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Abstract

Phenotype-based compound screening has advantages over target-based drug discovery, but is 

unscalable and lacks understanding of mechanism. Chemical-induced gene expression profile 

provides a mechanistic signature of phenotypic response. However, the use of such data is limited 

by their sparseness, unreliability, and relatively low throughput. Few methods can perform 

phenotype-based de novo chemical compound screening. Here, we propose a mechanism-driven 

neural network-based method DeepCE, which utilizes graph neural network and multi-head 
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attention mechanism to model chemical substructure-gene and gene-gene associations, for 

predicting the differential gene expression profile perturbed by de novo chemicals. Moreover, we 

propose a novel data augmentation method which extracts useful information from unreliable 

experiments in L1000 dataset. The experimental results show that DeepCE achieves superior 

performances to state-of-the-art methods. The effectiveness of gene expression profiles generated 

from DeepCE is further supported by comparing them with observed data for downstream 

classification tasks. To demonstrate the value of DeepCE, we apply it to drug repurposing of 

COVID-19, and generate novel lead compounds consistent with clinical evidence. Thus, DeepCE 

provides a potentially powerful framework for robust predictive modeling by utilizing noisy omics 

data and screening novel chemicals for the modulation of a systemic response to disease.

Target-based high-throughput screening dominates conventional drug discovery process. It 

has been the focus of computer-aided drug discovery for decades including recent 

application of deep learning. However, the readout from the modulation of a single protein 

by a chemical is poorly correlated with organism-level therapeutic effect or side effect. As a 

result, the failure rate from a lead compound generated from the target-based screening to 

approved drug is high. Phenotype-based screening has created renewed interests for 

identifying cell-active compounds but suffered from low-throughput and difficulty in target 

deconvolution. Therefore, a high-throughput, mechanism-driven phenotype compound 

screening method will no doubt facilitate drug discovery and development.

Gene expression profiling has been widely used to characterize cellular and organismal 

phenotypes. Systematic analysis of genome-wide gene expression of chemical perturbations 

on human cell lines has led to significant improvements in drug discovery and systems 

pharmacology. In particular, it can be applied to drug repurposing1–4, discovering drug 

mechanisms5, lead identification6, and predicting side effects for pre-clinical compounds7. 

The use of genome-wide chemical-induced gene expression was initially made possible by 

the appearance of Connectivity Map (CMap)8, which consists of gene expression profiles of 

five human cancer cell lines perturbed by ~ 1300 compounds after 6h. However, the limited 

data availability across cell types restricts the performances of these analyses which heavily 

depend on the coverage of chemicals and human cell lines. To overcome this limitation, a 

novel gene expression profiling method, L1000, which is the extension of CMap project, 

was developed by NIH library of integrated network-based cellular signatures (LINCS) 

program9. After Phase I of LINCS program, L1000 dataset consists of ~ 1,400,000 gene 

expression profiles on the responses of ~ 50 human cell lines to one of ~ 20,000 compounds 

across a range of concentrations. Recently, L1000 dataset and its normalization versions10 

are widely used in drug repurposing and discovery11, 12. Despite these successes, there are 

several major problems when utilizing L1000 dataset. First, although the number of gene 

expression profiles is much larger than that in CMap, many missing expression values 

remain in the vast combinatorial space of chemicals and cell lines. Second, there are 

hundreds of millions of drug-like purchasable chemicals which are potential drug 

candidates13. It is infeasible to experimentally test all of these chemicals for their chemical-

induced gene expression profiles across multiple cell lines. Finally, due to various 

experimental problems (e.g. batch effect), many experiment measurements are not reliable 

(as shown in Supplementary Figure 1). These serious obstacles will limit the effectiveness 
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and scope of utilizing L1000 dataset in drug discovery. Therefore, predicting gene 

expression values for unmeasured and unreliable experiments are necessary.

Missing entries in the combinatorial space is the problem of not only L1000 dataset but also 

other gene expression profiling datasets. Before the appearance of L1000 dataset, several 

methods of imputing missing values have been proposed for gene expression datasets. We 

categorize these methods into two main approaches depending on the dependence of other 

information besides gene expression data. The first approach does not use any additional 

information. Works following this approach include k nearest neighbor (kNN)14, singular 

value decomposition14, least mean square15–17, Bayesian principal component analysis18, 

Gaussian mixture clustering19, and support vector regression20. The second approach uses 

additional information to predict expression profiles. For example, chemical structures are 

used to predict chemical-induced gene expressions but that work does not consider cell-

specific information21.

The approaches described above are designed for matrix-structured data (i.e. gene × 

experiment) while L1000 dataset is formulated as tensor-structured data (i.e. gene × 

chemical × cell × doses × time) so they cannot be applied to capture high-dimensional 

associations that help to impute missing values for L1000 dataset. Recently, several methods 

are proposed to predict gene expression profiles in L1000 dataset. In particular, to deal with 

high-dimensional structured data, an extension of linear regression model named polyadic 

regression is developed to capture interactions emerging across features22. Matrix 

completion methods are also adapted to handle tensor-structured gene expression data23, 24.

