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stimulatory receptors demonstrate
enhanced frequency in peripheral blood of
NSCLC patients responding to nivolumab
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Abstract

Background: Checkpoint inhibitors have become standard care of treatment for non-small cell lung cancer
(NSCLC), yet only a limited fraction of patients experiences durable clinical benefit, highlighting the need for
markers to stratify patient populations.

Methods: To prospectively identify patients showing response to therapy, we have stained peripheral blood
samples of NSCLC patients treated with 2nd line nivolumab (n = 71), as well as healthy controls, with multiplex flow
cytometry. By doing so, we enumerated 18 immune cell subsets and assessed expression for 28 T cell markers,
which was followed by dimensionality reduction as well as rationale-based analyses.

Results: In patients with a partial response (PR), representing best overall response (BOR) according to RECIST v1.1,
the number of CD8 T cells at baseline and during treatment is similar to those of healthy controls, but 2-fold higher
than in patients with progressive and stable disease (PD and SD). CD8 T cell populations in PR patients show
enhanced frequencies of T effector memory re-expressing CD45RA (TEMRA) cells, as well as T cells that express
markers of terminal differentiation (CD95+) and egression from tumor tissue (CD69-). In PR patients, the fraction of
CD8 T cells that lacks co-stimulatory receptors (CD28, ICOS, CD40L, 4-1BB, OX40) correlates significantly with the
total numbers and differentiated phenotype of CD8 T cells.

Conclusions: This study demonstrates that high numbers of peripheral CD8 T cells expressing differentiation
markers and lacking co-stimulatory receptors at baseline are associated with response to nivolumab in NSCLC
patients.

Keywords: NSCLC, Nivolumab, T cells, Biomarkers, Co-stimulatory receptors

Introduction
The onset of T cell activation and differentiation, gener-
ally a consequence of the T cell receptor (TCR) recog-
nizing its cognate antigen, is usually accompanied by
up-regulated expression of co-inhibitory receptors such

as programmed-death 1 (PD-1), proving a negative feed-
back mechanism to keep T cell activity ‘in check’ [1, 2].
Many types of cancer exploit this adaptive immunity and
demonstrate high expression levels of co-inhibitory li-
gands such as PD-L1 to resist anti-tumor T cell re-
sponses. Clinical use of nivolumab, a monoclonal
antibody targeting PD-1, showed promising results in
metastatic melanoma [3], NSCLC [4, 5] as well as vari-
ous other types of cancer [6]. Collectively, however,
study results reveal that only a limited subset of patients
experiences durable clinical benefit [7]. This highlights
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the need for markers that would identify patients prone
to responding to treatment at an early time point and
select these patients for extended treatment, thereby
avoiding further exposure of patients with limited bene-
fit to a potentially toxic and costly treatment.
Initial searches for predictive markers focused on the

expression of PD-L1 [8, 9], but despite FDA approval for
patient stratification based on PD-L1 expression in pri-
mary tumor tissue of NSCLC patients, interpretation of
such immune stainings with respect to cell type and op-
timal cut off percentage remains challenging [10, 11].
Similarly, investigations assessing tumor mutational bur-
den (TMB), mismatch repair deficiency (dMMR) and
microsatellite instability (MSI) reveal that a high score
on each of these markers correlates with enhanced re-
sponsiveness to anti-PD-1 therapy [12, 13], but on their
own these markers may not be sufficiently discriminative
to predict clinical response. Also, CD8 T cell density
within tumor biopsies has been shown to predict
anti-PD-1 response in patients diagnosed with advanced
melanoma [14]. Interestingly, local CD8 T cell immunity
is affected by escape mechanisms [15], and profiles based
on multiple immune parameters, such as the presence of
effector cells, MHC molecules, suppressor cells, as well as
immune and metabolic checkpoints provide predictive
value exceeding that of single markers such as PD-L1 or
mutational load [16–18]. However, limited availability of
biopsy tissue and its invasiveness, especially in case of vis-
ceral tumors, often limits in situ determination of such
markers. Multi-parameter analysis of immune cell subsets
in blood is an easily employable screening method antici-
pated to reveal surrogate markers for clinical responses.
Indeed, the absolute number of lymphocytes in blood
samples correlates with clinical outcome in melanoma pa-
tients treated with ipilimumab, a monoclonal antibody tar-
geting the co-inhibitory receptor CTLA-4 [19]. And more
recently, Ki67 expression in a subset of PD-1+ CD8+ T
cells has been reported as a measure of effector T cell in-
vigoration in patients with advanced melanoma and
NSCLC who were treated with antibodies targeting the
PD-1/PD-L1 axis [20–22].
In the current study, we have enumerated 18 immune

cell populations and performed both cluster and selected
analyses to assess differential frequencies of multiple T
cell subsets using 28 markers of T cell activation, matur-
ation, co-signaling and chemotaxis in NSCLC patients
treated with 2nd line nivolumab in order to obtain pro-
spective immune markers identifying those patients
showing a clear response to therapy.

