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Quantifying and predicting 
Drosophila larvae crawling 
phenotypes
Maximilian N. Günther1,†, Guilherme Nettesheim1 & George T. Shubeita1,2

The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, 
and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented 
by a quantitative description of its behavior. Here we show that we can accurately account for the 
complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of 
four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters 
change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s 
disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the 
quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly 
simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and 
aids in their design.

The broad homology between human disease genes and their counterparts in Drosophila1, as well as the extensive 
genetic toolbox available for the fly have led to its widespread use in studies of neurologic disorders and neural 
degeneration2–4. Examples include Parkinson’s and Alzheimer’s disease as well as the Fragile X syndrome. Due 
to the close relation between neuronal disorders and the musculoskeletal system, locomotive impairment and 
behavioral changes can be used diagnostically for genetic screening and characterization of disease models as 
well as drug screens.

While experimental methods of varying sophistication have been developed to study adult Drosophila behav-
ior5–8, the altered expression of a gene very often leads to lethality at the pupal or adult stages and necessitates 
characterization of the larvae instead. Furthermore, the complex behaviors displayed by the larvae despite their 
relatively small number of 3000 functional neurons facilitate studying the neuronal basis of behaviors such as 
taxis, memory, learning and even social interactions9–20. Behavioral assays that describe the crawling of the lar-
vae3,11–17,20 are typically low throughput ad-hoc assays, or assays requiring specialized equipment to follow indi-
vidual larva shape changes in detail. Often, experimental geometries conceivably distort larval behavior, such 
as when larvae are constrained to move in a one dimensional channel. Further, manually set thresholds are fre-
quently used to compare two individuals or populations. The ad-hoc nature of these experiments makes it diffi-
cult to compare the change in behavior under different environmental or genetic conditions and across different 
studies.

On the other hand, statistical analysis of larval crawling can yield a high throughput comparison between 
larval models of disease21. However, use of statistical methods alone is inherently limiting since their sensitivity 
depends on the quality and quantity of the collected data which could bias the description of the behavior or even 
miss important aspects of the phenotype. There is therefore a need for a mathematical model that circumvents 
these limitations to describe the crawling of larvae and additionally provide quantitative parameters that can be 
universally compared for various mutants or under altered environments. Previous analysis showed that larvae 
crawl in a superdiffusive pattern21, consistent with the behavior of a large set of foraging animals ranging from 
bumble bees to sharks22–28. Lévy flights29 have been used to model these behaviors, but improved analysis meth-
ods subsequently showed that this model, while consistent with some behaviors23,27,28, is not adequate in many 
cases30–32.
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Here, we also show that a Lévy flight model cannot explain the crawling of the larvae. Rather, larvae trajec-
tories can be very well described by a bimodal persistent random walk (bPRW) model. The model enables us 
to quantitatively describe the crawling using a small set of four parameters. We demonstrate the power of the 
method by comparing the crawling parameters for various genetic backgrounds, including models of neurode-
generative disease. We find that details of the crawling that were previously missed are readily captured using our 
method. Moreover, we show that starting from the analysis of a small sample of crawling larvae we can robustly 
simulate the mutant-specific crawling, reproducing the qualitative and quantitative aspects of the experimental 
trajectories. Using these simulations, predictions can be made on the feasibility of experiments that may require 
an impractically large number of individuals to reach statistical significance, and the outcome of laborious exper-
iments can be pre-estimated by simulations to aid in their design.

Results
Larvae exhibit persistence and two modes of crawling.  Larvae trajectories for various strains were 
imaged at low magnification to record multiple larvae simultaneously and the trajectories were determined by 
centroid tracking (see Methods). Previous analysis of these trajectories showed that the larvae exhibit a super-
diffusive crawling pattern21. However, Lévy flight models, previously used to explain the foraging behavior of 
animals22–28, do not adequately describe larval behavior (see Supplementary Material, Supplementary Table 1 and 
Supplementary Fig. 1). We consequently turned our search towards another model consistent with superdiffusive 
motion, and tested for persistent random walks (PRW)33. In the PRW model, the direction of a step is most likely 
to follow the direction of the previous step. However, the influence of the initial direction of motion vanishes 
over longer times34. Hence, the persistence information is lost when the sampling interval is large, leading to a 
PRW becoming a Brownian motion in the limit of large scales. Indeed, the peaked distribution of turning angles 
between sampling points in our experimental data suggests the involvement of persistent trajectories in the larval 
crawling (Fig. 1A). Consistent with theory, when the sampling interval is increased we observe loss of persistence 
and a convergence to Brownian motion where the probability is equal for all turning angles.