Above methods for L1000 dataset just focus on imputing the missing values of some gene 

expression profiles or the whole gene expression profiles of some missing experiments. They 

are not very useful in the real setting of drug discovery where the chemical-induced gene 

expression profile of new chemicals needs to be identified. This motivates us to solve a more 

practical but more challenging problem: predicting gene expression profiles for de novo 
chemicals (i.e. chemicals that do not appear in training data). Solving this problem is 

necessary because it helps to infer gene expression profiles of new chemicals without 

conducting experiments that require time and human resources. More importantly, this 

problem can be expanded to predict gene expression profiles for new cell lines which can be 

difficult for measuring in in vitro environment. However, current computational approaches 

for predicting gene expression values for L1000 dataset cannot work well in de novo setting. 

In particular, tensor completion approach cannot predict gene expression profiles for new 

chemicals because of the inaccessibility to chemical features. Polyadic regression, 

theoretically, can predict gene expression profiles for high-dimensional data in de novo 
chemical setting because of using chemical features. However, in practice, it is not feasible 

because of huge computational resources required for handling high-dimensional data (i.e. 

this method fails when applied to more than 3-dimensional data). Therefore, there is a strong 

incentive to develop a new and effective method that exploits high-dimensional data for 

predicting gene expression profiles for de novo chemical setting.

To address the aforementioned problems, we design a mechanism-driven neural network-

based model, DeepCE25, which captures high-dimensional associations among biological 
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features as well as non-linear relationships between biological features and outputs to 

predict gene expression profiles given a new chemical compound. Our proposed DeepCE 

significantly outperforms the state-of-the-art models for predicting gene expression profiles 

in L1000 dataset not only for de novo chemical setting but also for traditional imputation 

setting. Several novelties in the architecture of model contribute to the success of DeepCE. 

First, we leverage graph convolutional network to automatically extract chemical 

substructure features from data. Second, attention mechanism is used to capture associations 

among chemical substructures and genes, and among genes in cell lines. Finally, gene 

expression values layer which has similar architecture to the 1st layer in the of all L1000 

genes are predicted simultaneously from hidden features by multi-output multi-layer feed-

forward neural network. Besides developing this neural network-based model, we propose a 

data augmentation method by which we can extract useful information from unreliable 

experiments in L1000 dataset to improve the prediction performance of our model. We also 

verify the effectiveness of DeepCE by comparing the performances of several classification 

models trained on gene expression profiles generated from DeepCE and those trained on 

original gene expression profiles in L1000 dataset for two downstream tasks: drug-target and 

disease predictions. Finally, we assess the value of our proposed method for the challenge 

and urgent problem, finding treatment for COVID-19, by in silico screening all chemical 

compounds in DrugBank against COVID-19 patient clinical phenotypes. The prioritized lead 

compounds are consistent with existing clinical evidences. To our knowledge, it is the first 

work of phenotype-based drug repurposing for COVID-19. The source code of DeepCE and 

the generated gene expression profiles of all chemical compounds in DrugBank are publicly 

available for research purpose, which could make significant a contribution to drug 

discovery and development in particular, and computational chemistry and biology research 

in general.

Chemical-induced Gene Expression Prediction Models and Datasets

In the section, we present datasets used in our study and our proposed model, DeepCE, as 

well as baseline models for predicting gene expression profiles including linear models, 

vanilla neural network, k-nearest neighbor, and tensor-train weight optimization models. The 

general framework of training and testing these computational models for L1000 gene 

expression profile prediction is shown in Figure 1. Basically, computational models take 

L1000 experimental information (i.e. chemical compound, cell line, time stamp, and 

chemical dose size) from L1000 dataset as inputs, transform them into numerical 

representations, and then predict L1000 gene expression profiles based on these 

representations. The details of the numerical feature transformation process for chemical and 

biological objects used in our study and model implementation of DeepCE and other 

baselines are shown in Supplementary Notes. Moreover, in this section, we present the data 

augmentation method that extracts useful information from unreliable experiment in L1000 

dataset to improve the prediction performance of our models, and the evaluation method for 

our models.
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Datasets

In the following paragraphs, we present the details and the usages of several biological 

datasets in our study including L1000, STRING, DrugBank, and transcriptome data of 

COVID-19 patients. We also give the summary of these datasets in Supplementary Table 1.

Bayesian-based peak deconvolution L1000 dataset

After the original version of L1000 dataset was released9, many efforts have been made to 

improve the quality of this dataset. For example, instead of using k-means clustering 

algorithm as in the original version, some works propose to use Gaussian mixture model to 

enhance the accuracy of peak deconvolution step26, 27. One work, in another way, develops a 

multivariate method called Characteristic Direction to compute gene signatures instead of 

using the moderated Z-score as in the original version10. In our study, we conduct 

experiments on Bayesian-based peak deconvolution L1000 dataset which has been shown to 

generate more robust z-score profiles from L1000 assay data, and therefore, gives better 

representation for perturbagens28. In particular, we train and evaluate our proposed methods 

on level 5 data of this dataset. The gene expression profiles result from experiments of 7 

most frequent cell lines and 6 most frequent chemical dose sizes in L1000 dataset are used 

to construct our gene expression dataset. We then select high-quality experiments from our 

dataset and split into high-quality training set, and development and testing set. We also 

construct the original training set by keeping unreliable experiments in our gene expression 

dataset and the augmented training set generated by our data augmented algorithm. The 

details of constructing these sets are described in Supplementary Notes. The statistics of 

these training, development, and testing sets are shown in Supplementary Table 2.