Materials and methods
Study design
The MULTOMAB study (local ethics board study num-
ber MEC16–011) was originally designed by the

Laboratory of Translational Pharmacology, Dept Medical
Oncology at the Erasmus MC Cancer Institute (PIs: R.
Mathijssen; J. Aerts and R. Debets). Patients asked to
participate in the reported analysis are suffering from
NSCLC and receiving treatment in the form of nivolu-
mab (BMS936558, Opdivo®). Written informed consent
was obtained from all participants prior to inclusion into
the study.

Patients and collection of specimens
Data was prospectively collected from NSCLC patients
treated with 3 mg/kg of nivolumab (intravenously every
2 weeks) between May 5th 2016 and November 1st
2017, with a minimum follow-up of three months. Pa-
tient characteristics are provided in Additional file 1:
Table S1. Blood was drawn at 3 time points (pre-treat-
ment (“baseline”) and prior to 2nd and 3rd administra-
tion of nivolumab (visits (V) 1 and 2). For an overview
of patient treatment and sample acquisition, see Add-
itional file 1: Figure S1. Freshly obtained, whole blood
was used to enumerate immune cell populations,
whereas PBMCs were isolated using ficoll gradient and
stored using standard protocols and thawed at later time
points to assess frequencies of T cell subsets. Healthy
control samples were obtained from 15 donors that
were matched with patients for age and gender-
distribution (median age: 65 years (60–69); 6 female
(40%) and 9 male (60%) donors) (Sanquin, Amsterdam,
The Netherlands).

Assessment of tumor volume and clinical response
Baseline tumor burden was defined as the sum of the
longest diameter of all target lesions. Best overall re-
sponse (BOR) was assessed according to RECIST v1.1.
Partial response (PR) was defined as a minimal decrease
of 30% in the sum of diameters of the target lesions, tak-
ing as reference the sum of diameters at baseline, while
progressive disease (PD) was defined as a minimal in-
crease of 20% in the sum of diameters of the target le-
sions, taking as reference the smallest sum of diameters
while on study and a minimal absolute increase of 5
mm. Stable disease (SD) was defined as insufficient
change in tumor sizes to qualify for either PR or PD and
if duration of SD was 90 days or more. Patients with
non-measurable lesions were excluded from analysis. All
three BOR response groups displayed similar medians
and ranges with regard to age, sex and histology of pri-
mary lung tumor.

Flow cytometry
Whole blood was stained and after lysis of red blood
cells analyzed by multi-color FCM on a BD 3-laser Ce-
lesta flow cytometer using FACSDIVA 8.x software. Ab-
solute cell counts were determined using Flow-Count
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Fluorospheres (Beckman Coulter). Cryopreserved PBMC
samples were thawed and stained with a master mix of
antibodies. Please refer to Additional file 1: Table S2 for
an overview of staining panels and utilized markers; all
panels were optimized, compensated using Fluorescence
minus one (FMO) controls and measurements were cor-
rected for background fluorescence; a detailed list of
antibodies is available upon request. Data were gated
and analyzed using FlowJo software (Tree Star). Please
refer to Additional file 1: Table S3 for an overview of
our data analysis work scheme, in which dimensionality
reduction analysis (tSNE, see below) preceded
two-dimension (2D) analysis of selected markers. The
latter analysis of large datasets was conducted using R.

T-distributed stochastic neighbor embedding (tSNE)
analysis
tSNE analysis was performed using the Cytosplore soft-
ware, with an interactive graphical user interface. CD8 T
cell populations were extracted as individual .fcs files
and imported into Cytosplore [23], where they were
down-sampled to at most 1000 cells per sample, and
tSNE analysis was performed on these 211,000 ± 6000
data points (cells from 71 patients, 3 time points each).
Clustering was carried out with gradients of density
plots, where first a threshold (sigma) of 26 was used,
which provided 22 ± 8 clusters per combination of
markers (see Additional file 1: Table S2, panels 2–6).
This threshold was iteratively increased to a lower num-
ber of clusters in such a way that differential marker in-
tensities were not compromised, providing a total of
12 ± 4 clusters per combination of markers. A total of 58
clusters was identified across all markers. The marker
intensity profiles and contributions of individual BORs
in these clusters were extracted from Cytosplore to excel
sheets (Microsoft) for visualization.

