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Sam Hall-McMaster,1,2,3,6,* Peter Dayan,4,5 and Nicolas W. Schuck1,2,3

SUMMARY

Foraging is a common decision problem in natural environments. When new
exploitable sites are always available, a simple optimal strategy is to leave a cur-
rent site when its return falls below a single average reward rate. Here, we exam-
ined foraging in a more structured environment, with a limited number of sites
that replenished at different rates and had to be revisited. When participants
could choose sites, they visited fast-replenishing sites more often, left sites at
higher levels of reward, and achieved a higher net reward rate. Decisions to
exploit-or-leave a site were best explained with a computational model that
included both the average reward rate for the environment and reward informa-
tion about the unattended sites. This suggests that unattended sites influence
leave decisions, in foraging environments where sites can be revisited.

INTRODUCTION

Decision making requires anticipating how our choices will influence our fortunes in the future. Much work

in neuroscience has therefore focused on how decisionmaking can be understood as an optimization prob-

lem based on a Markov Decision Process (MDP) formalism, in which future environmental states and re-

wards are under partial control of the decision maker (Sutton and Barto, 1998). This approach can account

for behavior in complex environments, where planning is needed to form an optimal policy (Huys et al.,

2012, 2015; Kurth-Nelson et al., 2016), and can explain neural activity found in dopaminergic areas during

value prediction (Schultz et al., 1997).

A common decision problem for animals in natural environments is foraging, in which it is often assumed

that animals have limited control over future environmental states. During a particular kind of foraging

called patch-leaving, animals must decide between exploiting a current patch or leaving to search for a

better alternative. Canonical Optimal Foraging Theory (OFT) considers a simplified version of this problem,

in which patches within an environment are encountered at fixed rates (Charnov, 1976). Under these con-

ditions, the average reward rate in an environment is the sole variable needed to anticipate future reward

outcomes for deciding to leave. This results in a simple optimal policy called the Marginal Value Theorem

(MVT, Charnov, 1976), wherein animals should leave their current patch when its reward falls below the

average reward rate for the environment. Empirical studies have shown that leave decisions in mice,

rats, monkeys, and humans are consistent with this decision rule (Constantino and Daw, 2015; Hayden

et al., 2011; Kane et al., 2017; Le Heron et al., 2020; Lottem et al., 2018). Evidence has also suggested

that the unique structure of foraging decisions might be solved using neural substrates that are at least

partially distinct from those involved in other reward-based decisions (Kolling et al., 2012; Rushworth

et al., 2011), with the anterior cingulate cortex serving a critical role in regulating leave decisions (Foura-

gnan et al., 2019; Hayden et al., 2011; Wittmann et al., 2016, see Kolling et al., 2016; Mobbs et al., 2018;

Rushworth et al., 2011 for reviews).

While canonical foraging decisions might not require the full algorithmic complexity of MDP solutions and

could be solved using distinct brain areas from other forms of decision making (Kolling et al., 2012; Rush-

worth et al., 2011), more general foraging choices might not be as simple as MVT assumes. For example,

patches that animals encounter are not just determined by their frequency in an environment, but through

decisions animals make about which patches are worth exploiting (Kamil, 1978; Merkle et al., 2014; Passing-

ham, 1985; Sayers and Menzel, 2012; Sweis et al., 2018). In addition, resources in natural environments can

replenish following exploitation (Berger-Tal and Avgar, 2012; Garcia and Eubanks, 2019), which can make it

valuable to revisit specific sites at later time points (Erwin, 1985; Lihoreau et al., 2010; Merkle et al., 2014;
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Seidel and Boyce, 2015). This introduces a new dilemma about when return is appropriate, which is not

considered under MVT because it assumes little to no revisitation (Charnov, 1976; Possingham and Hous-

ton, 1990). Behavioral ecology research has long been aware of these issues, as evidenced by studies exam-

ining the contributions of memory to foraging decisions in environments where patches can be revisited

(Berger-Tal and Avgar, 2012; Merkle et al., 2014), and have often approached the problem of how animals

store information in memory for future behavior using reinforcement learning (RL) and Bayesian updating

(Berger-Tal and Avgar, 2012; Marshall et al., 2013). These additional foraging considerations raise impor-

tant questions about what drives leave decisions when encounters with patches are under the decision

maker’s control and when patches promise different rewards due to their growth dynamics. Are decisions

to leave an option still based on global reward information, such as the average reward rate across options

in the environment, or are these choices made using local reward information about specific alternatives?

We recently proposed that foraging-inspired tasks used in neuroscience could be made more ecological

by allowing animals to choose which patch is encountered, after deciding to leave the current patch (Hall-

McMaster and Luyckx, 2019). In the present experiment, we therefore studied foraging decisions in an envi-

ronment where foraging choices could be directed towards specific patches, and in which patch resources

replenished over time. Compared to situations where patch sites are encountered at random, we predicted

that decisionmakers would use their knowledge about patch differences to visit faster replenishing patches

more often, thereby increasing the average reward per action. We also predicted that decisions to leave a

patch would be made earlier, when a patch had higher reward levels and had been exploited fewer times.

Based on MVT, this change in leaving threshold would be expected due to a higher global reward rate.

However, an alternative mechanism would be that decision makers leave based on site-specific reward es-

timates when the next site can be selected.

In the present study, we tested the predictions above and sought to address how global reward informa-

tion (about all patches) and local reward information (about specific patches) are used to decide when to

leave a patch. Human participants completed a patch-leaving task similar to studies fromOptimal Foraging

Theory (Stephens and Krebs, 1986), in which a patch’s reward decreased over time through exploitation. In

contrast to previous studies (Constantino and Daw, 2015; Hayden et al., 2011; Kane et al., 2017; Le Heron

et al., 2020), participants switched between the same three patches throughout a block, and patches re-

plenished their rewards at distinct rates when not being exploited. Participants therefore needed to decide

when to leave their current patch in order to revisit and exploit one of the two alternatives. Each block

involved 200 actions. Actions included selecting a patch to visit, exploiting it for reward and leaving it.

Across blocks, we manipulated whether participants had a free choice over which patch to exploit after

deciding to leave the current patch or whether the choice was forced, being randomly determined for

them.

When participants were able to control what patches were encountered, we found that fast replenishing

patches were visited more often than slow replenishing patches. This increased the average reward rate

and elevated leaving thresholds, with higher reward outcomes prior to leave decisions. Because of higher

reward both when arriving at patches and when leaving them, no difference was observed in the number of

exploit decisions before leaving, between free and forced choice conditions. Participants’ exploit-or-leave

decisions were best explained with a computational model that included both the global reward rate and

local information about the unattended patches.

RESULTS

To investigate the effect of decision control on foraging behavior, 60 participants completed an online

foraging task. Participants controlled a pirate ship, sailing to three equidistant islands to dig for buried

treasure. Participants first selected an island to sail to and then made a series of exploit-or-leave decisions.

When deciding to exploit, participants dug for treasure and received between 0 and 100 gold coins based

on the island’s current reward level. The number of coins depleted super-exponentially across successive

exploit actions on the island. While the current island was being exploited, new treasure was buried at each

alternative island at an island-specific rate (slow, medium or fast). When deciding to leave the current is-

land, participants sailed to one of the two alternative islands. This structure repeated until participants

had performed a total of 200 actions with the same three islands, and the block ended. Choosing islands

to visit, exploiting islands, and leaving all counted as individual actions. Sailing did not consume any actions

in the block.
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Figure 1. Example trial sequences for free and forced choice conditions

(A) Free choice trials. Participants first chose an island to sail to (screen 1). Once their ship had arrived, participants could dig on the island for buried treasure

(an exploit action shown on screen 2). Following a dig, participants received feedback about the number of coins added to their treasure chest (screen 3).