STRING database for human protein-protein interactions

STRING29 is a multi-source database of protein-protein interactions. These interactions 

which can be known or predicted, direct (physical) or indirect (functional) are collected from 

five main sources including genomics context prediction, high-throughput lab experiments, 

conserved co-expression, automated text-mining, and previous knowledge databases. In our 

setting, we extract the human protein-protein interaction network (i.e. ~ 19,000 nodes 

(proteins) and ~ 12,000,000 edges (interactions)) from this database to compute vector 

representations for L1000 genes. The drug-target vector representations for chemical 

compounds used in our study are also computed from this human protein-protein interaction 

network. The details of generating these representations from STRING database are shown 

in Supplementary Notes.

DrugBank database for drug-target interaction and disease predictions

DrugBank is a well-known, comprehensive database used in many bioinformatics and 

cheminformatics tasks30. This database consists of information about drugs and their targets. 

In our experiments, we extract ATC labels derived from the first level of ATC tree and 

targets of drugs appeared in L1000 dataset from DrugBank. There are 698 drug targets and 

14 ATC labels in the extracted dataset. We select the most frequent ATC labels and drug 

targets based on their frequents on this dataset as the labels of drugs to form drug-target 

prediction and ATC prediction datasets. These datasets are used to evaluate the performance 
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of gene expression profiles generated from our models. We also predict gene expression 

profiles for all drugs in DrugBank and use them to screen potential candidates for 

COVID-19 treatment.

Patient expression in response to SARS-CoV-2 infection

Patient expression datasets for this study are downloaded from National Genomics Data 

Center (NGDC) (PRJCA002273)31 and National Center for Biotechnology Information 

(NCBI) (GSE147507)32. While the former includes 8 SARS-CoV-2 patients and 12 healthy 

samples, the latter has only 1 SARS-CoV-2 patient and 2 healthy samples. For each dataset, 

we use expression profiles from both SARS-CoV-2 patients and healthy negative controls for 

differential expression analysis. Thus, the first dataset can be considered as population-based 

gene expression analysis while the second dataset is patient-specific gene expression 

analysis. DESeq233 package is used to generate the differential gene expression profiles of 

the patients. Not all L1000 genes appear in the result of DESeq2 package so we only 

consider genes appear in both L1000 dataset and DESeq2 package when comparing with 

chemical-induced gene expression profiles.

Overall architecture of DeepCE

Our neural network-based model for L1000 gene expression profile prediction, DeepCE, 

consists of several components as follows. First, we use graph convolutional network to 

learn numerical representation for chemical compound from its graph structure and feed-

forward neural network to learn numerical representations for cell line and chemical dose 

size. We also use numerical representations for L1000 genes which are derived from the 

human protein-protein interaction network (described in Supplementary Notes). After that, 

these vector representations are put into the interaction component to capture high-level 

feature associations including chemical substructure-gene and gene-gene feature 

associations. Finally, the prediction component takes the outputs of the interaction 

component as inputs to predict the gene expression values for all L1000 genes 

simultaneously. The overall architecture of DeepCE and its hyperparameters used in our 

experiments are shown in Figure 2 and Supplementary Table 4 respectively. The following 

paragraphs describe each component of DeepCE in detail.

Graph convolutional network for neural fingerprint

Recently, data-driven chemical fingerprints are shown to be more effective than predefined 

chemical fingerprints (e.g. PubChem, ECFP) for many biological prediction problems. 

Therefore, we propose to use graph convolutional network (GCN) to capture the chemical 

substructure information. The original GCN model for chemical fingerprint34 takes a graph 

structure of chemical compound as input and update vector representations for each node 

(atom) in graph (chemical compound) from its neighborhoods by convolutional operation. 

Thus, the vector for each node after convolutional operation can be seen as the 

representation of chemical substructures. The final vector which is the sum of vectors of 

every node is used as the chemical fingerprint. GCN model used in our experiments is 

primarily based on that model but with a minor modification. In particular, we output vector 

representations for every nodes instead of one vector representation for the chemical 

compound because we want to model the associations of chemical substructure features with 
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gene features. In our settings, we use the GCN model with 2 convolutional layers (radius R 

= 2). It means that the output vector from GCN for each atom represents the chemical 

substructure which is a span of 2-hop distance from that atom. The initial representations for 

atoms and bonds are multi-hot vectors that capture the symbol, de-gree, number of Hydro 

neighborhoods, and aromaticity of atoms, and type of bonds that have lengths of 62 and 6, 

respectively. The details of GCN model used in our experiments are shown in 

Supplementary Algorithm 1.