Statistics
tSNE-identified clusters were tested for differential
abundance among BOR groups and time points using
the Student’s T-test of the scipy stats package in python,
while 2D analysis of selected markers was conducted
using the Kruskal Wallis test. Descriptive statistics in-
cluded median, standard deviation and range for con-
tinuous variables. For comparison of median differences
between individual BOR groups the Mann–Whitney
U test was used. For normally distributed data, sig-
nificant changes of median cell numbers or frequen-
cies within BOR groups over time were determined
using two-sided, paired Student’s T-test. Correlations
between continuous variables were determined by
Pearson’s r coefficient. Differences were considered
significant with a p-value below 0.05.

Data reporting
In this discovery study, experiments were not random-
ized and the investigators were not blinded to patient
sample allocation during experiments and outcome
assessment.

Results
NSCLC patients with PR to nivolumab harbor normal,
non-decreased numbers of CD8 T cell numbers in blood
in contrast to PD and SD
Availability of freshly obtained, peripheral blood of 32 of
the 71 NSCLC patients enrolled in this study allowed us
to conduct enumeration of 18 major immune cell popu-
lations prior to and following nivolumab treatment (for
treatment and patient details, please refer to Additional
file 1: Figure S1 and Additional file 1: Table S1). Patients
were assessed for their best overall response (BOR) ac-
cording to RECIST v1.1 within a follow-up time of at
least 90 days (except for patients experiencing progres-
sive disease (PD) within that timeframe) and categorized
into patients with partial response (PR; n = 7), stable dis-
ease (SD; n = 10) or PD (n = 15). For reference purposes,
the same immune cell populations were enumerated in a
control group of age and gender-matched healthy indi-
viduals (n = 15). Figure 1 depicts the numbers of im-
mune cells detected per μl of peripheral blood at
baseline, after the 1st treatment cycle (2 weeks after
baseline, visit (V)1) and 2nd treatment cycle (4 weeks
after baseline, V2). Numbers remained unchanged after
onset of therapy for the majority of immune cell popula-
tions, except for eosinophils, which increased in num-
bers, independent of BOR, and T cells, which differed
significantly between PR and PD patients after onset of
therapy (see below). When compared to healthy refer-
ence values at baseline (see Additional file 1: Figure S2),
numbers of granulocytic and myeloid cell populations
were enhanced in all BOR groups, i.e., mature neutro-
phils, monocytes and M-MDSCs, while numbers of lym-
phocytes (i.e. B and NK cells), were decreased. At
baseline, SD patients displayed an enhanced number of
immature neutrophils compared to PR patients, who in
turn displayed significantly lowered numbers of these
cells compared to healthy controls samples. On the
other hand, compared to these healthy reference values,
median numbers of T cells at baseline were significantly
decreased only in PD and SD, but not in PR patients
(see Additional file 1: Figure S2). When assessing the
major T cell populations, we observed that αβ-T cells,
but in particular their CD8-positive subset represented
the T cell population that attributed to the difference
among the BOR groups (Fig. 2). In example, at baseline
we measured a median of 500 CD8 T cells/μl (range:
80–1450) in PR patients, while in SD and PD patients
we measured 210 CD8 T cells/μl (30–900) (p = 0.061)
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and 250 CD8 T cells/μl (60–1250) (p = 0.057), respectively.
This difference increased after onset of therapy. Namely,
at time point V1 we measured a median of 560 CD8 T
cells/μl (170–1900) in PR patients, while PD and SD pa-
tients showed medians of 220 CD8 T cells/μl (90–1070)
(p = 0.032) and 230 CD8 T cells/μl (10–550) (p = 0.01), re-
spectively. Neither γδ-T cells, nor the CD4-positive αβ-T
cell subset displayed significant differences between the
three BOR groups.