The standard PRW on its own, however, is insufficient as the larvae follow a bimodal pattern35, whose phases 
we refer to as “active crawling” and “reorientation” in the following (Fig. 1B), analogous to what was reported for 
other systems36,37. In the active crawling phase, a larva follows a relatively straight path, a persistent trajectory. In 
contrast, during the reorientation phase a larva remains at the same spot while bending and moving its head. As 
a result, the reorientation phase is often followed by a significant turning event. In the absence of any taxis, as in 
the case of our experiments, this turning is expected to be unbiased and randomly directed.

Separating the two crawling phases in larvae trajectories.  The bimodal behavior is intrinsic to the 
trajectory of the larvae, but comes with an inherent challenge for the observer. If a sampling interval is chosen 
which exceeds the average reorientation time, the reorientation events are washed-out. A lower sampling time, 
on the other hand, would capture the details of the head sweeping and reshaping of the larvae during the reorien-
tation phase. These large shape changes could be misinterpreted as actual crawling by centroid tracking and add 
noise to trajectory analyses. This was often not accounted for38 and is likely to influence the qualitative conclu-
sions of previous studies. Considering this, however, it is advantageous to record the crawling at a high enough 
frame rate to capture the reorientation events, and establish a means to identify these events.

Based on this idea, we developed a method that allows identifying and extracting the exact spatial and tem-
poral distribution of the reorientation events in the tracks while preserving the advantages of our experimental 
setup. In particular, we do not need to rely on specialized equipment or complex and time-consuming methods, 
such as shape analyses or fluorescent marking, to identify the reorientation events. This in turn allows the general-
ity and high-throughput necessary for phenotyping in relation to genetic and drug screens.

In the first step, we smooth the track by following the trajectory recorded at two second intervals and merging 
all points that are closer to each other than the resolution limit determined by the magnification of the imaging 
system and the size of the larva (see Methods). This smoothing process eliminates the underlying statistical fluc-
tuations in the recorded tracks while preserving the hidden bimodal pattern covering large turning angles. The 
number of points averaged into one smoothed point, m, is saved and encodes the temporal information. Each 
smoothed point is consequently described by three values, its x and y positions, and m. This data set is the basis 
for all further analyses in the following.

Sharp edges in the smoothed tracks, related to large turning angles, are generally points with a markedly 
higher value of m (Fig. 2). This is consistent with the reorientation phase being a significantly slower or even 
still-standing phase, dominated by bending and head movement of the larva (Fig. 1B). Therefore, the m values 
can be used to identify reorientation positions.

Given that different mutants can display different crawling speeds and reorientation characteristics (see 
below), fixed thresholds for mvalues cannot be used to identify reorientation. Rather, we used statistical methods 
that identify reorientation points as outliers in individual tracks (Thompson’s tau method39, see Methods). The 
distribution of angles between smoothed points shows that removing the reorientation points identified by this 
method results in an underlying level that accounts for almost all large angles being removed (Fig. 3A). This 
confirms the expected correlation between the clustering of smoothed points (large m) and the occurrence of a 
reorientation event (large turning angles) (Fig. 3B).

Thus, starting from larvae trajectories recorded at a constant rate and small spatial resolution, we are able to 
separate the reorientation events from the active crawling periods. This allows us to analyze the spatio-temporal 
distribution of these two phases and the dynamics within each phase.

The active crawling phase is a persistent random walk.  The active crawling phase is well described 
by a PRW as evidenced by the turning angle and step length distributions (Supplementary Tables 2–4 and 
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Supplementary Fig. 2). The length of a step between consecutive smoothed points is well described by a Weibull 
distribution, while the angle between consecutive steps is normally distributed – both distributions often used 
to model PRWs38,40–43. The Weibull and normal distributions were weighted against several other distributions 
with maximum likelihood methods and were consistently found to be the best models for all larva strains tested 
(Supplementary Tables 2 and 4).