Multi-head attention for gene-gene and chemical substructure-gene feature associations

Attention mechanisms where an element of one set selectively focuses on a subset of another 

set (attention) or its set (self-attention) based on attention weights are used widely in neural 

network-based models and effectively applied to many AI tasks including computer vision 

and natural language processing. In our experiments, we propose to apply the attention 

method named multi-head attention for modeling associations among gene features, and 

among gene and chemical substructure features. Multi-head attention was first proposed in 

Transformer model which achieves state-of-the-art results for many natural language 

processing tasks35. Basically, each element in sets can be represented by a set of three 

vectors query, key, and value. An individual attention module is a function of mapping 

queries and sets of key-value pairs to output matrix computed by:

Attention (Q, K, V) = softmax QKT
dk

V

where Q, K, V are matrices (sets) of queries, keys, values respectively and dk is a scaling 

factor. Multi-head attention focuses on different representation subspaces by concatenating 

several individual attention modules:

MultiHead (Q, K, V) = concat ℎead 1, …, ℎead ℎ wo

where ℎead i = Attention QWi
Q, KWi

K, VWi
V .

This multi-head attention mechanism is the main ingredient used to construct the interaction 

component of DeepCE. In particular, the interaction component consists of two identical 

layers where outputs of the first layer are used as inputs for the second layer. For each layer, 

we use 2 separate multi-head attention modules with 4 heads for each module to model 

associations among genes in gene set and among elements in gene set and chemical 

substructure set. Length of query, key, value vectors is set at 512. Outputs from these two 

multi-head attention modules are concatenated and put into normalization layer followed by 

feed-forward layer and another normalization layer. The abstract architecture of interaction 

component is shown in Figure 2.

Multi-output prediction

The multi-output prediction component which is a 2-layer feed-forward neural network with 

ReLU activation function takes input as the concatenation of chemical neural fingerprint, 
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gene feature generated by interaction component, cell line and chemical dose size features to 

predict gene expression values for all L1000 genes together as follows:

Y = W2 ReLU W1X + b1 + b2

where W1, W2, b1, b2 are weight matrices and bias vectors of this network. The output size 

of this feed-forward neural network is set at 978 which is the number of L1000 genes.

Objective function

The objective function used in DeepCE model is mean squared error (MSE) between 

predicted and ground-truth gene expression values and is computed as follows:

lossDeepCE(Θ) = 1
NM ∑

i = 1

N
∑

j = 1

M
zi, j − yi, j

2

where Θ are the set of parameters in DeepCE model. N and M the number of gene 

expression profiles in a batch and number of L1000 genes respectively. Zi,j and yi,j are 

ground-truth and predicted gene expression values of jth gene in ith gene expression profile.

Baseline Models

In this section, we describe several baseline models used in our experiments including linear 

models, vanilla neural network, k-nearest neighbor, and tensor-train weight optimization24.

Linear models

We experiment with multi-output linear regression model and its regularization versions 

including Lasso regression (L1 regularization) and ridge regression (L2 regularization) 

models. Like DeepCE, input for these models is the concatenation of numerical 

representations for chemical, gene, cell line, and chemical dose size features but we use 

predefined chemical fingerprints and drug-target features instead of data-driven 

representations derived from GCN for chemicals. The details of these representations are 

described in Supplementary Notes. Multi-output linear models can be seen as 1-layer feed-

forward neural network without activation function.

Vanilla neural network

The vanilla neural network used in our experiments can be seen as the simpler version of 

DeepCE model that does not include the interaction network component for modeling gene-

gene and gene-chemical substructure feature associations and GCN for generating neural 

fingerprints. Input for this vanilla neural network is similar to its for linear models. The 

following layers in this network are similar to the prediction network component in DeepCE 

model which is a 2-layer feed-forward neural network with ReLU activation function.
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K-nearest neighbor

We also propose a k-nearest neighbor-based approach for gene expression prediction for de 
novo chemical setting. In particular, gene expression profile for a new chemical compound 

in one particular setting (i.e. cell line, chemical dose size) is generated by averaging gene 

expression profiles of its nearest neighborhoods in the training set in the same setting. In our 

research, we experiment with different numbers of neighborhoods from 1 to 15 and different 

similarity measures including cosine, correlation, Jaccard and Tanimoto similarity as well as 

euclidean distance.

Tensor-train weight optimization

Tensor-train weight optimization (TT-WOPT) is a tensor completion approach proposed to 

retrieve missing values in tensor data from existing values. It has been shown to be effective 

for predicting missing values of L1000 dataset which can be formulated as a tensor-structure 

object without using additional information24. In our research, we conduct experiments to 

compare it with our proposed model, especially in de novo chemical setting. Because this 

model does not require additional information so input for it is L1000 gene expression 

values formulated as a tensor.