PR patients show enriched frequencies of CD8 T cells with
a phenotype that corresponds to enhanced T cell
differentiation
As numbers of CD8 T cells differed between patients in
the different BOR groups, we further investigated their
particular subsets in more detail. To this end, we stained
peripheral blood mononuclear cell (PBMC) samples of a
total of 71 NSCLC patients (PR: n = 14; SD: n = 25; PD:
n = 32) for 28 markers (Additional file 1: Tables S2 and
S3), followed by dimensionality reduction as well as

rationale-based analysis to identify (combinations of )
markers from each of our flow cytometry panels that
would reveal significant differences between BOR groups
and time points within the CD8 T cell subset (identical
analysis was conducted in CD4 T cells; data not shown).
Starting with T cell maturation markers, and taking into
account all patients and time points, density plots revealed
9 distinct clusters of which 5 were differently abundant
between BOR groups and time points (Fig. 3a). In ex-
ample, clusters 3 and 8 displayed higher densities in PR
patients when compared to PD patients (significantly dif-
ferent clusters are highlighted by red lines in Fig. 3a; see
also Additional file 1: Figure S3A). Zooming in on density
plots of markers (Fig. 3b) and expression intensities of
those markers within individual clusters (Fig. 3c), we ob-
served that differences in above-mentioned clusters were
mostly attributed to CD45RA, CCR7, CD95 and CD69.
Instructed by these cluster analyses as well as reported
combinations of T cell maturation markers, we observed
that frequencies of CD8 T cells expressing single

Fig. 1 Nivolumab treatment does not result in changed numbers of peripheral immune cell populations, except eosinophils and T cells. Blood
samples taken from patients at baseline, V1 and V2 were stained, ery-lysed and subsequently analyzed by multi-color FCM. Immune cell
populations that were enumerated and markers used are listed in Additional file 1: Table S2, panel 1. Median numbers of immune cell
populations of healthy controls are indicated by a dark grey, dotted line, and upper and lower quartile ranges are indicated by light grey dotted
lines. Statistically significant differences between BOR groups were determined using Mann–Whitney U test. * p < 0.05; ** p < 0.01. BOR = best
overall response, PR = partial response, SD = stable disease, PD = progressive disease, HC = healthy control
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maturation markers were not different (Fig. 3d, upper
row), whereas frequencies of CD8 T cells expressing
CD45RA and lacking CCR7 as well as those expressing
CD95 and lacking CD69 were different among BOR
groups (Fig. 3D, lower row). In fact, PR patients showed
an enhanced frequency of CD45RA+CCR7− CD8 T cells at
baseline (median: 43.1%) when compared to PD patients
(29.7%). Moreover, PR but not PD patients showed a trend
of increased frequency of CD45RA+CCR7− CD8 T cells
during nivolumab treatment (52 and 31% at V1 for PR
and PD, respectively). Additionally, PR, SD and PD pa-
tients showed 60, 53 and 46% of CD95+CD69− CD8 T
cells at baseline, respectively (Fig. 3d; p = 0.033 PR v. PD).
Furthermore, CD4 T cells displayed no differences be-
tween BOR groups with regard to maturation and differ-
entiation markers (data not shown).
When assessing CD8 T cell frequencies according to

markers of proliferation and regulatory T cells in an
identical manner (Additional file 1: Figures S3B and S4),
we identified clusters with significant, albeit low inten-
sity differences between BOR groups. However, neither
frequencies of CD8 T cells expressing individual markers
nor those expressing combinations of markers, such as
CD25 and FOXP3, were differently present among BOR
groups. Notably, frequency of CD4 regulatory T cells
showed no difference between BOR groups (data not
shown). Frequencies of CD8 T cells expressing the

proliferation marker Ki67 either as a single marker or in
combination with PD-1 did not show significant differ-
ences between BOR groups either. It is noteworthy,
however, that we did observe a significant increase in
frequency of Ki67+ CD8 T cells expressing PD-1 after
onset of therapy in all BOR groups (Additional file 1:
Figure S5) and that there was a positive correlation be-
tween frequency of Ki67+ within PD1+CD8 T cells and
pre-treatment tumor volume of target lesions in NSCLC
patient. This correlation, however, was not predictive of
response to therapy.

PR patients show decreased frequencies of CD28+CD40L+

and CD28+ICOS+ CD8 T cells
When looking into expression of co-inhibitory receptors,
we identified several density clusters that showed signifi-
cant differences between BOR groups and time points
(Fig. 4a and Additional file 1: Figure S3C). Differences in
the majority of these clusters were attributed to CD57
and PD-1 (Fig. 4b and c). In addition to these findings,
we have assessed the sum of different co-inhibitory re-
ceptors expressed by CD8 T cells (i.e., BTLA, PD-1,
TIM3, LAG3), and noted that PR patients have a trend
of expressing higher frequencies of CD8 T cells with 2
or more different co-inhibitory receptors when com-
pared to PD patients at baseline (Fig. 4d). Instructed by
these analyses, we observed that frequencies of CD8 T

Fig. 2 Patients responding to nivolumab show high numbers of CD8 T cells. Graphs show numbers of αβ and γδ T cells in peripheral blood and
the respective CD4+ and CD8+ subsets of αβ T cells. See legend to Fig. 1 for details, abbreviations and statistical testing
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cells expressing a single type of co-inhibitory receptors
were not different, whereas frequencies of CD8 T cells
co-expressing PD-1 and TIM3 were more frequent in
PR patients when compared to PD patients at baseline
(Fig. 4e). This finding extends the observation that the

frequency of highly differentiated CD8 T cells is en-
hanced in PR patients. Using our panel of co-stimulatory
receptors, we again identified density clusters that are
differentially abundant among BOR groups and time
points (Fig. 5a, Additional file 1: Figure S3D).

