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ABSTRACT

Nucleic acids have been widely recognized as po-
tential targets in drug discovery and aptamer se-
lection. Quantifying the interactions between small
molecules and nucleic acids is critical to discover
lead compounds and design novel aptamers. Scoring
function is normally employed to quantify the interac-
tions in structure-based virtual screening. However,
the predictive power of nucleic acid–ligand scor-
ing functions is still a challenge compared to other
types of biomolecular recognition. With the rapid
growth of experimentally determined nucleic acid–
ligand complex structures, in this work, we develop
a knowledge-based scoring function of nucleic acid–
ligand interactions, namely SPA-LN. SPA-LN is opti-
mized by maximizing both the affinity and specificity
of native complex structures. The development strat-
egy is different from those of previous nucleic acid–
ligand scoring functions which focus on the affinity
only in the optimization. The native conformation is
stabilized while non-native conformations are desta-
bilized by our optimization, making the funnel-like
binding energy landscape more biased toward the
native state. The performance of SPA-LN validates
the development strategy and provides a relatively
more accurate way to score the nucleic acid–ligand
interactions.

INTRODUCTION

Nucleic acids (DNA and RNA) have been recognized not
only to store and transfer genetic information, but also play
important roles in many other biological processes in the
cell (1,2). Functional nucleic acids, such as riboswitches, ri-
bozymes and non-coding RNAs, are increasingly identified
as potential drug targets (3–5). It has been realized that tar-
geting nucleic acids with small molecules is an promising
area in both therapeutics and biotechnology (6–8). In ad-

dition, nucleic acid aptamers have attracted growing inter-
ests in the applications of biosensing, diagnostics and ther-
apeutics due to their advantages in molecular recognition
and chemical synthesis (9,10). The past decade witnessed an
rapid increase of determined nucleic acid structures (11,12).
This provides an opportunity to apply structure-based vir-
tual screening approaches for the discovery of nucleic acid
binders as well as novel aptamers, as an alternative to the
expensive and time-consuming high-throughput screening
in vitro.

The scoring function is the heart of structure-based vir-
tual database screening (13,14). Computationally, both nu-
cleic acids-based drug discovery and aptamer selection de-
mand a scoring function to quantify the nucleic acid–ligand
interactions. Compared to progresses in predicting protein-
ligand interactions, however, much less effort has been de-
voted in developing scoring functions of the nucleic acid–
ligand interactions. The predictive power of nucleic acid–
ligand scoring functions and its general applicability are ur-
gently needed to be improved (15–17). This is partially due
to the limited structural information of native nucleic acids–
ligand complexes to learn the energetic rules. On the other
hand, the development and improvement of algorithms for
optimizing nucleic acid–ligand scoring functions are also
urgently needed compared to the progress of protein–ligand
scoring functions.

The binding of a ligand onto the nucleic acid is simi-
lar as other types of biomolecular recognition which re-
quires both stability and specificity to accomplish the se-
lective recognition and specific function (9,18,19). The sta-
bility is directly determined by the binding affinity while
the specificity is determined by the discrimination of pre-
ferred binding partners against competitive ones. The speci-
ficity is critical for designing new ligands selectively binding
onto their own targets rather than other competitive recep-
tors (20–24). Thus, an accurate scoring function should aim
not only to quantify the binding affinity but also discrimi-
nate the specific binding partners against non-specific ones.
This requires that the optimization strategy of scoring func-
tion is designed to maximize the preference of forming spe-
cific complexes while minimize the preference of forming
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Figure 1. Quantification of binding specificity. (A) Representative nucleic
acid–ligand binding complex (PDB ID: 3NPN) with the RNA structure
shown in molecular surface and the ligand shown in sticks, the native pose
of the ligand is colored in red and the conformation ensemble is distributed
within the docking box covering the binding pocket as well as its surround-
ing surface. (B) Binding energy spectrum for the conformation ensemble,
the line for native conformation is colored in red. The binding energy of
the conformation ensemble follow a statistical Gaussian-like distribution,
from which the binding specificity is quantified with the dimensionless in-
trinsic specificity ratio (ISR) by δE√

2S�E
(18,21,23,27). The energy gap (�E)

is computed with <E > −EN and the energy fluctuation or roughness (�E)
is computed with

√
< E2 > − < e >2, EN is the binding energy of the na-

tive conformation and S is the conformational entropy of the ligand.

competitive complexes which are probably formed by com-
petitive biomolecules. Previous scoring functions of nucleic
acid–ligand interactions were developed by optimizing only
the binding affinity rather than both specificity and affin-
ity (15,16,25,26). This limitation was resulted from the diffi-
culty in quantifying the specificity for the optimization since
the specificity is not known experimentally and challenge to
compute with limited structural information.