Data augmentation

From Supplementary Figure 1, we can see that only a small number of experiments in 

L1000 dataset are reliable (i.e. APC score ≥ 0.7) so it would be wasteful if we cannot exploit 

useful information from a large number of unreliable experiments. It will be shown in the 

Results section (i.e. Table 1) that simply adding unreliable experiments to the high-quality 

training set (original training set) makes the performances of our models worse. Thus, we 

propose the data augmentation method by which we can effectively exploit unreliable 

experiments to improve the performances of our models. We argue that although an 

experiment (level 5 data) is unreliable, not all its bio-replicates experiments (level 4 data) are 

also unreliable and we will extract these reliable bio-replicate experiments by our proposed 

data augmentation method. The basic idea is that we, first, train our model on the high-

quality training set, and then, generate predicted gene expression profiles for unreliable 

experiments. These predicted gene expression profiles are compared with their bio-replicate 

gene expression profiles and we incorporate bio-replicate gene expression profiles that have 

the similarity scores with their predicted gene expression profiles larger than the threshold. 

Supplementary Algorithm 2 presents this data augmentation method in detail. In our 

settings, the similarity score is Pearson correlation.

Performance evaluation

Pearson correlation coefficient is used as the main metric to evaluate performances of 

models in our experiments. Correlation scores which measure the relationship between 

ground-truth and predicted gene expression profiles have been shown to be more effective 

than error measures for microarray data analysis36, 37. Moreover, using Pearson correlation 

allows us to conduct unbiased evaluation for our models which are optimized for mean 

squared error. We calculate the average Pearson correlation for a dataset as follows:

Pham et al. Page 9

Nat Mach Intell. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



r = 1
N ∑

i = 1

N ∑j = 1
M zi, j − zi yi, j − yi

∑j = 1
M zi, j − zi

2 ∑j = 1
M yi, j − yi

2

where N and M are number of gene expression profiles in the dataset and number of L1000 

genes respectively. zi, j, yi, j, zi, yi are ground-truth and predicted gene expression values of jth 

gene in ith gene expression profile and ground-truth and predicted mean values of ith gene 

expression profile.

Besides Pearson correlation, we also report the performances of models by other metrics 

including root mean squared error (RMSE), gene set enrichment analysis (GSEA)38, 39, and 

Precision@k. While Pearson correlation and RMSE captures the variations among all L1000 

genes, GSEA and P@k (including both positive and negative P@k) only focus on the most 

significant up and down regulated genes. Thus, using multiple metrics allow us to measure 

the performances of models in different aspects. The details of these additional metrics are 

shown in the Supplementary Notes.

Furthermore, we use area under the receiver operating characteristic curve (AUC) to verify 

the effectiveness of these predicted profiles for downstream binary classification tasks 

including drug-target and ATC code predictions.

Results and Discussions

The results and discussions below are mainly based on Pearson correlation, and we also 

observe the same patterns by using other metrics.

DeepCE significantly outperforms baseline models in the novel chemical setting

In this experiment, we compare DeepCE model and its simpler variants constructed by 

removing either the whole interaction component or just one part of its (i.e. chemical 

substructure-gene or gene-gene feature association modules) with several baseline models 

including vanilla neural network, kNN, linear models, and TT-WOPT. While TT-WOPT 

predicts output based on gene expression values only, other models learn the relationship 

between experimental information and gene expression profiles to make predictions. For 

DeepCE, we use neural fingerprints while for other models, we use predefined fingerprints 

including PubChem and circular (ECFP6) fingerprints, and drug-target information 

including latent target interaction profile (LTIP)40 and our proposed drug-target feature to 

represent chemicals. All models are trained on the high-quality training set and are evaluated 

on the test set.

As listed in Table 1, DeepCE model and its variants achieve order-of-magnitude 

improvements over baseline models. In particular, DeepCE model significantly outperforms 

other models including vanilla neural network, kNN, linear models, and TT-WOPT by 

achieving a Pearson correlation of 0.4907 on the testing set (paired t-test, p – value < 4.63 × 

10−15). Comparing to its simpler variants whose interaction components are removed, 

DeepCE also achieves better performance, indicating that the effectiveness of modeling 
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chemical substructure-gene and gene-gene feature associations. Specifically, the 

performance of DeepCE decreases to 0.4620, 0.4477, and 0.4418 when removing chemical 

substructure-gene feature association part (Deep CE - drug-gene attn), gene-gene feature 

association part (Deep CE - gene-gene attn), and the whole interaction component (Deep CE 
- attn) (paired t-test, p – value < 2.25 × 10−5), respectively. We also delve deeper into the 

performance of DeepCE by looking it over cell lines, chemical dose sizes, and L1000 genes. 

The results of this analysis are shown in Supplementary Figures 2 and 3. For baseline 

models, vanilla neural networks and kNN achieve pretty good performances. Linear models 

including linear regression, Lasso, and ridge regression do not work well for our problem. It 

indicates that the linear relationship is not sufficient to model the dependencies among 

variables in this dataset. TT-WOPT, which does not leverage additional features besides gene 

expression values to make the predictions, as we expect, does not work well for de novo 
chemical setting. In particular, it achieves a Pearson correlation of 0.0144 which is similar to 

randomness. We also provide error estimate for these performances by conducting 5-fold 

cross-validation on the high-quality dataset. The results are shown in Supplementary Table 

5.