Participants could continue digging (screens 4–5), until deciding to leave the island (screen 6) and choosing another island to sail to (screen 7).

(B) Forced choice trials. Under forced choice conditions, the seas were stormy and islands were not always accessible. Participants were forced to choose just

one of the two alternative islands, after a leave decision. The accessible island was randomly determined after each leave decision and the other, inaccessible

island was marked with a red X. All other aspects were the same as the free choice condition shown in panel (A).

(C) Reward dynamics. When an island was being exploited for treasure, the number of coins added to the treasure chest decreased with each successive dig.

The depletion process during exploitation was the same for all islands. While an island was being exploited, new coins were buried on the alternative island

at island-specific rates (slow, medium or fast, shown in sea green, green and yellow lines respectively). Participants did not see new coins being buried and

therefore needed to revisit islands to learn about their replenishment speeds. No reward was given for choosing an island to sail to or deciding to leave an

island (not indicated in panel).
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The central manipulation in this task was whether participants had a free or forced choice over the island

they would sail to next, after deciding to leave the current island. In free choice blocks, the seas were calm

and participants could select either alternative island, following a leave decision. In forced choice blocks,

the seas were stormy and islands could not always be reached. Participants were therefore forced to sail to

just one of the alternative islands, determined at random, following each leave decision. The alternative

island that participants would be forced to sail to was only revealed after each leave decision was made.

Participants completed two free choice blocks and two forced choice blocks in a random order, and were

informed about the upcoming condition before each block. Islands were located at one of three vertex po-

sitions that formed an equilateral triangle on screen. Slow, medium, and fast replenishing islands were as-

signed at random to different vertex positions for each block. Participants were told that blocks would

contain a fast, slow, andmedium replenishing island before starting the experiment, but did not have direct

experience or practice with the islands before starting. In the results that follow, we refer to each island as a

patch, consistent with terms used in Optimal Foraging Theory (Stephens and Krebs, 1986; Charnov, 1976).

Participants directed visits in proportion to expected patch rewards

We first examined how often participants decided to visit each patch under free and forced choice condi-

tions. In line with our predictions, we found a significantly higher proportion of visits to the fast replenishing

patch in free compared with forced choice blocks (mean free choice = 0.366, SD = 0.027; mean forced

choice = 0.328, SD = 0.037; corrected p = 1e-4), and a significantly lower proportion of visits to the slow

replenishing patch in free choice blocks (mean free choice = 0.289, SD = 0.035; mean forced choice =

0.341, SD = 0.035; corrected p = 1e-4, see Figure 2A). The proportion of visits to the medium replenishing

patch was also significantly higher in free choice blocks (mean free choice = 0.345, SD = 0.025; mean

forced = 0.331, SD = 0.037; corrected p = 0.018). All proportions, both here and hereafter, were compared

using non-parametric permutation testing (see STAR methods), in which corrected p values were calcu-

lated based on the rank of the true t-statistic within a null distribution generated from 10,000 random

data permutations. In cases where the true t-statistic was higher than all values in the null distribution,

the corrected p value becomes one over the number of permutations (i.e. 1e-4).

Exploratory analyses revealed that participants selected the alternative patch with the higher expected

reward (i.e., current patch value) significantly more under free choice conditions, as compared to forced

choice conditions, wherein participants were forced to select a patch determined at random after each

leave decision. This effect was observed when leaving the slow patch (mean free = 0.711, SD = 0.195;

mean forced = 0.511, SD = 0.121; corrected p = 1e-4), the medium patch (mean free = 0.615, SD =

0.178; mean forced = 0.480, SD = 0.113; corrected p = 1e-4), and the fast patch (mean free = 0.641,

SD = 0.166; mean forced = 0.493, SD = 0.135; corrected p = 1e-4, see Figure 2C). When considering choices

based on patch replenishment rates, rather than current patch values, participants selected the alternative

patch with the higher replenishment rate significantly more when leaving the medium replenishing patch

under free choice conditions (mean free choice = 0.615, SD = 0.171; mean forced choice = 0.455, SD =

0.134; corrected p = 1e-4, see Figure 2D). To a lesser extent, this was also the case when leaving the fast

replenishing patch (mean free choice = 0.570, SD = 0.189; mean forced choice = 0.510, SD = 0.112; cor-

rected p = 0.036). Significant differences were not detected in how often the higher replenishment rate

patch was selected when leaving the slow replenishing patch (mean free choice = 0.539, SD = 0.196;

mean forced choice = 0.510, SD = 0.125; corrected p = 0.355).

Reward rates were higher when patch encounters could be directed

The ability to direct foraging toward patches with faster replenishing dynamics should result in higher

rewards overall and, therefore, increase experienced reward rates. In line with this prediction, we

observed a significant main effect of choice condition on the average reward per exploit action

(F(1,59) = 40.526, p = 3.170e-8, see Figure 3). There was also a significant main effect of patch type

(F(2,118) = 275.161, p = 3.670e-45) and a significant interaction between choice condition and patch

type (F(2,118) = 12.234, p = 1.485e-5). The main effect of choice condition was because of higher reward

rates in the free compared to forced choice blocks (mean free choice = 68.268, SD = 9.221; mean forced

choice = 64.119, SD = 8.538). The main effect of patch type was because of increasing reward rates from

the slow (mean = 62.202, SD = 9.257) through to the medium (mean = 67.025, SD = 8.391) and fast

replenishing patch (mean = 69.382, SD = 8.220). The interaction between choice condition and patch

type reflected decreasing differences in the reward rate between choice conditions, as the replenishment
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rate of a patch increased from slow to medium (mean difference slow = 5.601, SD = 6.540; mean difference

medium = 3.864, SD = 5.565; t(59) = -3.645, corrected p = 0.002) and slow to fast (mean difference fast =

3.094, SD = 4.497; t(59) = -4.231, corrected p = 2.473e-4), but not from medium to fast (t(59) = -1.664,

corrected p = 0.304). The increase in reward rate under free compared with forced choice conditions

was significantly different from zero for all three patch types (slow t(59) = -6.635, corrected p = 3.357e-8;

medium t(59) = -5.379, corrected p = �4.048e-6; fast t(59) = -5.239, corrected p = 6.810e-6). Including

non-exploit actions in the reward rate calculation lowered the average reward across choice conditions

Figure 2. Patch choices

(A) Proportion of visits to the slow, medium and fast replenishing patch, under forced and free choice conditions. Orange colors indicate data from forced

choice blocks and blue colors indicate data from free choice blocks. Unfilled circles show proportions for individual participants and lines connect average

proportions across the sample. Horizontal gray bars overlaid on each condition show the mean performance of simulated agents that approximately

maximize reward on the task. Proportions could deviate from 0.33 in the forced choice condition for individual participants because the next patch was

selected at random (with a probability of 0.5) after each leave decision.

(B) The same data as panel A, but plotted as a single point on a simplex for each participant. Squares indicate mean visit proportions for each choice

condition. For (A and B), proportions across the three patches sum to one within each choice condition.

(C) Proportion of choices to the alternative patch with the higher expected reward (i.e. current patch value), when leaving the slow, medium and fast

replenishing patches.

(D) Proportion of choices to the alternative patch with higher replenishment, when leaving the slow, medium and fast patches. For (B–D), colors are the same

as those used in panel (A).
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(mean free choice = 47.510, SD = 2.662; mean forced choice = 45.409, SD = 2.668) and patches (mean

slow = 41.684, SD = 2.582; mean medium = 47.362, SD = 2.555; mean fast = 50.332, SD = 2.683), but did

not change the pattern of results above.