In light of the concept of intrinsic specificity, the bind-
ing specificity refers to the discrimination of native binding
mode against other non-native binding modes of the same
complex. The binding process is physically visualized as a
funnel-shaped energy landscape toward the native binding
mode with many other non-native binding modes along the
downhill binding paths (18,21,23,27). The intrinsic speci-
ficity ratio (ISR) was defined to quantify the magnitude of
intrinsic specificity based on the topography of the bind-
ing energy landscape (Figure 1). ISR provides an quan-
titative indication in discrimination of the native binding
mode against the non-native binding ones. It is in equiva-
lence of discriminating specific complex against competitive
ones provided that the receptor is large enough for ligand
binding (21,23,24) so that all types of interactions are en-
countered. In this way, exploring recognition through dif-
ferent sequences (competitive targets) and different confor-
mations of the complex is approximately equivalent. With
the quantification of specificity, it is important to design a
development strategy which couples the affinity and speci-
ficity for optimizing the scoring function of nucleic acid–
ligand interactions (23,28–30).

In this work, we developed a knowledge-based scoring
function named as SPA-LN by optimizing both specificity
and affinity of ligand–nucleic acid interactions. The scoring
function was iteratively optimized based on the requirement
that the stability and specificity of the native binding con-
formation are sufficiently favored among the binding con-

formation ensemble. SPA-LN was tested on the benchmark
dataset and compared with some other nucleic acid–ligand
scoring functions. The performance of SPA-LN validates
the development strategy, this allows it to be implemented
into the docking software and used in the virtual screening
for discovering lead compounds of nucleic acid targets.

MATERIALS AND METHODS

Construction of training dataset

The reliability of structural information is crucial for the
derivation of the knowledge-based scoring function. To ob-
tain a relatively high-quality dataset of nucleic acid–ligand
complexes for training, the training dataset of nucleic acid–
ligand complexes were selected and compiled according to
a series of criteria. First, only complex structures with nu-
cleic acids (including DNA, RNA or hybrid) and ligands
were selected from the PDB (Protein Data Bank) (31). Sec-
ond, the structures with X-ray resolutions larger than 3.0Å
were removed. Third, the structures having metal atoms in
the ligands or receptors were removed due to that the occur-
rence of metal atoms are infrequent to derive knowledge-
based atomic pair potentials. Fourth, the structures over-
lapped with our testing dataset were removed. Finally, 437
nucleic acid–ligand complexes were remained as the train-
ing dataset (Supplementary Table S1).

Generation of docking decoys

As discussed, the aim of the optimization is not only to sta-
bilize the native conformation but also discriminate the na-
tive conformation against non-native conformations. This
requires sufficient sampling of the conformational space to
explore underlying binding energy landscape. Except for the
native conformation obtained from experimentally deter-
mined PDB structure, conformational decoys were gener-
ated by molecular docking with AutoDock4.2(32). The con-
formational decoys were sampled aiming to represent all
possible conformations other than the native conformation
of the crystal structure. Given different sizes of the ligands,
the edges of the grid box for ligand docking were set to be
five times as the radius of gyration of the native conforma-
tions of the ligands. The geometric center of the ligand coor-
dinates from the native conformation was taken as the cen-
ter of the grid box with a grid spacing of 0.375Å. Lamar-
ckian genetic algorithm was employed to search the confor-
mational space. The ligand was set to be flexible with its ro-
tatable bonds. For each nucleic–ligand complex, 1000 dock-
ing runs were conducted, this led to a conformation ensem-
ble with 1000 decoys for each nucleic acid–ligand complex.

Derivation of knowledge-based statistical potentials

Knowledge-based statistical potentials in essence are a set
of discrete distance-dependent atom-pair potentials (33). In
general, the initial statistical potentials are extracted from
the available structures with widely used reverse Bolzmann
relation. That is

uobs
k (r ) = −KBT ln gobs

k (r ) (1)
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where KB and T are the Boltzmann constant and absolute
temperature respectively. KBT is the same (room tempera-
ture) for all types of knowledge-based pair potentials, thus,
it is set to be unit for simplifying the computation. gobs

k (r )
is the observed distance distribution function of atomic
pair k from the experimentally determined nucleic acid–
ligand complex structures in the training dataset, it is de-
rived through

gobs
k (r ) = f obs

k (r )

f obs
k (R)

(2)

f obs
k (r ) = 1

M

M∑
m

nm
k (r )