DeepCE outperforms the state-of-the-art methods in the imputation setting

We further investigate the performance of DeepCE for the traditional imputation setting that 

does not require chemicals in the testing set to be different from chemicals in the training 

set, and compare it with TT-WOPT which has been shown to be effective for this setting. To 

do that, we randomly split the high-quality dataset to the new training, development, and 

testing sets and conduct the experiment on these sets. Note that, at this time, we split the 

dataset by gene expression profile instead of chemical compound. The details of the training, 

development, and testing set for imputation setting are shown in Supplementary Table 3.

For the traditional imputation setting, we observe DeepCE outperforms TT-WOPT with a 

large margin. In particular, DeepCE achieves a Pearson correlation of 0.7010 compared to its 

of 0.5113 of TT-WOPT. This result indicates that DeepCE consistently achieves the best 

performances for both de novo chemical and traditional imputation settings by effectively 

leveraging features of chemical and biological objects including chemical compounds and 

genes.

Chemical similarity has an impact on prediction performance

To investigate thoroughly the prediction performance of our models, we investigate the 

impact of chemical similarity between testing set and training set. In particular, we compute 

the distance between one experiment in the testing set and its nearest neighbors experiments 

in the training set which are induced by the most similar chemicals (i.e. determined by 

comparing their fingerprints with the fingerprint of the chemical compound induced the 

experiment in the testing set) on the same cell line. The distance between the two 

experiments is the Tanimoto coefficient of PubChem fingerprints of their two chemicals, and 

the distance between the experiment on the testing with its nearest neighbor experiments in 

the training set is the average of distances between that experiment and each of its nearest 

neighbors. After computing the distances to the training set for all experiments on the testing 

set, we sort them by the ascending order and compare the Pearson correlation scores of these 
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experiments. We calculate the average Pearson correlation scores of all experiments in the 

testing set that have their distances to the training set smaller than the first quartile (Q1), 

from Q1 to the second quartile (Q2), from Q2 to the third quartile (Q3), and larger than Q3 

of the sorted list. Figure 3 shows the average Pearson correlation scores with these distances 

of three models including DeepCE, vanilla neural network, and kNN. From this figure, we 

can see the same pattern for all models that the prediction performances are higher when the 

experiments in the testing set are more similar to their nearest neighbor experiments on the 

training set. We also recognize that DeepCE achieves better performances than vanilla 

neural network and kNN for all distance categories, especially for experiments that have 

their distances to the training set smaller than Q1.

Data quality has a significant impact on prediction performance

Besides sparseness problem, L1000 dataset also includes many unreliable gene expression 

profiles. To investigate the impact of noisy profiles on the prediction performances of our 

models, we train two baseline models including neural network and kNN on different 

training sets generated by filtering unreliable gene expression profiles with different average 

Pearson correlation (APC) thresholds varying from −1 (original training set) to 0.7 (high-

quality training set). Chemical feature used in this experiment is PubChem fingerprint.

As shown in Figure 4, all models have the same pattern. Starting at the threshold of 0.1, they 

achieve better performances on the testing set when the threshold is higher and the best 

setting is training our models on the high-quality training set (i.e. Pearson correlation of 

0.3923 for vanilla neural network and 0.3903 for kNN). For training on the original training 

set and other training sets generated by filtering unreliable experiments with thresholds < 

0.1, the ground-truth and predicted gene expression profiles are uncorrelated showing the 

randomness of the model predictions. These results indicate that unreliable data has a 

severely negative impact on prediction performances and removing this part from the dataset 

is necessary for achieving good performances.

A novel data augmentation method improves the model performance

We propose the data augmentation method (described in detail in Supplementary Algorithm 

2) to effectively exploit useful information from unreliable gene expression profiles. In this 

experiment, we evaluate the impact of this method on our models. In particular, DeepCE 

trained on high-quality training set are used to generate gene expression profiles and the 

threshold for selecting bio-replicate profiles is 0.5 which is similar to the performance of 

DeepCE. The statistics of this augmented training set are shown in Supplementary Table 1.

The experimental results for training vanilla neural network, kNN, and DeepCE on the 

augmented training set are shown in Table 1. We can see that the performances of all models 

trained on this augmented training set are improved in most cases. For example, the Pearson 

correlation of DeepCE is increase from 0.4907 to 0.5014 (paired t-test, p – value < 0.05). 

These results indicate that information extracted from unreliable gene expression profiles by 

our data augmentation method is effective for gene expression prediction.
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Selection of chemical feature affects model performance

In this experiment, we investigate the effectiveness of several chemical feature 

representations for our models. Models used in this experiment are vanilla neural network 

for PubChem, ECFP fingerprints, our proposed drug-target features, and LTIP, and DeepCE 

model without interaction component for neural fingerprint. These models are trained on the 

high-quality training set. We also create random chemical features by generating random 

binary vectors whose size is similar to PubChem fingerprint from discrete uniform 

distribution.