Reward threshold for leave decisions was higher when patch encounters could be directed

Optimal Foraging Theory (Charnov, 1976) predicts that as experienced reward rates increase, patches will

be abandoned at higher reward values. The previous result, showing higher reward rates in free compared

to forced choice blocks, therefore suggests there might be differences in the average reward value before

leaving. To test this idea, we examined the last reward outcome before leaving each patch under free and

forced conditions. We observed a significant main effect of choice condition (F(1,59) = 18.723, p = 5.923e-

5), reflecting higher reward outcomes before leave decisions in free (mean = 48.753, SD = 17.903)

compared with forced choice blocks (mean = 44.418, SD = 16.001, see Figure 4A). There was also a signif-

icant main effect of patch type (F(2,118) = 15.376, p = 1.164e-6), reflecting lower reward outcomes before

leaving the fast replenishing patch (mean = 45.503, SD = 16.547), compared to the medium replenishing

patch (mean = 46.728, SD = 16.970; t(59) = -3.481, corrected p = 0.003) and compared to the slow replen-

ishing patch (mean = 47.526, SD = 16.329, t(59) = -5.009, corrected p = 1.583e-5). A significant difference

was not detected between the reward before leaving the medium and slow replenishing patches (t(59) =

-2.322, corrected p = 0.071). No significant interaction was detected between choice condition and patch

type on the reward outcome before leaving (F(2,118) = 0.021, p = 0.980).

Directed patch choices resulted in higher rewards on arrival and a comparable number of

exploit actions before leaving

If participants selected fast replenishing patchesmore often, higher reward ratesmight not just reflect patches

being abandoned at higher reward values, but the average patch reward being higher at arrival. When inves-

tigating this possibility, we found a significant main effect of choice condition on reward at arrival to a patch

(F(1,59) = 316.847, p = 2.127e-25), indicating that the reward upon arrival at a patch differed in free and forced

Figure 3. Patch reward rates

Reward per exploit action (reward rate) under free and forced choice conditions, in the slow, medium and fast

replenishing patch. Colored bars show mean reward rates for each choice condition. Circles overlaid on each bar show

individual participant values. Horizontal gray bars overlaid on each condition show the mean performance of simulated

agents that approximately maximise reward on the task. *p < 0.05.
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choice blocks (see Figure 4D). Moreover, we observed a significant main effect of patch type on reward at

arrival (F(2,118) = 675.677, p = 2.402e-65) and a significant interaction between choice condition and patch

type (F(2,118) = 33.187, p = 3.671e-12). Exploratory analyses revealed that the interaction resulted from a

smaller difference in the arrival reward between free and forced choice conditions when arriving at the fast

patch (mean difference = 1.27, SD = 2.12) compared to the medium patch (mean difference = 2.697, SD =

2.967; t(59) = 2.807, corrected p = 0.020), and when arriving at the medium patch compared to the slow patch

(mean difference = 6.552, SD = 4.545; t(59) = 5.364, corrected p = 4.281e-6).

A related set of analyses, examining arrival rewards as a function of the patch being left, showed a significant

main effect of choice condition on the arrival reward (F(1,59) = 153.055, p = 4.928e-18), reflecting higher arrival

rewards in the free choice condition (mean free = 80.470, SD = 2.320; mean forced = 76.036, SD = 3.485, see

Figure 4C). There was also a significant main effect of the patch being left on the reward gained when arriving

at a new patch (F(2,118) = 60.296, p = 9.105e-19). Exploratory analyses showed that this main effect was due to

Figure 4. Leaving and arrival characteristics

(A and B) Patch-leaving characteristics. (A) Last reward prior to leaving the slow, medium and fast replenishing patch. Orange indicates data from forced

choice blocks and blue indicates data from free choice blocks. Black dots indicate averages and unfilled circles show values for individual participants.

Horizontal grey bars overlaid on each condition show the mean values for simulated agents that approximately maximise reward on the task. (B) The number

of exploit actions made before deciding to leave each patch.

(C and D) Patch-arrival characteristics. (C) Average reward for the first exploit action at a new patch, after leaving the slow, medium or fast replenishing patch.

(D) Average reward for the first exploit action when arriving at the slow, medium or fast replenishing patch. For (B–D), colors are the same as those used in

panel (A).
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higher arrival rewards after leaving the slow compared to the medium patch (mean slow = 81.966, SD = 2.950;

meanmedium = 77.643, SD = 3.972; t(59) = 6.605, corrected p = 3.770e-8), the slow compared to the fast patch

(mean fast = 75.150, SD= 4.406; t(59) = 10.975, corrected p= 2.106e-15) and themediumpatch compared to the

fast patch (t(59) = 4.102, corrected p = 3.822e-4). No significant interaction was detected between the patch be-

ing left and choice condition (F(2,118) = 1.185, p = 0.310).

The combined effects of higher rewards at arrival and before leaving in the free compared to the forced

choice condition resulted in a similar number of exploit actions before patch-leaving across conditions

(mean free = 5.251, SD = 1.772; mean forced = 5.452, SD = 1.643; F(1,59) = 3.337, p = 0.073, see Figure 4B).

There was a significant main effect of patch type (F(2,118) = 336.641, p = 1.736e-49) and a significant inter-

action between patch type and choice condition on the number of exploit actions before leaving (F(2,118) =

9.312, p = 1.758e-4). Exploratory analyses revealed that the interaction resulted from significantly fewer

exploit actions prior to leaving the fast replenishing patch in the free choice condition (mean free choice =

5.672, SD free choice = 1.753; mean forced choice = 6.015, SD forced choice = 1.554; t(59) = 3.400, cor-

rected p = 0.004), but no condition differences in leaving times for the slow replenishing patch (mean

free choice = 4.773, SD free choice = 1.798; mean forced choice = 4.759, SD forced choice = 1.787;

t(59) = -0.103, corrected p > 0.99) or the medium replenishing patch (mean free choice = 5.309, SD free

choice = 1.850; mean forced choice = 5.581, SD forced choice = 1.708; t(59) = 2.207, corrected p = 0.094).

Together with our analyses of arrival reward rates, these results suggest that when the reward at arrival was

more closely matched across choice conditions (i.e. in the fast replenishing patch), patches were aban-

doned after fewer actions under free choice conditions. When the reward at arrival was not well matched

across choice conditions (i.e. in the slow and medium replenishing patches), the higher rewards at arrival

and prior to leaving seen in free choice blocks canceled each other out, resulting in a similar number of

actions before leaving to the forced choice condition.

Local reward information influenced exploit-or-leave decisions

The results above indicate that being able to control patch encounters altered patch-leaving decisions. Fast

and moderate replenishing patches were chosen more frequently, increasing reward rates in the free choice

condition. Crucially, although higher reward rates would shift leaving thresholds according to MVT (Charnov,

1976), this could also be due to a change in computational mechanisms underlying leave decisions. For

instance, participants could have not only used global reward rate information to guide their patch-leaving

choices; they could have also used local information about patch-specific values or reward rates.

We tested this idea using logistic regression. First, we constructed a model that predicted exploit-or-leave

decisions using the last reward outcome and the global reward rate across all patches, similar to the core

variables used in MVT. We will call this the global model. Next, we added local reward variables to the

global model, to test whether local information improved the model’s predictions in each condition.