A standard PRW is fully described by its persistence length, lp, which can be determined by analyzing the 
end-to-end distance of the tracks using a method originating from polymer physics44. For the larval trajectories, 
however, the active crawling periods are interrupted by reorientation events, making the experimental segments 
too short to determine lp reliably. Instead, we used the parameters of the step length and turning angle fits to 
simulate and analyze tracks consisting only of the active crawling phase (see Methods, Supplementary Table 4 
and Supplementary Fig. 2). We find that the persistence length of the active crawling phase ranging 8-11 mm 
(Supplementary Table 5) exceeds the typical run lengths between reorientation events (4–6 mm) for all larvae 
strains tested (data not shown).

Given that the persistence of a trajectory determines its overall shape, we asked whether the persistence length 
can account for the differences in the mean squared displacement (MSD) we previously found for larvae com-
ing from various strains21. We studied two disease models: a model of the Fragile X syndrome and another of 
Alzheimer’s disease. Larvae with reduced expression of the Drosophila Fragile X-related gene dfmr1 (FX) were 
compared to wild type (w1118). It was shown that reduced expression of dfmr1 in these larvae leads to increased 
expression of the degenerin/epithelial neuron sodium channel (DEG/ENaC) family protein Pickpocket1 (PPK1) 
compared to the wild type20. We therefore analyzed the crawling of a third strain with reduced PPK1 expres-
sion (Drifter). For the model of Alzheimer’s disease, strains with varying expression levels of the Drosophila 

Figure 1.  Larvae exhibit a persistent and bimodal crawling behavior. (A) Distributions of turning angles 
between consecutive segments of discrete time sampled tracks. The persistence information is gradually lost 
as the sampling interval is increased from 10 s to 300 s, leading to an equal distribution of turning angles, 
characteristic of a Brownian motion. Tracks of 25 Drosophila larvae are used to calculate the distributions.  
(B) The larvae exhibit two distinct walking phases: an active crawling phase (left panel), and a reorientation 
phase (right panel). Note the drastic angular change between the initial larval crawling path at the beginning of 
the reorientation phase and its end. The time lapse shows a total of 20 seconds of larval crawling in a fixed field 
of view of approximately 2 ×​ 2 mm2.
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homologue of Glycogen Synthase Kinase-3 (GSK-3), Shaggy (SGG), were used (see Methods)21,45 and compared 
to the relevant wild type (YW). Unlike the MSDs which are distinct for each strain, we find that the persistence 
length is comparable for most strains within a group and that the small changes do not correlate with the trends 
observed in the MSD (Supplementary Fig. 3). The fact that the persistence length is not a key factor of the overall 
larval trajectory is likely a manifestation of it being longer than the active crawling segments in between reori-
entation episodes (shaded range in Supplementary Fig. 3). The overall crawling behavior of the various strains 
must consequently lie in the spatio-temporal distribution of these two phases which we chose to investigate next.

Differentiating mutants using their crawling parameters.  To compare the crawling of the various 
strains we quantified the following parameters: the frequencies of reorientation events, the agility during the 
crawling phase, and the agility during reorientation. Reorientations are more frequent for strains with a smaller 
MSD (Fig. 3C), confirming that interruptions of the crawling phase dominate in determining the shape of the 
trajectory.

To quantify the speed during the crawling phase as well as the time spent during reorientation, we define 
the agility in each phase as the inverse of the average time spent per smoothed point (Fig. 2). For all mutants 
in the Alzheimer’s model, where expression levels of the Drosophila GSK-3 homologue, SGG, are altered, both 
the crawling agility and the reorientation agility decrease compared to wild type (Fig. 4A,B and Supplementary 
Table 5). It is noteworthy that both increased and decreased expression of SGG result in reduced agility. This is 
consistent with our previous reports of comparable MSD for crawling larvae from both strains21, as well as the 
increased accumulations of axonal cargo in larval segmental nerves of both strains45. However, the severity of the 
agility phenotype seems to saturate upon a moderate reduction of SGG as little further impairment is observed 
for further reduction of SGG expression. For all mutants in the Alzheimer’s model, the ratio of the crawling and 
reorientation agilities is comparable (Fig. 4C, Supplementary Table 5), suggesting that mutation targets a process 
affecting both phases.