Table 1 shows the performances measured by Pearson correlation of these models with 

different chemical feature representations. First, chemical features achieve much better 

performances than the random feature, indicating that chemical features capture important 

information about chemicals which is useful for predicting gene expression profiles. Second, 

DeepCE which uses neural fingerprint achieves the Pearson correlation of 0.4418 which is 

the best performance compared to other settings (paired t-test, P – value < 4.89 × 10−5). For 

other chemical features, biological-based features including drug-target feature and LTIP 

achieves slightly better performances than chemical-based features including PubChem and 

ECFP fingerprints. All of these observations are verified by the paired t-tests with P – values 
< 0.01. In fact, most of the P – values are much less than 0.01.

We also conduct an ablation study to investigate the impact of other features (i.e. cell line, 

dose size) to the predictive performance by removing them from the feature vectors. The 

results in Supplementary Table 6 show that removing these features decreases the 

performance of DeepCE and the worst scenario is when removing both cell line and dose 

size information.

DeepCE is effective in predictive down-stream tasks

In this section, we design an experiment to answer a question about whether these predicted 

gene expression profiles can provide added values for downstream prediction tasks, 

especially in the case that original gene expression profiles in L1000 dataset are unreliable. 

We first extract gene expression profiles of chemicals that do not have reliable experiments 

in L1000 dataset (original feature set) as well as use DeepCE model trained on high quality 

training set to generate gene expression profiles for these drugs (predicted feature set). We 

then use these sets as the features for drugs to train classification models for two tasks: ATC 

code and drug-target predictions. The details of constructing these datasets are presented in 

Supplementary Notes and Supplementary Table 7. Finally, we train 4 popular classification 

models including logistic regression (LR), support vector machine (SVM), k-nearest 

neighbor (kNN), and decision tree (DT) using 14 different versions of chemical features (7 

cell-specific features for each original and predicted feature sets) for 14 binary classification 

tasks (i.e. 10 ATC codes and 4 drug-targets). For each experiment setting, we use 5-fold 

cross-validation and report the average results.

The differences in AUC between training classification models with predicted and original 

feature sets for drug-target and ATC prediction tasks are shown in Extended Data Figure 1. 

The improvements in AUC when using predicted features instead of original features are 
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recognized in all cell-specific profiles (Extended Data Figure 1a), all classification models 

(Extended Data Figure 1b), 8/10 ATC codes (Extended Data Figure 1c), and 3/4 drug-targets 

(Extended Data Figure 1d), and these improvements are significant (paired t-test, P – value < 

4.87 × 10−5). The details of AUC scores for predicted and original features for each setting 

(i.e. per model, cell line, ATC code, and drug-target) are shown in Supplementary Table 8. 

These results indicate that we can substitute unreliable gene expression profiles in L1000 

dataset with gene expression profiles generated from DeepCE to achieve better 

performances on downstream prediction tasks.

Drug repurposing for COVID-19

To further demonstrate the value of DeepCE, we use chemical-induced gene expression 

profile to discover potential drugs for COVID-19 treatment. Because the disease state and 

symptom of COVID-19 patients vary dramatically depending on many factors such as age, 

gender, and underlying conditions, etc., we, therefore, evaluate the drug repurposing for 

COVID-19 task under 2 settings including population-based (group of patients) and 

individual-based (individual patient) analysis. In particular, we first use the trained DeepCE 

on the high-quality part of L1000 dataset to generate predicted gene expression profiles for 

all of 11179 drugs in Drugbank database at the largest chemical dose size. For patient gene 

expression profiles, we use SARS-COV-2 gene expression datasets from NCBI and NGDC 

to calculate the differential gene expression profiles of the patients under population-based 

and individual-based settings respectively. Specifically, DESeq2 package is used to generate 

the patient profiles from 8 SARS-CoV-2 patients and 12 healthy samples (population-based) 

and from 1 SARS-CoV-2 patient and 2 healthy samples (individual-based). We then screen 

drugs in Drugbank by computing Spearman’s rank-order correlation scores between their 

gene expression profiles with the patient gene expression profiles and select drugs that give 

the most negative scores as the potential drugs. Here, we incorporate the gene expression 

profiles of A549 - the cancerous lung tissue - beside the main 7 cell lines in the high-quality 

dataset. Besides the predicted profiles, we also include the gene expression profiles extracted 

from the high-quality part of L1000 dataset. For each cell line, we extract the top 100 drugs 

that have the most negative correlation scores with the patient profile as the potential drugs. 

Finally, we output drugs that are potential drugs for COVID-19 treatment at all cell lines as 

the result of our screening process.

The results for the population-based and individual-based drug repurposing are shown in 

Table 2 and Extended Data Figure 2 respectively. COVID-19 induced acute respiratory 

failure is thought to be related to both direct viral pathogenicity and dysregulated 

inflammatory host response. As shown in Table 2, among the 10 drugs we identified for 

population-based analysis, 3 drugs are antiviral drugs used in Hepatitis C and two drugs are 

immunosuppressive agents. In particular, Voclosporin and Cyclosporine are 

immunosuppressant and calcineurin inhibitors that share similar structures. Cyclosporine has 

been used to prevent organ rejection and to treat T cell-associated autoimmune diseases, and 

recently shows potential in preventing uncontrolled inflammatory response, SARS-CoV-2 

replication, and acute lung injury caused by COVID-1941–44. Besides that, calcineurin 

inhibitors have been shown to be promising treatment for severe COVID-19 cases45, 46. 