The global model was constructed as follows:

PðleaveÞt =
1

1 + e
�
�
b0 + b1ðrt�1Þ+ b2

�br G; t

��
The core elements of this expression include rt�1; the last reward received from the current patch at time

t-1, and brG; t , which is the average reward rate across all patches at time t. b0 is an intercept that estimates

participant’s bias to leave, regardless of the last reward and the reward rate. b1 and b2 are estimated

coefficients that weight the predictor variables rt�1 and brG; t . The average reward rate regressor, brG; t ,

was estimated at time t using a delta learning rule, which updated the previous estimate using the last

reward outcome, rt�1, and a learning rate, a:

br G; t = br G; t�1 + a

�
rt�1 � br G; t�1

�
Given participants received no immediate reward for deciding to leave or selecting the next patch, brG;t was

updated with rewards of 0 following each of these actions. Since reward and no rewardmight influence par-

ticipants’ estimate of the reward rate to different extents, we allowed the model to have separate learning

rates for rewarded and unrewarded updates (a and al). At the beginning of each block, the reward rate was

initialized using a free parameter, s. Although our regression approach models the probability of leaving at

ll
OPEN ACCESS

8 iScience 24, 103005, September 24, 2021

iScience
Article



time t, leave events, and the corresponding predictor values were only observed if participants had chosen

to exploit until time t-1. Hence, the approach used here can also be considered as a model of the hazard

function of leaving.

The global + maxValuemodel took the global model and included the maximum current value among the

alternative patches, rv;t , as an additional predictor. The predictor value of rv;t for each trial reflected the true

state of the task (i.e., the reward participants would receive if they were to switch to the best possible

patch). The static maximum reward rate model (global + maxRRS) was similar, except that it included the

maximum reward rate among the alternative patches ðbrm;tÞ rather than themaximum of their current values.

One important difference was that the additional regressor in the global + maxValuemodel increased over

time, mimicking patch replenishment. In contrast, the additional regressor in the global + maxRRS model

remained static while exploiting the current patch. Trial-wise values for brm;t were obtained by estimating

the reward rate separately for each patch p:

br p; t = br p; t�1 + a

�
rt�1 � br p; t�1

�
The learning rule above was used to update the reward rate estimate for the current patch p, but left the

reward rate estimates of the other patches, q, unchanged:

br q; t = br q; t�1 cqsp

The local reward rates were updated with separate learning rates for rewards and no-rewards, and initial-

ized with a free parameter, in the same manner as the global reward rate. The maximum of the two esti-

mated reward rates of the two alternative (i.e., unattended) patches was then taken as the local predictor

value on each trial. A central feature of the global + maxRRS model was that it did not update the reward

rates for unattended patches, which meant the maximum alternative reward rate was static while the cur-

rent patch was being exploited. Given participants knew patches were replenishing over time, however, we

created a more dynamic reward rate model (global + maxRRD), which updated reward rate estimates for

unattended patches. For each action in the current patch, each alternative patch increased its reward

rate towards its arrival reward (rA, see Figure 4D), from the last time that patch was visited:

br q; t = br q; t�1 + a

�
rA � br q; t�1

�
The highest reward rate among the alternatives was again used as the predictor value on each trial. All

regression models used 3 free parameters to estimate the reward rate/s, s, a, and al .Models used an addi-

tional 3–4 free parameters in the logistic regression equation, one for the constant term, b0, and one for

each predictor, bn.

The results of the model comparison are shown in Figure 5. When comparing model performance in the free

choice blocks, we did not detect consistent evidence that the global + maxValue model outperformed the

global model on average (mean AIC/BIC difference = 1.20/-2.38, negative difference values indicate the

global model provided a better average fit to the choice data). When comparing themodels in individual par-

ticipants, we found that adding local value information to the global model resulted in better exploit-or-leave

predictions for 25/60 participants based on AIC scores (10/60 participants based on BIC scores).

In contrast, there was consistent evidence that the global + maxRRS model improved predictions in free

choice blocks over the global model (mean AIC/BIC difference = 5.38/1.80, positive difference values indi-

cate the local model fit the data better on average). Individual subject analyses showed that 40 out 60 par-

ticipants had lower AIC scores for the global + maxRRS model (26/60 based on BIC).

Finally, when evaluating the global + maxRRD model, which assumed reward rates were updated for unat-

tended patches, we found mixed evidence that predictions were improved on average (mean AIC/BIC dif-

ference = 3.34/-0.25). Individual subject analyses provided more compelling evidence for this model than

average difference scores, showing that its predictions were better than the global model for 37/60 partic-

ipants based on AIC scores (18/60 based on BIC).

When evaluating AIC scores across all four models, 23 participants were best fit by the global + maxRRS

model, 18 by the global + maxRRD model, 10 by the global model and 9 by the global + maxValue model.
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We therefore concluded that the winning model for exploit-or-leave choices in the free choice condition

was the global + maxRRS model.

Despite the behavioral differences between choice conditions, we found a similar pattern of modeling perfor-

mance for the forced choice blocks. The global + maxRRS model outperformed the global model (mean AIC/

BIC difference= 7.56/3.96), providing the best fittingmodel overall for 22 participants based on theAIC and 15

participants based on the BIC. The global + maxValuemodel also showed a consistent performance improve-

ment (mean AIC/BIC difference = 4.02/0.43). However, its AIC/BIC difference scores were lower than the

global + maxRRS model and it explained fewer participants overall (12 based on the AIC and 8 based on

the BIC). The global +maxRRDmodel showedmixed evidence of improved performance relative to the global

model on average (mean AIC/BIC difference = 3.33/-0.26), providing the best fit for 23 participants based on

the AIC and 11 based on the BIC. Considering both AIC and BIC scores, we concluded that the most consis-

tent evidence pointed to the global + maxRRS as the winning model in the forced choice condition.

The standardised coefficients for the winning global + maxRRS model (Table 1) included a negative inter-

cept for both choice conditions, indicating a bias to stay in patches regardless of the reward predictors. The

Figure 5. Logistic regression models for exploit-or-leave decisions

(A) Differences in AIC scores between the global model (used as a baseline) and each global+ competitor model described in the text, when fit to forced

choice blocks. Bars indicate the group means and dots represent individual participant data. A positive difference score indicates greater evidence for the

global+ model over the global model. The most consistent improvement was achieved with the global+maxRRS model, which included the maximum

estimated reward rate among the alternative patches as a predictor for patch-leaving.

(B) The timecourse of choice probabilities for the winning global+maxRRS model, relative to the global model. Positive numbers indicate a closer match to

choice behavior under the global+maxRRS model. Probabilities are plotted as a function of timestep in the patch, in the leadup to a leave decision. On

average, the winningmodel maintains a numerical advantage for exploit decisions (first 4 dots) as well as leave decisions (rightmost dot). Thin lines show data

for individual participants and the bold line shows the sample mean. Data are averaged over all patch types.

(C) The absolute probability of a leave decision under the global+maxRRS model. Dots, thin lines and bold lines have the same meaning as panel (B).

(D) The probability of leaving a patch as a function of timesteps in the current patch, separated for slow, medium and fast replenishing patches. Dots show

the probabilities for participants’ actual choices. Shaded lines show the corresponding probabilities of leaving under the global+maxRRS model, with the

shading width showing standard errors of the mean. The colors corresponding to each patch are shown in the panel legend.

(E–H) Panels (E–H) are analogous to panels (A–D), but with data from the free choice condition.
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highest coefficient seen in both conditions was the previous reward outcome, suggesting the instanta-

neous reward information had the largest relative influence on decisions to exploit-or-leave. The

standardised coefficient for the local reward rate (maxRRS) was numerically higher than the global reward

rate coefficient in both conditions. However, within-condition differences between these coefficients were

not significant when scrutinized with permutation testing (Forced choice: corrected p = 0.416; Free choice:

corrected p = 0.901; based on 10,000 random data permutations). In a similar manner, the difference be-

tween local and global coefficients was numerically higher in the free choice condition, compared to the

forced choice condition. However, the difference was not significant (corrected p = 0.496, based on

10,000 random data permutations). Parameters used to estimate the reward rates (s, a and al) were numer-

ically higher in the free choice condition.