The Fragile X group shows a different trend. While the ratio of agilities is comparable for the wild type and 
Drifter strains, the Fragile X mutant has a significantly higher ratio. In particular, its agility in the active crawling 
phase is only slightly reduced compared to that of the wild type, but significantly reduced in the reorientation 
phase. For this strain, the mutation appears to primarily target a process responsible for reorientation.

Statistical analyses of simulated and measured larvae trajectories converge.  We next asked 
whether the parameters quantified above to describe the various mutants can reproduce the overall trajec-
tory morphology which we previously quantified using the MSD and showed is sensitive to mutation21. We 
therefore generated simulated larvae trajectories with the mutant-specific parameters as input (see Methods, 
Supplementary Tables 5 and 6). Indeed, simulated trajectories appeared similar to measured trajectories of 

Figure 2.  Smoothing the tracks allows identifying reorientation events. (A) Consecutive points (+​, plus) 
on the trajectory recorded at discrete time intervals are grouped into one smoothed point (•​, circle) if they 
lie within the resolution limit (see Methods). The color coding represents the number of grouped points, 
m. Reorientation, is typically characterized by an accumulation of sampled points (inset). A larva is drawn 
schematically to scale. (B) The smoothed points are color-coded according to the turning angle between 
consecutive segments. Drastic directional changes in the track are generally related to clustering of sampling 
points, i.e. reorientation events (inset).
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crawling larvae, covering the full variety of the track morphologies (Fig. 5A). Further, the probability distributions 
and crawling parameters extracted from simulated trajectories matched those of the experiment as anticipated.

As expected for a limited sample size of trajectories, the MSD varied, but different mutants were indeed dis-
tinct (Fig. 5B). The measured MSDs for most mutants fell within one standard deviation (1σ​) of the simulated 
trajectories, with the exception of two out of the seven strains. This could either be indicative of our model miss-
ing an aspect of the crawling that is important for these mutants, or just a manifestation of statistical variation. To 
rule out the former possibility, another data set of crawling larvae was recorded and tracked for the w1118 strain 
which lies furthest from the 1σ​ band. The MSD for the new data set lies well within the one standard deviation 
band suggesting that the deviation of the original data set is statistical (Fig. 5B). Significantly, the crawling param-
eters extracted from the new data set coincide with those of the original data set used to generate the simulated 
tracks (Supplementary Table 5).

Finally, we sought an independent method to test whether the simulated and experimental trajectories belong 
to the same class of random walks as they should if the simulation captures the larval crawling. We therefore 
used a recently reported methodology which uses renormalization group to classify diffusion processes46,47. This 
method has been shown to differentiate between stochastic processes which have indistinguishable MSD. We 
find that experimental trajectories for all strains fall in the same class of random walks and that experiments and 
simulations agree (Supplementary Fig. 4). These findings lead us to conclude that our model indeed captures the 
larval crawling which enables us to get more insight into the details of the crawling than statistical measures alone 
provide.

Discussion
The crawling of Drosophila larvae can be well described by a bimodal persistent random walk (bPRW) model 
that accounts for the two phases of the crawling: active crawling and reorientation episodes. The analysis method 
we developed uses as input the trajectory of larvae that can be recorded using a simple camera and lens appara-
tus21. Higher magnification imaging, tracking and body-shape-change recording is possible13,14,16,20 and can be 
important to understand crawling mechanisms. However, the simplicity of the present method, coupled with the 
model-based analysis, allows the high throughput required for screens without compromising the sensitivity. This 
is illustrated by our analysis of the seven different larval strains, including models of neuronal disorders.