V(r )
(3)

f obs
k (R) = 1

M

M∑
m

Nm
k

V(R)
(4)

where f obs
k (r ) represents the observed number density of

atomic pair k within a spherical shell ranging from radius
r to r+�r. It is extracted from the structural coordinates
of M nucleic acid–ligand complexes. f obs

k (R) is the num-
ber density within the reference sphere where no interac-
tions are assumed to occur between atoms. The reference
state is based on the approximation that the atom-pair k
is uniformly distributed in the sphere of the reference state
(34,35). nm

k (r ) and Nm
k are the occurred numbers of atomic

pair k within the spherical shell and the reference sphere
for nucleic acid–ligand complex m, and Nm

k = ∑
r nm

k (r ).
V(r ) = 4

3π ((r + �r )3 − r 3) and V(R) = 4
3π R3 are the vol-

umes of the spherical shell and the reference sphere, where
�r is the thickness of each spherical shell and R is the radius
of the sphere.

Based on the equations above, the atomic pair potentials
were directly computed from M (=437) nucleic acid–ligand
complexes of training dataset (Supplementary Table S1). In
terms of the classification of atom types by SYBYL (36), 16
atom types were employed to represent the heavy atoms in-
volved in nucleic acid–ligand interactions (Supplementary
Table S2). OpenBabel (37) was used to generate these atom
types from PDB files. In the computation, �r and R were
set as 0.3Å and 7.0 Å, respectively, resulting in 16 spheri-
cal shells from the shortest radius 2.2Å. In order to remove
the statistically insufficient occurrences of atomic pairs, a
threshold (=100) of total occurrences for atomic pair k
(Nk = ∑M

m Nm
k ) was employed. 75 effective types of atomic

pairs were remained for the nucleic acid–ligand interactions
(Supplementary Table S3). For the effective types of atomic
pairs, if there is no occurrence in a particular spherical shell,
the corresponding pair potential was replaced by the van
der Waals interaction within this shell, which often happens
in the first shell where repulsion is dominant.

Computation of binding affinity and specificity

With the atomic pair potentials, the binding affinity and
specificity (quantified by ISR) can be readily computed for
each conformation (Figure 1). The binding affinity was rep-
resented with the energy score by summing up the inter-

molecular atomic pair potentials among the interface of nu-
cleic acid–ligand conformation. That is

E =
∑

k

∑
r

fk(r )uk(r ) (5)

where fk(r) is the occurrence frequencies of the atomic pair
k between distance r and r + �r. The ISR (Figure 1) was
computed by

ISR = α
δE
�E

(6)

where �E is the difference between the energy of the cho-
sen conformation and the average energy of the conforma-
tion ensemble including the native conformation and the
decoys, �E is the energy fluctuation or the width of the en-
ergy distribution of conformation ensemble. � is a scaling
factor for the effect of the entropy on the specificity. Nor-
mally, the conformational entropy is evaluated by the num-
ber of degrees of the freedom which includes translation,
orientation, rotation of the whole ligand and the flexibil-
ity inside the ligand. The first three degrees of freedoms are
the same for each ligand when moving. The flexibility is de-
termined by the number of rotatable bonds of the ligand.
The flexibility directly depends on the chemical feature of
the ligand itself. Each ligand has a fixed number of rotat-
able bonds which can not be manually adjusted. Thus, the
conformational entropy is computed here with the number

of rotatable bonds of the ligand (α ∼
√

1
ntb

). The magnitude

of ISR gives a quantitative measure of the native binding
mode against other competitive binding modes or decoys.

Optimization of statistical potentials

Knowledge-based statistical potentials are based on the as-
sumption of the reference state where atoms are randomly
disconnected and atomic pair interactions are independent
(34,38). This ideal assumption doesn’t always reflect the re-
ality of the excluded volume, sequences and connectivity
for the nucleic acid–ligand interactions. Different methods
have been developed to circumvent the reference state prob-
lem by optimizing observed knowledge-based statistical po-
tentials (16,35,39–42). Our recent studies proposed a way
to improve the statistical potentials by taking both affin-
ity and specificity into account. The strategy is to obtain
the expected potentials which not only stabilize the native
conformation but also discriminate against non-native con-
formations, mimicking the energetic rules that enable stable
and specific complexes in nature.