DISCUSSION

Foraging has often been studied as a case of decision making in which animals have little control over

patches encountered in the future (Barack et al., 2017; Constantino and Daw, 2015; Hayden et al., 2011;

Kane et al., 2017; Le Heron et al., 2020). This assumption might not always be true (Merkle et al, 2014,

2017; Passingham, 1985; Riotte-Lambert et al., 2015; Sayers and Menzel, 2012), complicating optimal

foraging decisions. The present study aimed to investigate patch-leaving decisions in an environment in

which the same set of three patches could be revisited, and patches replenished their rewards at different

rates. Within this environment, we manipulated whether participants had control over patch encounters,

examining how this influenced decisions to leave a patch and which patches participants chose to visit next.

Consistent with our predictions (Hall-McMaster and Luyckx, 2019), we found that when participants were

able to select which patch to exploit after a leave decision, they visited fast replenishing patchesmore often

than slower replenishing patches. This resulted in higher reward rates, higher rewards when arriving at

patches and higher reward outcomes before leave decisions, compared to environments in which patch

encounters were randomly determined. We also predicted that participants would leave patches after

fewer exploit actions in free choice blocks. However, increased rewards at arrival and before leaving

patches in the free choice environment resulted in a comparable number of actions before leaving patches

to the forced choice environment. To account for the behavioral effects above, we developed a simple lo-

gistic regression model for exploit-or-leave decisions, which included the previous reward outcome, the

global reward rate across all patches, and the maximum reward rate among the alternative patches. We

found that choices in free choice blocks were better explained with this model than an MVT-based model

that included only the previous reward and the global reward rate. Two additional models were used to test

whether participants internally tracked patch replenishment; however, they did not provide a better

description of the data. Despite behavioral differences between choice conditions, qualitatively similar re-

sults were found when modeling the forced choice blocks.

The present results build on previous studies based on Optimal Foraging Theory (Charnov, 1976; Stephens

and Krebs, 1986), which involved random or pseudo-random encounters with new options when deciding

to leave a current option (Barack et al., 2017; Constantino and Daw, 2015; Hayden et al., 2011; Kane et al.,

2017; Le Heron et al., 2020), as well as theoretical studies examining patch-revisitation (Kilpatrick et al.,

2020; Possingham and Houston, 1990). We show that allowing decision makers to select which options

are pursued alters foraging behavior. More frequent visits to high value options and less frequent visits

to low value options increase the reward accrued per action, reflecting behavior that is more efficient

than encountering options at random and could improve biological fitness in natural settings (Merkle

Table 1. Median parameter estimates for the winning exploit-or-leave model under free and forced choice

conditions

Model Condition b0 b1 b2 b3 s a al

Global +

maxRRS

Forced �4.01 (3.03) �4.51 (3.37) 0.64 (1.85) 0.73 (1.54) 51.5 (26.45) 0.25 (0.54) 0.01 (0.18)

Free �3.66 (2.5) �4.25 (2.8) 0.26 (2.68) 0.79 (1.47) 56.46 (27.15) 0.33 (0.47) 0.09 (0.19)

Bracketed values show the interquartile range. b values are standardised coefficients. b0 is the intercept, b1 is the previous

reward coefficient, b2 is the global reward rate coefficient, and b3 is the maximum alternative reward rate coefficient. s, a

and al are the starting value and learning rate parameters used to estimate the reward rates.

ll
OPEN ACCESS

iScience 24, 103005, September 24, 2021 11

iScience
Article



et al, 2014, 2017; Riotte-Lambert et al., 2015; Sayers and Menzel, 2012). The fact that exploit-or-leave

choices were better explained with a model that used both global and local reward information suggests

that humans do indeed use reward information about alternative patches to guide their exploit-or-leave

decisions, in at least some foraging environments.

One interesting aspect of the results was that local reward rate information was included in the winning

model for both free and forced choice conditions. One possible reason could be that, in the forced

choice condition, participants still knew they would go to one of the two alternative patches. In this

case, it could make sense to consider the mean reward rate across alternatives because the exact alter-

native that would be visited next was unknown. In the free choice condition, participants could have

considered the maximum reward rate among the alternative patches because they were able to go

directly to the desired patch after a leave decision. We did not have sufficient variability in candidate re-

gressors to test this possibility. The maximum reward rate among the alternative patches and the mean

across them were very highly correlated (r = 0.92) and therefore, we only included the maximum alterna-

tive reward rate in our regression models. This means that participants could have been using different

information about the alternative patches in the different choice conditions; however, it was not possible

to detect this in the current setup.

Before running our main analyses, we excluded 10/70 participants who were outliers based on the total

number of points earned (see STAR methods). When looking in-depth, we found that these participants

earned substantially fewer points because of fixed behavioral strategies, such as exploiting each patch until

it was completely empty or leaving each patch after a single exploit action. Although we took these stereo-

typed responses as evidence that these participants were not engaged with the task, it is possible that

these behaviors reflect genuine strategies. To test whether excluding these participants influenced the re-

sults, we re-ran our statistical analyses with all 70 participants. This produced two changes in the results,

neither of which undermined our main conclusions. First, the greater proportion of choices to the medium

patch, observed when leaving the fast patch in the free choice blocks, was no longer significant (mean free

choice = 0.556, SD = 0.199; mean forced choice = 0.504, SD = 0.130; corrected p = 0.051; original result in

Figure 2D: mean free choice = 0.570, SD = 0.189; mean forced choice = 0.510, SD = 0.112; corrected p =

0.036). Second, the comparable number of exploit actions made before leaving the medium replenishing

patch was now significantly lower in the free compared to the forced choice blocks (mean free choice =

5.581, SD free choice = 2.660mean forced choice = 5.995, SD forced choice = 2.912; t(69) = 2.931, corrected

p = 0.014; original result in Figure 4B: mean free choice = 5.309, SD free choice = 1.850; mean forced

choice = 5.581, SD forced choice = 1.708; t(59) = 2.207, corrected p = 0.094). This contributed to a signif-

icantly fewer exploit actions before leaving overall, in the free choice blocks, consistent with our a priori

prediction (mean free = 5.531, SD = 2.631; mean forced = 5.869, SD = 2.816; F(1,69) = 6.652, p = 0.012; orig-

inal result: mean free = 5.251, SD = 1.772; mean forced = 5.452, SD = 1.643; F(1,59) = 3.337, p = 0.073). This

could suggest that our main analysis with 60 participants did not have sufficient power to detect the leaving

time effect. The effect size with 70 participants was small, and our impression is that future studies could use

a more sensitive measure of leaving time (such as seconds in patch), or simulate agents in different task

settings, to better understand how patch control influences leaving time. Altogether, the results with all

70 participants do not challenge the main conclusions. Even when all participants were included, control

over patch encounters resulted in a higher proportion of visits to fast replenishing patches, patches being

left at higher levels of reward, and higher average reward rates. In addition, decisions to exploit-or-leave a

patch were still influenced by reward information about the alternative patches.