Fig. 3 Patients with PR show enhanced frequencies of CD8 T cells with CD45RA+CCR7− and CD95+CD69− phenotypes. (a) Density plots of all
data points (ALL: cells from 71 patients, 3 time points each) and split up according to BOR and time points. Plot with 9 clusters (lower left) is the
result of gradients of density plots and iterative testing (see Materials and Methods for details). Individual clusters were assessed for significant
differences between BOR groups and time points, and highlighted by red lines (see also Additional file 1: Figure S3A). (b) Density plots of
individual markers and (c) expressions of markers within individual clusters according to relative intensities; clusters showing different abundance
(from panel A) are highlighted by red rectangles. (d) Frequencies of CD8 T cells positive for single markers or combinations of two markers.
Markers used are listed in Additional file 1: Table S2, panel 2. Statistically significant differences between BOR groups and time points were
determined using Mann–Whitney U test. * p < 0.05
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Interestingly, clusters that were more abundant in PR
patients were marked by a decreased presence of CD28,
ICOS and CD40L (clusters 3 and 8 in Fig. 5b and c),

whereas clusters that were more abundant in PD pa-
tients were marked by an increased presence of CD28
and CD40L (clusters 4 and 7). When assessing the sum

Fig. 4 Patients with PR display enhanced frequency of PD-1+TIM3+ CD8 T cells at baseline. (a) Density plots of all data points (ALL: cells from 71
patients, 3 time points each) and split up according to BOR and time points. Plot with 10 clusters (lower left) is the result of gradients of density
plots and iterative testing (see Materials and Methods for details). Individual clusters were assessed for significant differences between BOR
groups and time points, and highlighted by red lines (see also Additional file 1: Figure S3C). (b) Density plots of individual markers and (c)
expressions of markers within individual clusters according to relative intensities; clusters showing different abundance (from panel A) are
highlighted by red rectangles. (d) Sum of different types of co-inhibitory receptors that are expressed by CD8 T cells (excluding CD57) at baseline.
Green circles visualize fraction of CD8 T cells expressing 0 or 1 type of co-inhibitory receptors. (e) Frequencies of CD8 T cells positive for single
markers or combinations of two markers showing significant differences. Markers used are listed in Additional file 1: Table S2, panel 4. Statistically
significant differences between BOR groups and time points were determined using Mann–Whitney U test. * p < 0.05
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of different receptors expressed by CD8 T cells, we noted
that PR patients were marked by a higher frequency of CD8
T cells devoid of all five co-stimulatory receptors (i.e., CD28,
ICOS, CD40L, 4-1BB and OX40). PR patients had lower fre-
quencies of CD8 T cells with 2 or more different
co-stimulatory receptors when compared to PD patients at
baseline (Fig. 5d). Frequencies of CD8 T cells expressing a

single type of co-stimulatory receptors, except a lower fre-
quency of CD40L+ CD8 T cells, were not different among
BOR groups nor time points (Fig. 4e). In contrast, analysis
of frequencies of CD8 Tcells expressing 2 co-stimulatory re-
ceptors revealed that T cells expressing CD28 combined
with another receptor, particularly CD40L or ICOS, were
lowest in PR and significantly higher in PD patients (Fig. 5e).

