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Pseudomonas aeruginosa is a common pathogen that is responsible for serious hospital-acquired infections, ventilator-associated
pneumonia, and various sepsis syndromes. Also, it is a multidrug-resistant pathogen recognized for its ubiquity and its intrinsically
advanced antibiotic-resistant mechanisms. It usually affects immunocompromised individuals but can also infect
immunocompetent individuals. There is no vaccine against it available till now. This study predicts an effective epitope-based
vaccine against fructose bisphosphate aldolase (FBA) of Pseudomonas aeruginosa using immunoinformatics tools. The protein
sequences were obtained from NCBI, and prediction tests were undertaken to analyze possible epitopes for B and T cells. Three B
cell epitopes passed the antigenicity, accessibility, and hydrophilicity tests. Six MHC I epitopes were found to be promising, while
four MHC II epitopes were found promising from the result set. Nineteen epitopes were shared between MHC I and II results. For
the population coverage, the epitopes covered 95.62% worldwide excluding certain MHC II alleles. We recommend in vivo and
in vitro studies to prove its effectiveness.

1. Introduction

Pseudomonas aeruginosa is a motile, nonfermenting, gram-
negative opportunistic bacterium that is implicated in respi-
ratory infections, urinary tract infections, gastrointestinal
infections, keratitis, otitis media, and bacteremia in patients
with compromised host defences (e.g., cancer, burn, HIV,
and cystic fibrosis) [1]. Intensive care unit (ICU) hospitalized
patients constitute one of the risk groups that are more sus-
ceptible to acquire pseudomonas infections as they may
develop ventilator-associated pneumonia (VAP) and sepsis
[2–4]. This organism is a ubiquitous and metabolically versa-

tile microbe that flourishes in many environments and pos-
sesses many virulence factors that contribute to its
pathogenesis [1]. According to data from Centers for Disease
Control, P. aeruginosa is responsible for millions of infec-
tions each year in the community, 10–15% of all
healthcare-associated infections, with more than 300,000
cases annually in the EU, USA, and Japan [5]. It is a common
nosocomial pathogen [6, 7] that causes infections with a high
mortality rate [8, 9] which is attributable to the organism that
possesses an intrinsic resistance to many antimicrobial
agents [10] and the development of increased, multidrug
resistance in healthcare settings [11–13], both of which
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complicate antipseudomonal chemotherapy. As a result, it
remains difficult to combat P. aeruginosa infections despite
supportive treatments. Vaccines could be an alternative strat-
egy to control P. aeruginosa infections and even reduce anti-
biotic resistance; however, no P. aeruginosa vaccine is
currently available [14]. Döring and Pier represented that
the serious obstacle to the development of a globally effective
anti-P. aeruginosa vaccine is due to the antigenic variability
of a microorganism that enables it to easily adapt to different
growth conditions and escapes host immune recognition and
to the high variability of the proteins among different P. aer-
uginosa strains and within the same strain, grown in diverse
environmental conditions [15].

Contemporary, integrated genomics and proteomics
approaches have been used to predict vaccine candidates
against P. aeruginosa [16]. Although several vaccine formula-
tions have been clinically tested, none has been licensed yet
[15, 17]. The search for new targets or vaccine candidates is of
high paramount. Bioinformatics-based approach is a novel plat-
form to identify drug targets and vaccine candidates in human
pathogens [18, 19]. Thus, the present study is aimed at design-
ing an effective peptide vaccine against P. aeruginosa using
computational approach through prediction of highly con-
served T and B cell epitopes from the highly immunogenic pro-
tein fructose bisphosphate aldolase (FBA). This is the first study
that predicts epitope-based vaccine from thismoonlighting pro-
tein of P. aeruginosa. This technique has been successfully used
by many authors to identify target vaccine candidates. These
types of vaccines are easy to produce, specific, capable of keep-
ing away any undesirable immune responses, reasonable, and
safe when compared to the conventional vaccines such as killed
and attenuated vaccines [20].

2. Materials and Methods

2.1. Protein Sequence Retrieval. A total of 20,201 strains of
Pseudomonas aeruginosa FBA were retrieved in FASTA for-

mat from the National Center for Biotechnology Information
(NCBI) database (https://ncbi.nlm.nih.gov) on May 2019.
The protein sequence had a length of 354 with the name fruc-
tose-1,6-bisphosphate aldolase.