The main results have three broader connections to decision making research. In MVT, the decision maker

needs to compare the instantaneous reward from the current patch with a long-run environmental reward

rate. The latter quantity has been argued as an important variable for other kinds of choices, including the

vigour of responding (Niv, 2007; Niv et al., 2007; Yoon et al., 2018), and there are suggestions (Niv, 2007; Niv

et al., 2007) with at least some evidence (Hamid et al., 2016), that this variable is encoded in tonic concen-

trations of dopamine. One interesting characteristic of our foraging problem in this regard is that the rela-

tionship between long-run past reward rate and the immediate future reward is disrupted. Because

different patches replenish at different rates in our task, the future reward rate is influenced by the replen-

ishment status of the alternative patches. It is consequentially an interesting empirical question as to

whether the leaving policy in foraging environments that allow patch revisiting might be implemented

through changes in tonic dopamine or whether the neural mechanism for patch leaving might be quite
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different. In addition to the future rewards associated with replenishment, it could also be that participants

are sensitive to accelerating reward depletion in the current patch, adapting their local learning rule for

different depletion phases. Future studies could examine this by manipulating patch decay dynamics. A

further consideration arises in the work of Garrett and Daw (2020), who considered a structurally different

foraging problem, in which human participants could use a recent average reward rate the track the oppor-

tunity cost of time. The authors observed that participants used different learning rates for the opportunity

cost, depending on whether rewards were better or worse than the recent average. Although patch replen-

ishment makes the present task more dynamic than the one in Garrett and Daw (2020), it would be inter-

esting for future research to consider whether participants adopt different learning rates in relation to

patch specific reward rates. Finally, the present work also explored a foraging problem that involved a small

number of patches with structured replenishment and the possibility of revisitation. This is very different

from the conventional case in which patches are too numerous to individuate. Indeed, it is closer to a prob-

lem class known as concurrent variable interval schedule with hold (Staddon et al., 1981). Nevertheless, it is

interesting to consider intermediate cases, for instance in which there are very many patches, but they are

systematically clustered in space according to their replenishment rates. This could allow animals to

represent each individual patch in terms of the cluster it belongs to, and form a corresponding task repre-

sentation (Schuck et al., 2016; Wilson et al., 2014; see Behrens et al., 2018; Niv, 2019 for reviews). This task

representation could then be used to make decisions about when to spend time in which part of space. If

there were additional sensory features that allowed distal prediction about the current state of a patch, an-

imals could also readily learn about and exploit this information to act more efficiently.

Overall, the results from this experiment suggest that revisiting patches, and having control over when to

do so, changes human foraging behavior. In environments that involve patch-revisiting, leave decisions

depend on the average reward for the environment, but also on the reward for alternative patches that

might be revisited.

Limitations of the study

The present experiment had three main limitations. First, the experiment did not provide a computational

account for how patches were selected. Participants tended to select patches with higher expected

rewards when leaving all three patches and higher reward rate patches when leaving the medium replen-

ishing patch. The winning model assumed that participants used the highest reward rate among the alter-

native patches to guide leaving behavior; however, decision makers might in fact switch between different

sources alternative patch information depending on the patch they are planning to select. Future efforts

could therefore model both patch selection decisions and exploit-leave decisions within a unified frame-

work. Second, participants did not know the replenishment speed for each island at the start of a block

or the precise rates of replenishment. Behavior at the beginning of a block might therefore reflect directed

exploration, which is not accounted for in the models we present. Future work could therefore investigate

how replenishment rate information is learned and investigate behavioral markers for shifting from learning

about the environment to a more stable patch-exploitation strategy. Third, the experiment could be

limited in its trial-based structure. Although some patch-leaving designs are trial-based (Barack et al.,

2017; Constantino and Daw, 2015; Kane et al., 2017; Hayden et al., 2011), studies tend to compute reward

rates (Kane et al., 2017; Lottem et al., 2018), the probability of leaving (Constantino and Daw, 2015) or leav-

ing times (Barack et al., 2017; Hayden et al., 2011; Le Heron et al., 2020; Lottem et al., 2018) using contin-

uous time information, such as the number of seconds in a patch. In the present experiment, we used trial-

wise data to model discrete choice behavior using a similar approach to Constantino and Daw (2015). How-

ever, unlike Constantino and Daw’s (2015) task, travel times were fixed to 1s in the present experiment and

traveling did not reduce the number of actions available in a block. This meant we did not include temporal

variables for exploit time and travel time in seconds within our models. Although appropriate for our task

design, this could have resulted in less sensitive reward rates and leaving time estimates, as compared with

a continuous time-based setup.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Sam Hall-McMaster (hall-mcmaster@mpib-berlin.mpg.de).

Materials availability

This study used existing materials. Stimuli were presented using Psychopy-3 (ttps://www.psychopy.org/;

similar to the version described in Peirce et al., 2019). Stimuli included three circles, which were used as

different patches, a cartoon pirate ship, and a cartoon medallion, used for reward feedback (see Figure 1).

Cartoon stimuli were created by icon developers Smalllikeart and Nikita Golubev, and accessed at https://

www.flaticon.com. Stimulus sizes were scaled based on participants’ screen sizes and responses were re-

corded using participants’ keyboards. Participants were asked to only take part if their screen was at least

13 inches and they were using Chrome as their browser. The task was hosted on Pavlovia (https://pavlovia.

org/) which stored participant data during online testing. Data were analyzed using MATLAB (RRID:

SCR_001622, version 2019b) and RStudio (RRID: SCR_000432, version 1.4.1717).

Data and code availability

Data, task and analysis code are publicly available on the Open Science Framework (OSF: https://doi.org/

10.17605/OSF.IO/C4TRJ, https://osf.io/c4trj/). Any additional information required to reanalyze the data

reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

70 human participants (mean age = 29, 38 female, 32 male) took part in this experiment as an online study,

which ran using Prolific (https://www.prolific.co/). Participants were eligible to take part if they were 18–40

years of age, fluent in English and were not receiving treatment or taking medication for mental illness.

Eligible participants were screened with attention checks before participation was allowed. Ten partici-

pants, from the 70 who passed the attention checks and completed the experiment, were excluded due

to their task performance (number of points earned) falling more than three median absolute deviations

below the sample median. For six rejected participants, this low performance was due to a fixed response

profile, in which participants exploited each patch until it was empty before leaving. This response profile

been used as a basis for exclusion in previous human foraging studies (Constantino and Daw, 2015; Lenow

et al., 2017). Four rejected participants showed low performance due to the opposite strategy, in which a

patch was often exploited just once before leaving. These fixed response strategies suggest that the ten

participants marked for rejection did not make engaged foraging choices during the task. Excluding these

participants did not affect our main conclusions (see Discussion for additional details). The remaining 60

participants were between 18 and 40 (mean age = 28, 33 female, 27 male). Participants received £5 per

hour and could earn up to £1 extra for depending on their task performance. The study was approved

by the Max Planck Institute for Human Development Ethics Committee (N-2020-06) and all participants

indicated their informed consent before taking part.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Data, task and analysis code package This paper https://doi.org/10.17605/OSF.IO/

C4TRJ https://osf.io/c4trj/

Software and algorithms

PsychoPy3 PsychoPy https://www.psychopy.org/

MATLAB (2019b) Mathworks RRID: SCR_001622

RStudio (1.4.1717) RStudio, PBC RRID: SCR_000432
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METHOD DETAILS

Participants performed a patch-leaving task, based on principles fromOptimal Foraging Theory (Stephens

and Krebs, 1986). The classic patch-leaving setup involves participants exploiting an option as the reward it

returns decreases over time. Participants’ central choice is when the option is no longer worth exploiting;

when it should be abandoned to search for something better. Once participants decide to leave the option,

a new option is presented for them to exploit, the value of which is independent of their previous actions.

We made three critical adaptations to this standard setup. First, we manipulated whether participants

could choose their next option, after a leave decision. Second, participants revisited the same three op-

tions within a block, which meant that their previous decisions would influence an option’s reward value

when returning to it. Third, each option replenished its reward over time, but at a different rate.