Fig. 5 Patients with PR display reduced frequencies of CD8 T cells co-expressing CD28 and CD40L or CD28 and ICOS. (a) Density plots of all data
points (ALL: cells from 71 patients, 3 time points each) and split up according to BOR and time points. Plot with 8 clusters (lower left) is the result
of gradients of density plots and iterative testing (see Materials and Methods for details). Individual clusters were assessed for significant
differences between BOR groups and time points, and highlighted by red lines (see also Additional file 1: Figure S3D). (b) Density plots of
individual markers and (c) expressions of markers within individual clusters according to relative intensities; clusters showing different abundance
(from panel A) are highlighted by red rectangles. (d) Sum of different types of co-stimulatory receptors that are expressed by CD8 T cells at
baseline. Orange circles visualize fraction of CD8 T cells expressing 0 or 1 type of co-stimulatory receptors. (e) Frequencies of CD8 T cells positive
for single markers or combinations of two markers with significant differences. Markers used are listed in Additional file 1: Table S2, panel 5.
Statistically significant differences between BOR groups and time points were determined using Mann–Whitney U test. * p < 0.05
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In PR patients, the CD8 T cell differentiation phenotype
coincides with a complete lack of co-stimulatory
receptors
To study whether and how the differential numbers of
CD8 T cells as well as the differential frequencies of de-
fined CD8 T cell phenotypes among BOR groups were
inter-related, we conducted extensive correlation studies
with all immune markers measured in this study. Fig-
ure 6 displays the resulting matrix of immune parame-
ters with the highest correlations (r values < − 0.5 or >
0.5 and p values < 0.001) with number of CD8 T cells
and the CD8 phenotypes. Enhanced numbers of CD8 T
cells in PR patients relate most clearly to frequencies of
CD45RA+CCR7− CD8 T cells as well as CD8 T cells with
no co-stimulatory receptors. In turn, frequencies of
CD45RA+CCR7− CD8 T cells predominantly relate to
frequencies of CD95+ CD8 T cells, CD57+ CD8 T cells,
PD-1+ CD8 T cells and again CD8 T cells with no
co-stimulatory receptors.

Discussion
In this explorative study, we set out to discover potential
immune markers in NSCLC patients that correspond
with response to nivolumab therapy. The distribution of
BOR in this prospective study of 71 patients is reflective
of clinical outcome in large clinical trials with NSCLC
patients [4, 5] with about 20% of treated patients show-
ing response. Using our prospectively collected cohort of
patients, we have enumerated immune cell populations
and assessed clusters of T cell markers and frequencies
of T cells subsets in blood samples drawn prior to and
during therapy, using reference values from age- and
gender-matched healthy controls.
Most studies evaluating systemic immune profiles gen-

erally rely on frozen PBMC samples, resulting in a bias
towards immune cell populations that show high stabil-
ity throughout the freeze/thaw procedure [24]. To ad-
dress this issue, we have determined numbers of 18
different immune cell populations in freshly obtained

Fig. 6 Number of CD8 T cells in PR patients correlate with CD8 T cell maturation phenotypes. Correlation matrix depicts CD8 T cell phenotypes
that were selected according to statistically significant differences between BOR groups (p values < 0.001) as well as extent of correlations with
number of CD8 T cells and frequency of T cell phenotypes (r values < − 0.5 and > 0.5). Correlations were statistically assessed via Spearman’s test

Kunert et al. Journal for ImmunoTherapy of Cancer           (2019) 7:149 Page 9 of 13



blood. Amongst the significant differences in numbers of
major immune cell populations between the three BOR
groups, we detected a general increase in numbers of eo-
sinophils during nivolumab therapy. Such an increase in
peripheral eosinophils has previously been identified as a
prognostic marker for survival in metastatic melanoma
patients treated with various types of immune therapy
[25]. However, increase in eosinophils was not associated
with BOR in our NSCLC cohort as this increase oc-
curred irrespective of BOR. At baseline, only immature
neutrophils and T cells, in particularly CD8 T cells,
showed differences among BOR groups. The increased
number of immature neutrophils in SD patients is inter-
preted with caution since this finding may have been the
result of exclusion of several outliers in this particular
BOR group at baseline, part of our downstream analysis,
which may have reduced the spread in this immune cell
subset. The reduced number of CD8 T cells in SD and
PD patients prior to therapy on the other hand shows a
relatively low spread and is consistent over time. The lat-
ter observation may explain the lack of responsiveness
to therapy and is supported by previous findings of re-
duced numbers of T cells (CD45+CD3+) during immune
checkpoint inhibition [19]. Besides therapy-induced
changes, we also observed changed numbers of immune
cell populations at baseline when compared with healthy
controls. Increased numbers of mature neutrophils and
monocytes correspond with an inflamed tumor micro-
environment that may drive the proliferation of these
cells and their detection in the periphery [26]. Also, our
finding of increased numbers of M-MDSCs is in line
with multiple reports, and may be of interest since these
cells have been described as main suppressors of im-
mune responses [27, 28]. The role of activated NK cells
(expressing MIP-1β and CD69) in the context of anti
PD-1 therapy of melanoma patients has recently been
highlighted by Hodi and colleagues [29]. These authors
observed increased frequencies of these cells as well as
NK cells in patients showing response to therapy. Im-
portant to note that numbers of neutrophils, M-MDSCs,
B or NK cells, neither by themselves nor in combination
with other immune cell populations, did correlate with
BOR in the present study, indicating that immune re-
sponse in NSCLC patients may be mostly driven by T
cells, rather than NK, B or other effector cells.
To follow-up on the different CD8 T cell numbers, we