2.2. Determination of Conserved Regions. The retrieved
sequences of Pseudomonas aeruginosa FBA were subjected
to multiple sequence alignment (MSA) using the ClustalW
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Figure 1: Amino acid composition for Schistosoma mansoni FBA using BioEdit software.

Table 1: Molecular weight and amino acid frequency distribution of
the protein.

Amino acid Number Mol%

Ala 37 10.45

Cys 4 1.13

Asp 22 6.21

Glu 26 7.34

Phe 13 3.67

Gly 31 8.76

His 11 3.11

Ile 24 6.78

Lys 17 4.8

Leu 23 6.5

Met 12 3.39

Asn 9 2.54

Pro 17 4.8

Gln 13 3.67

Arg 18 5.08

Ser 21 5.93

Thr 18 5.08

Val 26 7.34

Trp 1 0.28

Tyr 11 3.11
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tool of BioEdit Sequence Alignment Editor Software version
7.2.5 to determine the conserved regions. Also, molecular
weight and amino acid composition of the protein were
obtained [21, 22].

2.3. Sequenced-Based Method. The reference sequence (NP_
249246.1) of Pseudomonas aeruginosa FBA was submitted
to different prediction tools at the Immune Epitope Database
(IEDB) Analysis Resource (http://www.iedb.org/) to predict

Table 2: List of conserved peptides with their antigenicity, Emini surface accessibility, and Parker hydrophilicity scores (∗peptides that
successfully passed the three tests).

Peptide Start End Length
Kolaskar & Tongaonkar

antigenicity score
(TH: 1.025)

Emini surface
accessibility
score (TH: 1)

Parker hydrophilicity
prediction score
(TH: 1.681)

RQMLDHAA 7 14 8 1.008 1.013 1.637

FNVNNLEQMRAIM 23 35 13 0.974 0.432 0.2

AADKTDSPVIVQASAGARK 37 55 19 1.031 0.776 3.3

ADKTDSPVI∗ 38 46 9 1.027 1.084 3.322

MHQDHGTSPDVCQ 80 92 13 1.035 0.868 3.785

SIQLGFSSVMMDGSL 94 108 15 1.03 0.082 0.38

EDGKTP 110 115 6 0.916 3.211 6.083

YNVRVTQQTVA 120 130 11 1.079 0.972 2.064

YNVRVTQQTV∗ 120 129 10 1.081 1.229 2.06

AHACGVSVEGELGCLGSLETGM 132 153 22 1.057 0.011 1.818

GEEDG 155 159 5 0.863 1.532 7.4

GAEGVLDHSQ 161 170 10 1.029 0.539 3.3

LTDPEE 172 177 6 0.965 2.317 3.95

DALAIAIGTSHGAY 188 201 14 1.044 0.109 1.179

THLVMHGSSSVPQ 227 239 13 1.073 0.369 1.685

HGSSSVPQ∗ 232 239 8 1.06 1.016 3.963

WLAII 241 245 5 1.102 0.134 -6.62

YGGEIKETYG 248 257 10 0.964 1.408 3.3

KVNIDTDLRLAST 273 285 13 1.018 0.843 1.985

AMRD 311 314 4 0.907 1.279 3.025

GTAGN 324 328 5 0.899 0.717 5.14

GEL 347 349 3 0.992 0.694 1.433
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Figure 2: BepiPred linear epitope prediction; yellow areas above the threshold (red line) are proposed to be a part of B cell epitopes, and the
green areas are not.
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Figure 3: Emini surface accessibility prediction; yellow areas above the threshold (red line) are proposed to be a part of B cell epitopes, and the
green areas are not.
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Figure 4: Kolaskar and Tongaonkar antigenicity prediction; yellow areas above the threshold (red line) are proposed to be a part of B cell
epitopes, and green areas are not.
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Figure 5: Parker hydrophilicity prediction; yellow areas above the threshold (red line) are proposed to be a part of B cell epitopes, and green areas
are not.
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various B and T cell epitopes. Conserved epitopes would be
considered candidate epitopes for B and T cell [23].

