity. Future targets may depend upon the disease
and the pathologic phenotype of the response, such as targeting
AREG during chronic remodeling diseases, such as IPF. To
properly identify viable ILC2 therapeutic targets, future studies
examining the mechanisms of how ILC2 subsets impact the lung
environment and how ILC (e.g. ILC1/2/3) differentiate will be
defining for individual disease phenotypes.
CONCLUSION

Severe lung disease induction by respiratory viruses continues to be
a significant healthcare burden and cause of morbidity and
mortality worldwide. These diseases have been associated with
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the induction of strong Th2-type immune responses. ILC2 are now
recognized as a significant contributor of dysregulated
immunopathology within the lung following respiratory viral
infection as well as during the pathogenesis of lung diseases, such
as asthma. This review has highlighted the role of ILC2 during the
development of the early-life lung and how subsets of ILC2 may
become persistently altered following early-life infection to alter
immune responses to future pathogens as well as how the effect of
ILC2 responses on the aged lung later in life leads to enhanced
complications (Figure 2). On the contrary, ILC2 may also play a
protective role during lung disease pathogenesis by maintaining
and/or repairing the lung epithelium. Therefore, critical targeting of
specific ILC2 subsets [e.g. proinflammatory (IL-13) or tissue-
repairing (AREG+)] will be crucial when evaluating potential
therapeutic candidates. Elucidation of the mechanisms in which
these cells may be damaging and/or protecting the lung immune
and structural environment will help identify better treatment
options to not only protect against initial disease but also reduce
the development and/or exacerbation of other lung pathologies
linked to severe respiratory viral infections.
FIGURE 2 | Overview of ILC2-specific Lung Pathogenesis. Figure created using Biorender.com.
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