conducted a dimensionality reduction as well as 2D ana-
lyses to identify marker combinations and T cell subsets.
Notably, we observed that reduced numbers of CD8 T
cells in SD and PD patients were not due to changed fre-
quencies of CD8 regulatory T cells nor a general lack of
T cell proliferation (Additional file 1: Figure S4). Al-
though the presence of CD4 Treg cells within the tumor
microenvironment has been described as a potential

driver of tumor immune escape (reviewed in [30]), per-
ipheral frequencies of this subset may not be sufficiently
reflective of local conditions. An increase in the fre-
quency of PD-1+ CD8 T cells and an enhanced fre-
quency of PD-1+ CD8 T cells that express Ki67 has
previously been observed in NSCLC patients undergoing
anti-PD-1/anti-PD-L1 therapy [20, 31]. Similar to this
study, we found an increase in PD-1+ CD8 T cells ex-
pressing Ki67, yet no correlation between their frequen-
cies after onset of therapy and the clinical response
according to RECIST1.1 (see Additional file 1: Figure
S5). Huang and colleagues demonstrated that the ratio
between Ki67+PD-1+ CD8 T cells and pre-therapy tumor
burden was indicative of a clinical response of melanoma
patients to pembrolizumab [21]. While we observed a
similar correlation between 1D tumor measurements
and frequencies of Ki67+PD-1+ CD8 T cells, albeit to a
lower degree (see Additional file 1: Figure S5C), we were
unable to demonstrate this ratio to be of discriminatory
value among BORs in our NSCLC patient cohort. Al-
though we cannot exclude that increased frequencies of
Ki67+PD-1+CD8 T cells depend on tumor type, muta-
tional load and/or certain patient subgroups, our find-
ings do argue that further studies are required to better
define how the Ki67 marker relates to clinical response
to checkpoint inhibition. When conducting similar tSNE
and 2D analysis of chemo-attractant receptors, we ob-
served that the frequency of CD8 T cells expressing such
receptors did not yield differences between BOR groups
or time points (Additional file 1: Figure S6).
When looking into maturation states of T cells,

we detected significantly higher frequencies of
CD45RA+CCR7− CD8 T cells, a phenotype often related
to terminal T cell differentiation [32], in PR patients
compared to PD patients at baseline and during treat-
ment. Moreover, in PR patients we observed higher fre-
quencies of CD95+CD69− CD8 T cells. While CD95 has
been recognized for FAS-mediated apoptosis, there is evi-
dence for FAS-mediated T cell proliferation and differenti-
ation as well [33]. High numbers of CD95+ CD8+ tumor
infiltrating lymphocytes have previously been demon-
strated to have predictive value in breast cancer patients
[34] and an enhanced frequency of CD95+ T cells in blood
of stage IV melanoma patients has been reported to asso-
ciate with clinical response upon anti-PD-1 treatment
[22]. CD69 is an early activation marker that shows a
rapid and transient upregulated expression upon
TCR-mediated activation of CD8 T cells. Additionally,
CD69 has been described as a tissue retention marker, in-
dicating that down-regulated expression of CD69 coin-
cides with egress of T cells into the blood flow [35].
Therefore, the observed changes, with respect to both
CD45RA+CCR7− and CD95+CD69− CD8 T cell pheno-
types, may be a consequence of local antigen encounter, T
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cell differentiation, and tissue egression of CD8 T cells in
PR patients. Interestingly, these findings are nicely in line
with recent observations by Gide and colleagues showing
that differentiated effector memory T cells are more abun-
dant in melanoma patients who respond to PD1 and
CTLA-4 antibody treatment [36]. Further evidence for en-
hanced T cell differentiation in PR patients comes from
the observation that the frequency of the mentioned phe-
notypes highly correlates with the frequency of CD8 T
cells expressing CD57, another marker of terminal ex-
haustion upon antigen encounter [37]. Lastly, other CD8
T cell phenotypes that have been reported to relate to late
T cell differentiation, such as lack of the co-stimulatory re-
ceptor CD28 and co-expression of PD-1 and TIM3, also
show enhanced frequencies in PR patients (discussed
below). Analysis of co-signaling receptors revealed that
clear differences between BOR groups are particularly re-
lated to a CD8 T cell subset lacking the co-stimulatory re-
ceptors CD28, ICOS, CD40L, 4-1BB and OX40.
Interestingly, PR patients show an increased frequency of
CD8 T cells lacking co-stimulatory receptors, in particular
CD28 and CD40L or CD28 and ICOS. Moreover, the fre-
quency of CD28+ CD8 T cells showed a high and inverse
correlation with the frequency of CD8 T cells lacking
co-stimulatory receptors (Fig. 6). While expression of
CD28 is a pre-requisite for proper activation of T cells, the
absence of this receptor has been described as part of a
negative feedback loop following long-term antigen stimu-
lation [38], and fits the above-described phenotype of
antigen-exposed and differentiated CD8 T cells. Further
substantiating the premise that a higher frequency of CD8
T cells in PR patients have encountered antigen, is our ob-
servation that these patients contain higher frequencies of
PD-1+TIM3+ CD8 T cells at baseline (see Fig. 5c). The
combination of these two receptors has been well de-
scribed as a sign of activation-mediated T cell differenti-
ation and potentially exhaustion [39–41]. Moreover, in
patients with squamous cell carcinoma of the head and
neck, recent studies showed that PD-1+TIM3+ CD8 T
cells that lack CD28 and CD27 were able to suppress pro-
liferation of autologous peripheral blood T cells ex vivo
[42]. Of interest, the presence of intra-tumoral PD-1+