Participants played the role of a pirate, sailing to different islands in search of buried treasure (Figure 1). The

common elements across all conditions of the task were as follows. Participants first selected an island to

sail to using the keys F (left island), J (upper island) and K (right island). Following a travel delay of 1000ms to

reach the island, participants made a series of exploit-leave decisions. When deciding to exploit the island

for treasure (space bar press), participants received between 0 and 100 gold coins, which were indicated on

screen for 1500ms. The reward feedback then disappeared and participants made another exploit-leave

decision. This loop continued until the participant decided to leave the island (S key press), following which

they were able to select a new island to sail, and thereafter enter a new exploit-leave loop. Participants

needed to perform at least one exploit action before being able to leave an island. The event sequence

described above continued until the participant had performed a total of 200 actions, at which point the

block ended. Choices about which island to sail to, exploit decisions and leave decisions all counted as in-

dividual actions. The actions remaining in a block were shown in the top right corner of the screen. While

sailing between islands took time, reducing the reward per unit time, it did not affect the reward per action

because sailing did not consume the actions available in a block. We therefore used the reward per action

as our main measure of reward rate. The critical manipulation between blocks was whether participants had

a free or forced choice over which island they sailed to, after each leave decision. In free choice blocks, the

seas were calm and participants could choose to visit either of the two alternative islands, after a leave de-

cision. In forced choice blocks, the seas were stormy and islands were not always accessible. Participants

were therefore forced to select one of the alternative islands, which was randomly determined at each se-

lection phase. Inaccessible islands were marked with red X symbols.

The reward dynamics for each island functioned the same way across task conditions. When visiting an is-

land/patch, p, the number of coins gained for the first exploit action was equal to the full number of coins

buried. When a subsequent exploit action was made, the reward gained at time t, (denoted as rp,t)

decreased following the equation:

rp;t = dn�1rp;t�1

The decay constant, d, was set to 0.95, n refers the number of exploit actions since arriving at the island, and

rp;t�1 refers to the reward gained for the previous exploit action. Note that the decay constant declines

exponentially in this expression, leading to accelerating decay characterized by a squared exponent rela-

tionship between the reward when entering the patch at time t and the reward after making k exploit ac-

tions prior to the current exploit action (i.e. k = n-1):

rp; t + k + 1 = rp;t
Yk
i

di =d0:5kðk + 1Þrp;t

While one island was being exploited, new coins were buried on the other two islands. The coins buried on

each alternative island q increased, following each decision to exploit the current island, according to the

equation:

rq;t = rq;t�1 +
�
100 � rq;t�1

�
kq cqsp

The variable kq is the replenish rate for alternative patch q. The replenish rate was different for each island,

with one island replenishing at a slow rate (0.05), one at a moderate rate (0.10) and one at a fast rate (0.15).

This equation was also used to update the coins buried on all islands, after island selection responses and

leave responses. Each island could replenish to a maximum of 100 coins. In each block, the slow, medium

and fast replenishing island was randomly assigned to the left, top or right position on screen.
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Participants completed four blocks, two free choice blocks and two forced choice blocks. The block order

was random. Participants were informed that each block would contain a fast, slow and medium replenish-

ing island but did not have direct experience with the islands before starting the experiment. Participants

were instructed about whether an upcoming block would be free or forced choice and were reminded to

gain as much reward as possible. The block began with a choice between all islands (free choice) or a

randomly selected island (forced choice). Islands were located at one of three vertex positions on screen

that formed an equilateral triangle. However, slow, medium and fast replenishing islands were randomly

assigned to the vertex positions in each block. Participants therefore needed to revisit different islands

(left, top, right) to learn about their replenishment speeds when starting a new block. The coins buried

at each island were initialized to random numbers between 69 and 79 at the beginning of the block.

This range was determined based on simulating 1000 agents that completed one forced choice block, us-

ing the average experienced reward rate to make leave decisions. In these simulations, the initial reward for

each island was set to 100. Average experienced reward rates were calculated prior to each stay-leave de-

cision, by dividing the total reward gained by the total number of actions taken. The reward gained for the

first exploit action when arriving at an island was recorded during the second half of the block, allowing

time for the islands to reach steady reward dynamics. We then calculated 95% confidence intervals for

the recorded values and averaged confidence intervals across agents, resulting in a lower bound of

69.3521 and an upper bound of 79.1659 points.

QUANTIFICATION AND STATISTICAL ANALYSIS

Visitation

To test the prediction that participants would revisit high value options more and low value options less

under free choice conditions, we extracted the number of times each patch (slow, medium, fast replenish-

ment rate) was selected in forced and free choice blocks. The number for each patch in each condition was

then normalized by the total number of selection actions performed in its respective condition. For

example, the number of visits to the fast patch in the free choice blocks was divided by the total number

of visits made to any patch in the free choice blocks. This normalization step means that the proportion

of visits to each patch in the forced choice condition sum to one and the proportion of visits to each patch

in the free choice condition sum to one. Normalized visits under free and forced choice conditions were

compared for each patch using separate paired two-tailed t-tests. In exploratory analyses, we examined

how often the alternative patch with the highest expected reward (number of coins buried) was chosen,

when leaving each patch. For each patch being left (slow, medium, fast replenishment rate), we extracted

the number of coins for each alternative patch at the time of choosing the next patch to sail to. We then

computed the proportion of times participants chose the alternative patch with the highest number of

coins. Proportions for each patch being left were compared between choices using separate two-tailed

t-tests.

To address potential issues with non-normally distributed (bounded) proportions, we used non-parametric

permutation testing when assessing statistical differences in all tests involving proportions. This approach

was selected because it did not assume a specific data distribution (e.g. Gaussian). When testing two pro-

portions (e.g. the proportion of choices to the best alternative for free versus forced choice), the permuta-

tion procedure randomly swapped the condition data for about half the participants. This meant that, for

approximately 50% of the participants, the forced choice proportion became the free choice proportion

and vice versa. The procedure then conducted a paired t test and stored the absolute value of the resulting

t-statistic. This was repeated 10,000 times to generate a null distribution of t-values for a given statistical

test. The absolute t-value from the true t test was then compared against the 95th percentile of the null dis-

tribution. If it was higher, the test was significant at an alpha level of 0.05. The corrected p value was

computed based on the percentile of the true t-value within the null distribution. In cases where the true

t-value was higher than all values in the null distribution, the p value is one over the number of permutations

(i.e. 1e-4). The permutation procedure was implemented with custom MATLAB code and verified with an

independent toolbox for permutation testing (https://www.mathworks.com/matlabcentral/fileexchange/

29782-mult_comp_perm_t1-data-n_perm-tail-alpha_level-mu-reports-seed_state), which produced the

same results.

Average reward rates

To test the prediction that the average reward rate would be higher under free choice conditions, we ex-

tracted the number of points earned in forced and free choice blocks. These values were then divided by
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the number of exploit actions in each condition. Once this procedure had been performed for each partic-

ipant, reward rates were compared using a 2 3 3 repeated measures ANOVA, with factors of choice con-

dition (free x forced) and patch (slow, medium, fast replenishment rate). The interaction between choice

condition and patch type was followed up with paired t-tests that compared whether the difference in

reward rate between choice conditions (i.e. free minus forced) differed between patch pairs (slow vs me-

dium, slow vs fast, medium vs fast). We conducted additional t-tests to examine whether the increase in

reward rate under free choice conditions was significantly different from zero for each patch (as opposed

to the interaction arising from significant reward rate increases for some patches but not others). The alpha

threshold for each set of t-tests was corrected for three exploratory tests using the Bonferroni correction.