Figure 3.  Identifying the reorientation events and comparing their frequency among mutants. (A) The 
reorientation events account for the broad underlying distribution of turning angles in the probability density 
distribution of turning angles between smoothed points (blue). Overlying red bars show the values identified as 
reorientation points, clearly covering most large turns. (B) Large turning angles mainly appear in reorientation 
events (red dots), identified by large values of the number of smoothed points (m). Blue crosses represent the 
unclassified data. (C) The frequency of reorientation events is altered in larvae mutant strains of the Fragile X 
syndrome model (left) and Alzheimer’s disease model (right) compared to their respective wild type strains, 
w1118 and YW. FX: Fragile X; iSGG: increased SGG; dSGG: decreased SGG; dSGGs: severely decreased SGG 
(see Methods). The percentage is calculated for smoothed points.
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Upon comparing the parameters that quantify the crawling of the various larvae strains two themes emerge. 
First, mutants have distinct crawling characteristics that can be used to differentiate between them. Thus, the 
high-throughput, sensitive, and robust nature of the method make it suitable for large genetic screens or drug 
screens using larval models of disease. While we demonstrated the capability of the method using models of 
neuronal disorders, the method is more general and can be readily used in relation to other diseases or for studies 
of behavioral change. This includes the response to environmental cues such as studies of neuronal networks 
involved in vision, olfaction, gustation, learning or social interaction.

Second, the parameters of the crawling altered by mutation can help infer insight into which neuronal path-
ways used for crawling are targeted. Recent work has shown that larval crawling can be described by two motor 
programs. Peristalsis drives forward movement, while asymmetric contraction of the anterior body segments of 
larvae drives head sweeping movement14. It can be tempting to map these two motor programs to the two phases 
of crawling in our model: active crawling and reorientation, respectively. However, peristalsis was shown to be 
important both for the forward movement (active crawling) as well as for exiting the reorientation events14. With 
this in mind, we can relate the altered agilities in the two phases for the various strains (Fig. 4) to these two motor 
programs. For most mutants within a disease model, the ratio of the active crawling to reorientation agilities 
does not change (Fig. 4C) suggesting that the two motor programs important for both phases are targeted by 
the mutation. The Fragile X mutant stands out since its reorientation agility is reduced more pronouncedly than 
the crawling agility, suggesting that the mutation primarily targets the asymmetric contractions of the anterior 
body segments. Intriguingly, comparison of the agility patterns of the Fragile X and Drifter mutants (Fig. 4) lead 
to the conclusion that the molecular basis of these mutations target neuronal circuits that control distinct motor 
programs. This insight is completely missed in model-free statistical analyses of the crawling of these two mutants 
which simply show impaired crawling for the Fragile X and enhanced crawling for the Drifter strain compared 
to wild-type20,21. This alteration in the behavior was attributed to the reduction of PPK1 expression in the Drifter 
mutants and its over-expression in the Fragile X mutant due to the loss-of-function of DFMR1 which inhibits 
PPK1 expression in wild-type larvae20. However, our analysis strongly suggests that PPK1 expression is not the 
sole determinant of the crawling behavior that is targeted in the Fragile X mutant. While future work will be 
needed to identify the target, our finding illustrates that hypotheses about the neural basis of mutant behavior can 
be formed using the analysis of the present methodology.

Figure 4.  Mutation can either alter the agility of the larvae in the active crawling phase, or in the 
reorientation phase, or both. The inverse of the mean time in seconds spent per point (agility) quantifies the 
speed during the crawling phase as well as the time spent during reorientation. The agility has the same trend of 
change in both phases (A,B) for the SGG group but not the Fragile X group. This leads to the ratio of the agilities 
being comparable for most strains within each group (C). Only the Fragile X mutant stands out suggesting that 
the mutation primarily targets a process responsible for reorientation. Shown values are the mean and standard 
errors of the mean (see Supplementary Table 5).
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Trajectories simulated using the parameters of the bPRW model have average morphologies that quantita-
tively agree with those of experimental trajectories for each strain (Fig. 5) and, together with the experimen-
tal trajectories, globally belong to the same class of diffusion processes (Supplementary Fig. 4). In addition to 
demonstrating the validity of the model, simulated trajectories can be used to design experiments or estimate 
their outcome. In particular, the number of individuals needed for an experiment to reach statistical significance 
can be determined by simulation. As the MSD analysis in Fig. 5 demonstrates, the wide variability of the individ-
ual trajectories from each strain can lead to under-sampling. Experiments that involve counting the number of 
larvae crawling past a threshold are common in behavioral or taxis studies, and could benefit from simulations 
when designing the experiments.