Alisporivir which is a nonimmunosuppressive analogue of cyclosporine with potent 
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cyclophilin inhibition properties is shown effective reducing in SARS-CoV-2 RNA 

production in Vero E6 cells47. Moreover, Valspodar inhibits P-glycoprotein, which affects 

the transportation of immunosuppressive agents, and Ceftobiprole Medocaril is used in 

hospital-acquired and community-acquired pneumonia48.

For individual-based analysis, among the 15 drugs we identified (Extended Data Figure 2), 9 

drugs are antiviral drugs and 7 of them are used in treating Hepatitis C as NS5A inhibitor. 

They are similar to the top-ranked drugs that are identified from the population-based 

analysis. Especially, two of Hepatitis C treatment, Elbasvir and Velpatasvir, have been 

shown as potential candidates for COVID-19 treatment by using other approaches49–51. 

Moreover, two drugs shows anti-inflammatory or immune regulating function, and have the 

potential in regulate immune response under COVID-19 infection. Laniquidar can suppress 

the function of P-glycoprotein 1 and affect transportation of immunosuppressive agents. The 

population-based analysis also recognizes the drugs with the similar mode of actions. 

AMG-487 targets Chemokine receptor CXCR3, which can regulate leukocyte trafficking. It 

is noted that all potential drugs here are not available in L1000 dataset, showing the 

effectiveness of DeepCE for phenotype compound screening under both population-based 

and individual-based settings.

Conclusion

Deep learning has attracted a great attention in drug discovery. Past and existing efforts 

mainly focus on accelerating compound screening against a single target52. However, such 

one-drug-one-gene paradigm is proved to be less successful in tracking complex diseases. A 

systematic compound screening approach, which both takes information on biological 

system into consideration and uses chemical-induced systematic response as readouts, will 

provide new opportunities on discovering safe and effective therapeutics that module the 

biological system. In this study, we have proposed DeepCE - a novel and robust neural 

network-based model for predicting chemical-induced gene expression profiles from 

chemical and biological objects, especially in de novo chemical setting. Our model achieves 

state-of-the-art results of predicting gene expression profiles compared to other models not 

only in de novo chemical setting but also in the traditional setting. In addition, we have 

addressed the unreliable measurement problem of L1000 dataset by introducing the data 

augmentation method to effectively exploit useful information from unreliable gene 

expression profiles to improve the prediction performances of our models. Furthermore, the 

downstream prediction task evaluation shows that training classification models with gene 

expression profiles generated from DeepCE achieves better performances than training them 

with unreliable gene expression profiles in L1000 dataset, indicating the added values of 

DeepCE for downstream prediction. Finally, DeepCE is shown to be effective in the 

challenge and urgent problem, finding treatment for COVID-19, by in silico screening all 

chemical compounds in DrugBank against COVID-19 patient clinical phenotypes (i.e. 

comparing chemical-induced gene expression profiles generated from DeepCE with the 

patient profiles). In summary, DeepCE could be a powerful tool for phenotype-based 

compound screening.
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Extended Data

Extended Data Fig. 1. Improvement of predicted profiles over original profiles in AUC.
(a) Per cell-specific profile, across experiments for different classification tasks and models. 

(b) Per model, across experiments for different cell-specific profiles and classification tasks. 

(c) Per ATC code, across experiments for different cell-specific profiles and models. (d) Per 

drug-target, across experiments for different cell-specific profiles and models.
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Extended Data Fig. 2. 
The chemical structures, status, and known uses of potential drugs for COVID-19 treatment 

(i.e. drugs appeared in top 100 drugs for all 8 cell lines when comparing their cell-specific 

predicted gene expression profiles with the individual-based patient profile by Spearman’s 

correlation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General framework of training computational models for L1000 gene expression profile 

prediction and using them for downstream application (i.e. drug repurposing for COVID-19 

treatment). The objective for the learning process is minimizing the loss between predicted 

profiles and grouth-truth profiles in L1000 dataset. After training, models is used for 

generating profiles for new chemicals in external molecular database (i.e. DrugBank). These 

profiles are then used for in silico screening (i.e. comparing with patient gene expression) to 

find potential drugs for COVID-19 treatment
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Figure 2. 
Overall architecture of DeepCE (The details of 2nd layer which has similar architecture to 

the 1st layer in the interaction network are omitted to save space)
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Figure 3. 
Performances of DeepCE, vanilla neural network, and kNN with different distances among 

chemicals in the training and testing sets
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Figure 4. 
Pearson correlation scores of vanilla neural network and kNN trained on training sets 

generated by filtering unreliable experiments with different APC thresholds
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