2.4. B Cell Epitope Prediction. B cell epitope is the portion of
the vaccine that interacts with B lymphocytes which are a
type of white blood cell of the lymphocyte subtype. Candi-
date epitopes were analyzed using several B cell prediction
methods from the IEDB (http://tools.iedb.org/bcell/) to iden-
tify the surface accessibility, antigenicity, and hydrophilicity
with the aid of random forest algorithm, a form of unsuper-
vised learning. The BepiPred linear prediction 2 was used to
predict linear B cell epitope with the default threshold value
0.533 (http://tools.iedb.org/bcell/result/). The Emini surface
accessibility prediction tool was used to detect the surface
accessibility with the default threshold value 1.00 (http://
tools.iedb.org/bcell/result/). The Kolaskar and Tongaonkar
antigenicity method was used to identify the antigenicity sites
of a candidate epitope with the default threshold value 1.032
(http://tools.iedb.org/bcell/result/). The Parker hydrophilic-
ity prediction tool was used to identify the hydrophilic,
accessible, or mobile regions with the default threshold value
1.695 [24–28].

2.5. T Cell Epitope Prediction MHC Class I Binding. T cell epi-
tope is the portion of the vaccine that interacts with T lympho-
cytes. Analysis of peptide binding to the MHC (major
histocompatibility complex) class I molecule was assessed by
the IEDB MHC I prediction tool (http://tools.iedb.org/mhci/
) to predict cytotoxic T cell epitopes (also known as CD8+
cell). The presentation of peptide complex to T lymphocyte
undergoes several steps. The Artificial Neural Network
(ANN) 4.0 prediction method was used to predict the binding

affinity. Before the prediction, all human allele lengths were
selected and set to 9 amino acids. The half-maximal inhibitory
concentration (IC50) value required for all conserved epitopes
to bind was a score less than 500 [29–35].

2.6. T Cell Epitope Prediction MHC Class II Binding. Predic-
tion of T cell epitopes interacting with MHC class II was
assessed by the IEDB MHC II prediction tool (http://tools
.iedb.org/mhcii/) for helper T cell, which is known as CD4+
cell also. Human allele reference set was used to determine
the interaction potentials of T cell epitopes and MHC class
II allele (HLA DR, DP, and DQ). The NN-align method
was used to predict the binding affinity. IC50 score values less
than 100 were selected [36–39].

2.7. Population Coverage. The population coverage tool was
selected to analyze the epitopes in the IEDB. This tool calcu-
lates the fraction of individuals predicted to respond to a
given set of epitopes with known MHC restriction (http://
tools.iedb.org/population/iedbinput). The appropriate
checkbox for calculation was checked based on MHC I,
MHC II separately, and a combination of both [40].

2.8. Homology Modelling. The 3D structure was obtained
using RaptorX (http://raptorx.uchicago.edu), i.e., a protein
structure prediction server developed by Peng and Xu’s group,
excelling at 3D structure prediction for protein sequences
without close homologs in the Protein Data Bank (PDB).
USCF Chimera (version 1.8) was the program used for visual-
ization and analysis of molecular structure of the promising
epitopes (http://www.cgl.uscf.edu/chimera) [41, 42].

Magenta colour

YNVRVTQQTV

Figure 6: B cell epitopes proposed. The arrow shows the position of YNVRVTQQTVwithMagenta colour in a structural level of fructose 1,6-
bisphosphate aldolase. ∗The 3D structure was obtained using USCF Chimera software.

Magenta colourMagenta colour

HGSSSVPQ

Figure 7: B cell epitopes proposed. The arrow shows the position of HGSSSVPQ with Magenta colour in a structural level of fructose 1,6-
bisphosphate aldolase. ∗The 3D structure was obtained using USCF Chimera software.
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Table 3: The most promising T cell epitopes and their corresponding MHC I alleles.