Materials and Methods
Fly stocks, apparatus design and tracking.  Larval crawling trajectories were recorded as previously 
described21. Briefly, flies were grown in cups on standard agar-yeast media and multiple late embryos were col-
lected and placed on a 15 cm petri dish filled uniformly with agar-apple juice media. A simple camera and lens 
system on a stand was used to record low magnification time-lapse images of the crawling larvae at a rate of one 
frame every two seconds once the embryos hatched. Trajectories were digitized using a previously-described 
centroid-based tracking algorithm48. All stocks were obtained from the Bloomington Drosophila Stock Center, 
unless otherwise specified. Wild type controls were either w1118 (FBid: 6326) or YW. The dfmr14 stock we used 
as our Fragile X model (FX) has been described previously49,50 and was provided to us by Fen-Biao Gao (UCSF). 
The Drifter (Df) mutation was created by crossing Gal4 109(2)80 (FBid: 8768) virgins to UAS-ppk1-RNAi (TRiP, 
Harvard Medical School, FBid: 29571 ) males, achieving over-expression of ppk1-RNAi in all multiple dendritic 
neurons. This stock has been described extensively51. Over-expression of dGSK-3 (iSGG in main test) was accom-
plished by crossing elav Gal4 (FBid: 458) virgins with UAS-SggS9A (FBid: 5255) males. For dGSK-3 reduction 
sgg1/FM7, Actin-GFP females were crossed to sgg1/Dp(1;2;Y)w+ (FBid: 4095) males that survive due to a small 
X duplication containing the Sgg gene on their Y chromosome45. The first-instar larvae expressing GFP as seen 
under a dissection fluorescence microscope were termed the ‘dSGG’ (decreased SGG) population while the 
GFP-negative larvae were termed the ‘dSGGs’ (severly decreased SGG) population, based on the corresponding 
dGSK-3 expression levels. The same data set reported previously21 was used in the current analysis. Exceptions 
are additional trajectories collected for the Fragile X wild type, w1118 (see Fig. 5).

Figure 5.  Experimental and simulated larvae trajectories converge. (A) Trajectories simulated using the 
crawling parameters of one strain cover the whole variety of morphologies observed experimentally within this 
strain. The variation is intrinsic in our mathematical model, suggesting that the observed experimental variety 
is not conditioned by individual defects. (B) Most strains show experimentally measured MSDs (solid lines) 
that lie within the simulated one standard deviation (1σ) band (colored areas); exceptions are the w1118 wild 
type and Fragile X mutant. However, a repeated control experiment for the w1118 strain (dashed black line) lies 
within the 1σ band indicating that the deviation observed is due to statistical variation which is intrinsic in the 
definition of the standard deviation encompassing 68% of the data. The σ bands of the MSD were calculated 
by running 1000 simulations each with trajectories equal in number to the experimental trajectories for each 
strain. The control experiment is based on 14 larvae. All other experimental trajectories are the same ones we 
studied previously (see [Jakubowski 2012] and Methods).
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Data analysis with the MaggMa software package.  All data used in this work, as well as the MATLAB 
scripts used in our MaggMa analysis software package, will be available online or can be requested from the cor-
responding author.

Discrete-time sampled coordinates of the animal’s centroid generated by the tracking algorithm are used as the 
input for the analysis. The time resolution should be high enough to ensure a sufficient amount of sampling points 
within an average reorientation event. We chose to capture an image every two seconds based on the nominal 
crawling speeds of the larvae of around one body length every 15 seconds.