CD8 T cells expressing the transcription factor Tcf has
been related to tumor control in response to immunother-
apy [43, 44] and these T cells may harbor stemness and
yield T cells that are more differentiated. Since PD-1 pri-
marily intervenes with CD28 co-signaling, rather than
TCR signaling itself [20, 45], we cannot exclude that the
frequency of CD28+ T cells that co-express Ki67 and PD-1
becomes enhanced upon treatment with checkpoint in-
hibitor. Along these lines, it is striking that the frequency
of CD8 T cells devoid of multiple co-stimulatory receptors
is highest in PR patients at baseline and throughout ther-
apy, and correlates with the total number of CD8 T cells

as well as frequencies of CD8 T cells showing a
CD45RA+CCR7− phenotype.

Conclusions
In conclusion, we found that NSCLC patients with a PR
upon treatment with nivolumab demonstrate enhanced
numbers of CD8 T cells and a phenotype corresponding
with late differentiation at baseline. Collectively, our
findings argue that a large fraction of CD8 T cells in PR
patients has been exposed to tumor antigen and subse-
quently matured and egressed into the bloodstream.
This enhanced CD8 T cell differentiation was accompan-
ied by a higher frequency of PD-1 and TIM3 and a
complete loss of co-stimulatory receptors. We propose
that a panel comprising the markers CD45RA, CCR7,
CD95, CD69, CD57, PD-1 as well as CD28, CD40L, and
ICOS should be validated in larger cohorts of patients
and used to develop a model aiding in the identification
of NSCLC patients prone to show tumor regression
upon anti-PD-1 therapy. While novel approaches are
emerging that include assessment of tumor material with
regard to T cell exclusion and exhaustion [18], to our
knowledge this is the first description of peripheral im-
mune markers able to identify NSCLC patients showing
response to nivolumab treatment prior to onset of ther-
apy (see Additional file 1: Figure S7 for a schematic
overview of our findings).

Additional file

Additional file 1: For figure details, please refer to page 1 of additional
file 1. Figure S1. Timeline of sample acquisition and processing for
NSCLC patients treated with nivolumab. Figure S2. NSCLC patients
demonstrate enhanced numbers of mature neutrophils and M-MDSC in
blood, but decreased numbers of dendritic cells, B and NK lymphocytes
when compared to healthy subjects. Figure S3. Differential abundance of
tSNE clusters per panel of markers among BOR groups and time points.
Figure S4. PR patients display no distinct differences in markers of T cell
proliferation nor regulatory T cells. Figure S5. Nivolumab-induced
increase in frequency of Ki67+ within PD1+CD8 T cells correlates with
pre-treatment tumor burden in NSCLC patients, but is not predictive of
response to therapy. Figure S6. PR patients do not show differential
frequencies of CD8 T cells expressing receptors for chemo-attractants.
Figure S7. Clinical response in NSCLC patients following nivolumab
treatment is characterized by high numbers of matured CD8 T cells
lacking co-stimulatory receptors. Table S1. Patient characteristics. Table
S2. Multiplex flow cytometry panels. Table S3. Analysis work scheme.
(PDF 871 kb)
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