Peptide MHC I alleles

AADKTDSPV HLA-C∗05:01, HLA-C∗03:03
AAIEEFPHI HLA-A∗02:06
AIGTSHGAY HLA-A∗30:02, HLA-B∗15:01, HLA-A∗29:02
ETYGVPVEE HLA-A∗68:02
FNVNNLEQM HLA-C∗12:03
GEIKETYGV HLA-B∗40:02, HLA-B∗40:01
GELGCLGSL HLA-B∗40:01, HLA-B∗40:02
GTSHGAYKF HLA-A∗29:02, HLA-A∗32:01, HLA-B∗58
IAIGTSHGA HLA-A∗02:06
IEEFPHIPV HLA-B∗40:01
IQLGFSSVM HLA-B∗15:01, HLA-A∗02:06, HLA-B∗15:02
ISLEGMFQR HLA-A∗31:01, HLA-A∗68:01, HLA-A∗11:01
IVQASAGAR HLA-A∗31:01, HLA-A∗68:01
KPISLEGMF HLA-B∗35:01, HLA-B∗07:02
KVNIDTDLR HLA-A∗31:01
LAIAIGTSH HLA-B∗35:01, HLA-C∗03:03
LVMHGSSSV HLA-A∗02:06, HLA-A∗68:02, HLA-C∗12:03, HLA-C∗14:02, HLA-A∗02:01
NVNNLEQMR HLA-A∗68:01
NVRVTQQTV HLA-A∗30:01
QMLDHAAEF HLA-A∗02:06, HLA-A∗29:02, HLA-B∗15:01, HLA-B∗15:02, HLA-A∗32:01
RKVNIDTDL HLA-B∗48:01
SIQLGFSSV HLA-A∗02:06
SLEGMFQRY HLA-A∗29:02, HLA-A∗30:02
SPVIVQASA HLA-B∗07:02
VIVQASAGA HLA-A∗02:06
VPAFNVNNL HLA-B∗07:02
YGGEIKETY HLA-C∗12:03
YGVPVEEIV HLA-C∗12:03

Yellow colour

LVMHGSSSV

Figure 8: T cell epitopes proposed that interact withMHC I. The arrow shows the position of LVMHGSSSV with yellow colour in a structural
level of fructose 1,6-bisphopsphate aldolase. ∗The 3D structure was obtained using USCF Chimera software.

Table 4: The most promising T cell epitopes and their corresponding MHC II alleles.

Peptide MHC II alleles

KVNIDTDLRLASTGA HLA-DRB1∗03:01, HLA-DRB1∗11:01

GEIKETYGVPVEEIV
HLA-DRB1∗07:01, HLA-DRB1∗13:02, HLA-DQA1∗05:01/DQB1∗02:01,

HLA-DQA1∗04:01/DQB1∗04:02, HLA-DQA1∗03:01/DQB1∗03:02
GGEIKETYGVPVEEI HLA-DRB1∗07:01, HLA-DRB1∗13:02, HLA-DQA1∗04:01/DQB1∗04:02

HLA-DQA1∗03:01/DQB1∗03:02
YGGEIKETYGVPVEE HLA-DRB1∗07:01, HLA-DRB1∗13:02
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3. Results

3.1. Amino Acid Composition. The amino acid composition
for the reference sequence of Pseudomonas aeruginosa FBA
is illustrated in Figure 1. Alanine and glycine were the most
frequent amino acids (Table 1).

3.2. B Cell Epitope Prediction. The reference sequence of fruc-
tose 1,6-bisphosphate aldolase was subjected to BepiPred lin-
ear epitope prediction, Emini surface accessibility, Kolaskar
and Tongaonkar antigenicity, and Parker hydrophilicity
methods in the IEDB to test for various immunogenicity
parameters (Table 2 and Figures 2–5). The tertiary structure
of the proposed B cell epitopes is shown (Figures 6 and 7).

3.3. Prediction of Cytotoxic T Lymphocyte Epitopes and
Interaction with MHC Class I. The reference fructose 1,6-
bisphosphate aldolase sequence was analyzed using the
(IEDB) MHC I binding prediction tool to predict T cell

Red colour

KVNIDTDLRLASTGA

Red colour

KVNIDTDLRLASTGA

Figure 9: T cell epitopes proposed that interact with MHC II. The arrow shows the position of KVNIDTDLRLASTGA with red colour in a
structural level of fructose 1,6-bisphosphate aldolase. ∗The 3D structure was obtained using USCF Chimera software.