The recorded trajectories were first smoothed by following the trajectory and summarizing all points that are 
closer to each other than a threshold r. The threshold, or resolution limit r, was chosen empirically to be the nom-
inal width of a larva as it appears in camera image. The algorithm starts from the first sampling point x0 and 
measures the spatial distance d to the consecutive sampling point x1 as = − xd x1 0 . If d is smaller than or equal 
to r, it is redefined as the distance between x0 and the next consecutive sampling point x2. This procedure is 
repeated until the first sampling point xn for which = − > x rd xn 0  is reached. The sequence of sampling 
points x0 to xn is used to calculate a smoothed point xsmooth by

∑=
+ =

 x 1
n 1

x
(1)smooth

i 0

n

i

The consecutive sampling point +
xn 1 is then reset as x0 and the procedure is repeated until the end of the track 

is reached. To ensure the finest possible smoothing, we improved this method by setting the threshold to a·r, 
where a is a scaling factor increasing from 0.1 to 1 in steps of 0.1 after each complete run of the algorithm. At the 
end of this procedure, the number of points averaged into one smoothed point, m =​ n +​ 1, is saved, so that any 
smoothed point is described by three values, its x and y position, and m. This data set was used as the basis for all 
further analysis in the current work.

In the second step, we analyze the m values of each single track to identify the largest values, which then are 
identified as reorientation points. For this purpose we applied Thompson’s tau method39, which can be thought of 
as an adaptive two sigma outlier detection algorithm.

In very rare cases we found tracks where the larvae barely moved, possibly due to injury while placing the 
embryo on the agar plate. To avoid the influence of these, we have additionally filtered out all instances where the 
larvae rest in one point for more than 14 seconds. This threshold has been empirically set to ensure accounting 
for these tracks without influencing the majority. The average time per active crawling point (CP) lies in all cases 
significantly below 14 seconds (see Supplementary Table 5), so that misclassifications can be ruled out.

Simulating tracks with the MaggMa software package.  For the simulation of the larvae tracks we 
used the extracted parameters employed in the main text to compare between and differentiate the various 
mutant backgrounds and models of neurological disorders. The set of parameters used in the simulation consists 
of 1) the mean frequency of reorientation points, 2) the distributions of the time per active crawling and per reori-
entation point, 3) the step length between two smoothed points as well as 4) the Gaussian standard deviation of 
the turning angles during the active crawling phase and after reorientation events (Supplementary Tables 5 and 6).

These are a set of six parameters even though only a set of four parameters was needed to differentiate 
between the disease models. However, the step length and Gaussian standard deviation during the active crawl-
ing phase are both characterized by the single parameter of persistence length as described in the main text and 
Supplementary Fig. 2. The distributions were used in the simulation instead for convenience, but cannot be con-
sidered as two separate parameters.

The time per active crawling and reorientation point reported as average values in Supplementary Table 5 and 
Fig. 4 in the main text were modeled as Gamma distributions that account well for the long-tailed distributions 
observed for these parameters. These distributions lead to variability in the individual simulated tracks that is 
reminiscent of the variability observed in experiments. The statistical average on the population level converges 
naturally to the mean of the respective Gamma distribution, which in all cases was equal to the measured mean 
value within statistical errors.

The distribution of turning angles after a reorientation event was not used to differentiate mutants due to 
low statistics and high uncertainty. For the purpose of the simulation, however, the standard deviation of these 
turning angles for each mutant was used to model the observed spread. See Supplementary Table 6 for the values 
for each strain.

Algorithm implementations used in the MaggMa analysis software.  Identifying the reorientation 
events is based on Thompson’s tau method39. We implemented the MATLAB code ‘find_outliers_Thompson.m’ 
by Michele Rienzner in our algorithms for the purpose of this test statistic.

To determine the standard deviation of the broad distribution of turning angles after a reorientation event, 
we fit a Gaussian to the distribution using the MATLAB code ‘deleteoutliers.m’ by Brett Shoelson to filter out 
individual outliers with the Grubb’s test. The Grubb’s test for outlier detection is specifically adjusted for normally 
distributed data52. This was necessary since the number of data for these was strongly limited and maximum 
likelihood fitting would have been strongly influenced by individual outliers.

For comparison of different distributions for a data sample we used in most cases the MATLAB code ‘allfitdist’ 
by Mike Sheppard, which implemented maximum likelihood fitting for a multitude of the most common distri-
butions. For fitting of the Cauchy distribution we used Peder Axensten’s MATLAB programs ‘cauchyfit.m’ and 
‘paxmle.m’. We used the MATLAB scripts ‘suptitle.m’ by Drea Thomas and ‘subtightplot.m’ by Felipe G. Nievinski 
to generate the graphics of some of the displayed figures.
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