Reward rates based on all actions (including exploiting, leaving and patch selection) were also calculated

and are reported in the main text.

Reward thresholds for leaving

To test the prediction that participant’s reward thresholds for leaving the current patch would be higher in

free choice blocks, we extracted the last reward outcome prior to each leave decision. We then averaged

the reward outcome before leaving, separately for each choice condition. Once this procedure had been

performed for all participants, a 2 3 3 repeated measures ANOVA was performed on the reward outcome

before leaving, with factors of choice condition (free x forced) and patch (slow, medium, fast replenishment

rate). The main effect of patch was followed up with paired t-tests that compared the mean reward before

leaving between the fast and medium replenishing patches, the fast and slow replenishing patches, as well

as the medium and slow replenishing patches. The alpha threshold was corrected for three follow up tests

using the Bonferroni correction. We also note here that the term leaving threshold was used in a slightly

different way in Hall-McMaster and Luyckx (2019). In that paper, the leaving threshold was used to refer

to the effort/time invested in a patch before leaving. We therefore wrote that participants would have a

lower threshold for leaving under free choice, meaning that less time would be spent exploiting a

patch and it would be left at a higher level of reward. In this paper, we used leaving threshold to mean

the reward gained from the current patch, immediately prior to a leave decision. When used in this way,

the same prediction is expressed as the free choice condition producing a higher leaving threshold

(i.e. a patch is left at a higher level of reward). The prediction is the same in both cases but we hope this

explanation of how the terms were used helps to allay any confusion readers could have when reading

across the two papers.

Rewards on arrival

To examine rewards when participants arrived at patches, we extracted the number of coins earned for the

first exploit action, each time the slow, medium and fast replenishing patches were visited. We then aver-

aged the arrival rewards, for each patch and each condition. We then performed a 23 3 repeatedmeasures

ANOVA on the arrival rewards, with factors of choice condition (free x forced) and the arrival patch (slow,

medium, fast replenishment rate). The interaction was followed up with paired t-tests that compared the

arrival reward between choice conditions, separately for each arrival patch. The alpha threshold for the

three exploratory tests was corrected using the Bonferroni correction. A similar procedure was performed

to examine the average arrival reward, as a function of the patch being left. The critical difference was that

we extracted the first reward when arriving at the next patch (regardless of its replenishment rate), each

time participants decided to leave the slow, medium or fast replenishing patch. The main effect of the

patch being abandoned was followed up with separate paired t-tests that compared mean arrival rewards

between specific patches (i.e. slow vs medium, slow vs fast, medium vs fast). The alpha threshold was there-

fore corrected for three exploratory tests using the Bonferroni correction.

Actions before leaving

To test the prediction that participants would make fewer exploit actions prior to leaving patches under

free choice conditions, we extracted the number of exploit actions before each leave decision. We then

averaged the exploit actions, separately for each choice condition. Once this procedure had been

performed for all participants, a 2 3 3 repeated measures ANOVA was performed on the number

of exploit actions before leaving, with factors of choice condition (free x forced) and patch (slow,

medium, fast replenishment rate). In addition, we performed exploratory analyses that examined

whether leaving times differed between choice conditions for each patch individually. Exploratory analyses

followed the same procedure above, except that the number of exploit actions prior to leaving were

averaged separately for each patch and compared between choice conditions using separate paired
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two-tailed t-tests. The alpha threshold for the three exploratory tests was corrected using the Bonferroni

correction.

Simulated performance

We first used dynamic programming to determine the optimal policies for a slightly simpler version of both

free and forced tasks, and then used a form of certainty equivalent control based on inferences about the

states of the patches in order to choose actions. We expect the approximations inherent in the simpler

tasks to be relatively benign. The simpler versions of the task assumed that the agent always had full knowl-

edge of which patch was which (including how fast each one replenished), the current value of each patch,

and rounded all these values to the nearest integer (consistent with the integer rewards provided in the

task). The agent also knew howmany actions were remaining in the block. We then used the Bellman equa-

tion, working backwards from the last of the 200 actions in a block to the first to find the optimal policies for

the state of the patches and the agent in terms of whether to leave the current patch, and, if so, which patch

to choose next (when this choice is possible during the free choice blocks). The value of an action when

there are n actions remaining depends on the values after there are only n-1 actions remaining, which is

why working backwards is appropriate. These policies end up being very high dimensional, since there

are 200 actions per block, each of the patches has 101 possible states, and because the depletion is not

memoryless (i.e. the rate of depletion depends on the number of timesteps the agent has spent in a patch),

the policies also vary as a function of current patch identity and the time spent in it.

Given these policies, the agent is then placed in the same environment as the subjects, in that it only

actually knows the distribution of the starting values of the patches, and does not know which one is

which. It therefore performs Bayesian inference to estimate the identity of the patches. In making

choices, one approximation it makes is to assume the maximum likelihood assignment of these identities

(this is almost perfect after two visits, given the difference in replenishment rates). A second approxima-

tion is that the agent assumes all patches start off at the same value. We searched to find the starting

value assumed by the agent that optimized overall reward. Assumed starting values between 80 and

95 did not influence the average reward accrued by agents in the free choice blocks, presumably

because these values are rapidly corrected. In forced choice blocks, the variability in average reward

due to random patch selection had a larger influence on average reward than variation in starting value.

As it did not affect the results, we used 95 as the assumed starting value in the simulations. We gener-

ated 1000 agents performing two free choice and two forced choice blocks. Mean scores across agents

are shown on Figures 2, 3, and 4.

Use of global and local reward for leave decisions

Our main analysis concerned whether exploit-or-leave choices could be better predicted using global and

local reward information, rather than global reward information alone. To investigate this, we conducted a

series of logistic regressions. First, we constructed a global regression model that predicted exploit-or-

leave choices using the reward gained from the previous action and the average reward rate. Three free

parameters were used to estimate the average reward rate on each trial before running the logistic regres-

sion. The average reward rate was initalised at a starting value, s, which was constrained between +50

and +100. The average reward rate estimate was updated after each exploit action using a simple delta

learning rule (learning rate a) and after each leave action (learning rate al). After calculating the average

reward rate on each trial, we removed the first exploit action when arriving at a patch from the analysis.

This was done since participants had to perform at least one exploit action when arriving at a new patch

and, therefore, these trials cannot be considered true exploit-or-leave choices. We also excluded trials

from the last patch visit in each block, in which no leave decision was made. After the final data frame

had been created, the logistic regression was performed. Each regression included a constant, plus the

previous reward and average reward regressors. Model fitting was performed using a coordinate descent

approach, whereby on each iteration the free parameters used to estimate the reward rate, s, a and al, were

fixed and the best coefficients of the logistic regression, one for the constant term, b0, and one for each

predictor, bn, were determined using iteratively reweighted least squares. The likelihood of the data was

then calculated and a new choice of the 3 hyper-parameters was determined using the function nloptr in

R, which employed a DIviding RECTangles search algorithm.

Ourmodelling followed a nestedmodel comparison approach, in which the global model served as a base-

line and we added local task variables as predictors one by one. This allowed us to generate new (global+)
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models and test whether adding local information improved the fit to choice behavior over the baseline

model. A description of each global + model is presented in the main text. Performance between each

global + model and the global model was evaluated through comparison of the Akaike Information

Criterion (AIC; Akaike, 1974) and the Bayesian Information Criterion (BIC; Schwarz, 1978). The three

hyper-parameters used to estimate the reward rates (s, a and al) were not included in the AIC and BIC

calculations. However, we were primarily interested in the difference in AIC and BIC scores between

models, which should still be accurate using this approach.
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