Table 5: The population coverage of the whole world for the most promising epitopes of MHC I, MHC II, and MHC I and II combined.

Country MHC I MHC II MHC I,II (combined)

World 88.75% 61.1%∗ 95.62%∗

∗In the population coverage analysis of MHC II; 8 alleles were not included in the calculation; therefore, the above (∗) percentages are for epitope sets excluding
these alleles: HLA-DQA1∗05:01/DQB1∗03:01, HLA-DQA1∗01:02/DQB1∗06:02, HLA-DQA1∗03:01/DQB1∗03:02, HLA-DRB4∗01:01, HLA-DRB5∗01:01,
HLA-DQA1∗05:01/DQB1∗02:01, HLA-DPA1∗03:01/DPB1∗04:02, HLA-DQA1∗04:01/DQB1∗04:02.
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Figure 10: Population coverage for MHC class I epitopes.

Table 6: Population coverage of the proposed peptide interaction
with MHC class I.

Epitope Coverage (%) Total hits

LVMHGSSSV 60.41 7

QMLDHAAEF 31.70 8

ISLEGMFQR 25.64 3

KPISLEGMF 20.62 2

LAIAIGTSH 15.85 2
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epitopes which suggested interacting with different types of
MHC class I alleles, based on Artificial Neural Network
(ANN) with half-maximal inhibitory concentration ðIC50Þ
< 500nm. 206 peptides were predicted to interact with dif-
ferent MHC I alleles.

The most promising epitopes and their corresponding
MHC I alleles are shown in Table 3 along with the 3D struc-
ture of the proposed one (Figure 8).

3.4. Prediction of the T Cell Epitopes and Interaction with
MHC Class II. The reference fructose 1,6-bisphosphate aldol-
ase sequence was analyzed using the (IEDB) MHC II binding
prediction tool based on NN-align with half-maximal inhib-
itory concentration ðIC50Þ < 100nm; there were 662 pre-
dicted epitopes found to interact with MHC II alleles. The
most promising epitopes and their corresponding alleles are
shown in (Table 4) along with the 3D structure of the pro-
posed one (Figure 9)

3.5. Population Coverage Analysis. All promising MHC I and
MHC II epitopes of fructose 1,6-bisphosphate aldolase were
assessed for population coverage against the whole world
(Table 5).

For MHC I, epitopes with the highest population cover-
age were LVMHGSSSV (60.41%) and QMLDHAAEF
(31.7%) (Figure 10 and Table 6). For MHC class II, the epi-
topes that showed the highest population coverage were
KVNIDTDLRLASTGA (27.37%) and GEIKETYGVP-
VEEIV, GGEIKETYGVPVEEI, and YGGEIKETYGVPVEE
(24.27%) (Figure 11 and Table 7). When combined together,
the epitopes that showed the highest population coverage
were LVMHGSSSV (60.41%), QMLDHAAEF (31.7%), and
KVNIDTDLRLASTGA (27.37%) (Figure 12).

4. Discussion

Vaccination against P. aeruginosa is highly accredited due to
the high mortality rates associated with the pathogen that
spreads through healthcare areas. In addition, multidrug
resistance of the pathogen demands the design of vaccine as
an alternative [43]. In this study, immunoinformatics
approaches were used to propose different peptides against
FBA of P. aeruginosa for the first time. These peptides can
be recognized by B cell and T cell to produce antibodies. Pep-
tide vaccines overcome the side effects of conventional vac-
cines through easy production, effective stimulation of
immune response, less allergy, and no potential infection
possibilities [35]. Thus, the combination of humoural and
cellular immunity is more promising at clearing bacterial
infections than humoural or cellular immunity alone.

As B cells play a critical role in adaptive immunity, the
reference sequence of P. Aeruginosa FBA was subjected to
BepiPred linear epitope prediction 2 test to determine the
binding to B cell, Emini surface accessibility test to test the
surface accessibility, Kolaskar and Tongaonkar antigenicity
test for antigenicity, and Parker hydrophilicity test for the
hydrophilicity of the B cell epitope.

Out of the thirteen predicted epitopes using BepiPred 2
test, only three epitopes passed the other three tests
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Figure 11: Population coverage for MHC class II epitopes.

Table 7: Population coverage of proposed peptides interaction with
MHC class II.

Epitope Coverage (%) Total hits

KVNIDTDLRLASTGA 27.37% 2

GEIKETYGVPVEEIV 24.27% 5

GGEIKETYGVPVEEI 24.27% 4

YGGEIKETYGVPVEE 24.27% 2

GVRKVNIDTDLRLAS 23.90% 2
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(ADKTDSPVI, YNVRVTQQTV, and HGSSSVPQ) after
segmentation. BepiPred version 2 test was used because it
implements random forest and therefore predicts large epi-
tope segments.

The reference sequence was analyzed using the IEDBMHC
I and II binding prediction tools to predict T cell epitopes. 28
epitopes were predicted to interact with MHC I alleles with
half-maximal inhibitory concentration ðIC50Þ < 500. Six of
them were most promising and had the affinity to bind to the
highest number of MHC I alleles (LVMHGSSSV,
QMLDHAAEF, AIGTSHGAY, GTSHGAYKF, IQLGFSSVM,
and ISLEGMFQR). 19 predicted epitopes were interacted with
MHC II alleles with IC50 < 100. Four of themweremost prom-
ising and had the affinity to bind to the highest number ofMHC
II alleles (GEIKETYGVPVEEIV, GGEIKETYGVPVEEI,
KVNIDTDLRLASTGA, and YGGEIKETYGVPVEE). Nine-
teen epitopes (NVNNLEQMR, IQLGFSSVM, AADKTDSPV,
SIQLGFSSV, GEIKETYGV, AIGTSHGAY, VPAFNVNNL,
KVNIDTDLR, LAIAIGTSH, IVQASAGAR, ETYGVPVEE,
GTSHGAYKF, YGGEIKETY, VIVQASAGA, IAIGTSHGA,
RKVNIDTDL, FNVNNLEQM, YGVPVEEIV, and SPVIV-
QASA) appeared in both MHC I and II results.

The best epitope with the highest population coverage for
MHC I was LVMHGSSSV (60.41%) with seven HLA hits,
and the coverage of population set for the whole MHC I epi-
topes was 88.75%. Excluding certain alleles for MHC II, the
best epitope was KVNIDTDLRLASTGA scoring 27.37% with
two HLA hits, followed by GEIKETYGVPVEEIV scoring
24.27% with five HLA hits. The population coverage was
61.1% for all conserved MHC II epitopes. These epitopes
have the ability to induce T cell immune response when
interacting strongly with MHC I and MHC II alleles effec-
tively generating cellular and humoural immune response
against the invading pathogen. When combined, the epitope
LVMHGSSSV had the highest population coverage percent
60.41% with seven HLA hits for both MHC I and MHC II.

Many studies had predicted peptide vaccines for different
microorganisms such as rubella, Ebola, dengue, Zika, HPV,
Lagos rabies virus, and mycetoma using immunoinformatics
tools [44–51]. Limitations include the exclusion of certain
HLA alleles for MHC II.

We hope that the world will benefit from these predicted
epitopes in the formulation of the peptide-based vaccine and
recommend further in vivo and in vitro studies to prove its
effectiveness along with formulation of appropriate adju-
vants. Finding another immunogenic target and analyzing
the associated epitopes support the vaccine formula.

5. Conclusion

Vaccination is used to protect and minimize the possibility of
infection leading to an increased life expectancy. The design
of vaccines using immunoinformatics prediction methods is
highly appreciated due to the significant reduction in cost,
time, effort, and resources. Epitope-based vaccines are
expected to be more immunogenic and less allergenic than
traditional biochemical vaccines. We have illustrated differ-
ent epitopes that have the ability to stimulate both B and T
cells against fructose bisphosphate aldolase protein of Pseu-
domonas aeruginosa for the first time. Three B cell epitopes
have successfully passed the required tests. Six MHC I epi-
topes were found to be most promising, while four were
found from MHC II epitope result set. These epitopes cov-
ered 95.62% worldwide excluding certain MHC II alleles.

Data Availability

The data which support our findings in this study are
available from the corresponding author upon reasonable
request.
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