The expected statistical potentials are computed with
similar form as the observed statistical potentials while the
expected atomic pair distribution function is extracted from
the conformation ensemble including the native and non-
native conformations. That is

uexp
k (r ) = −KBT ln gexp

k (r ) (7)

gexp
k (r ) = f exp

k (r )
f exp
k (R)

(8)
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f exp
k (r ) = 1

MN

M∑
m

N∑
n

nmn
k (r )e(−βUmn )

V(r )
(9)

f exp
k (R) = 1

MN

M∑
m

N∑
n

Nmn
k e(−βUmn )

V(R)
(10)

where M is the number of native complexes in the train-
ing dataset, N is the number of total conformations includ-
ing the native conformation and non-native decoys for each
complex. m and n are the complex index and conforma-
tion index, respectively. � is a constant analogous to the
inverse of temperature. The potentials are expected to fa-
vor the native conformation over the decoy conformations.
This results in the population of the native conformation
dominating in the conformation ensemble according to the
Boltzman distribution. Thus, the expected number density
of atomic pair k was computed with Boltzmann-averaged
weighting (28,35,42). The weighting factor Umn couples the
affinity and specificity in our optimization, which is given
by

Umn = Emn ∗ I SRmn (11)

To improve the expected atomic pair potentials, the iter-
ative method (35) was utilized to perform the optimization.
It is realized by

�ui
k(r ) = ui

k(r ) − uobs
k (r ) (12)

u(i+1)
k (r ) = ui

k(r ) + χ�ui
k(r ) (13)

Equations (5-6) and Equations (7-11) were iteratively up-
dated with the difference �ui

k(r ). ui
k(r ) (i.e. uexp

k (r )) starts
from i=0 and � controls the speed of the convergence and
was set as 0.1.The iterative procedure was repeated until the
success rate of identifying the native or near-native confor-
mation converges. The optimized scoring function of nu-
cleic acid–ligand interactions is from the final set of the ex-
pected pair potentials, i.e. SPA-LN.

Validation of SPA-LN

Normally, the performance of a novel scoring function
should be tested on the benchmarks. For the testing of
the SPA-LN, the well-complied benchmark dataset of nu-
cleic acid–ligand complexes from version 2014 of PDBBind
database (43) were taken as the testing dataset 1 (Supple-
mentary Table S4). It is a collection of nucleic acid–ligand
complexes which contain both experimentally determined
structures and affinities. The benchmark can be readily em-
ployed for evaluating the performance of SPA-LN in 2-fold:
the ability to predict the binding affinity and the ability to
identify the native pose. The ability of predicting binding
affinity is quantified by the Pearson correlation between the
computed and experimental affinities. That is

CP =
∑

m(Ec
m− < Ec

m >)(Ee
m− < ee

m >)√∑
m(Ec

m− < ec
m >)2

√∑
m(Ee

m− < ee
m >)2

(14)

where m represents the index of nucleic acid–ligand com-
plexes in the testing dataset, Ec

m and Ee
m are computed and

A B C

Figure 2. Optimization of the scoring function via iterative method. (A)
Success rate of identifying the the best-scored pose as the native or near-
native conformation. (B) Average RMSD of the top-scored poses. (C) Av-
erage ISR of the native conformations.

experimental binding affinities. The ability to predict the na-
tive pose is defined by the success rate of identifying the top-
scored conformations within a RMSD threshold as native
or near-native poses out of the decoy ensemble. It is given
by

η = 1
M

∑
m

Sm, (15)

Sm equals 1 for the complex m once at least one of the top-
scored conformations has RMSD lower than the threshold
value, otherwise it is 0. The binding decoys for each com-
plex of the testing dataset 1 were generated as done for the
training dataset.

In addition, the performance was validated by compar-
ing to other nucleic acid–ligand scoring functions listed in
an evaluation literature (15). The literature performed com-
parative assessment of 11 different scoring functions imple-
mented in 5 docking software. As done in this literature, the
criteria to evaluate the ability of identifying the native pose
is represented by C(X,Y), i.e. at least one of top X ranked
poses is under the threshold RMSD value Y.

RESULTS AND DISCUSSION

Convergence of the optimization

The optimization of the scoring function was carried out
on the training dataset and the strategy of optimization
is to improve the performance on correctly predicting in-
teractions and poses of native conformations of the train-
ing dataset. The success rate of identifying the best-scored
conformation as the native or near-native conformation
(RMSD ≤ 1.5Å) is taken to validate the effectiveness of
the optimization. As shown in Figure 2A, the success rate
increases and converges well within 50 iterative steps, in-
dicating that the performance of the scoring function was
improved by the iteration. In other words, the stability of
native or near-native conformations is enhanced after op-
timization. This is validated by the average RMSD of best-
scored conformations in Figure 2B. The best-scored confor-
mations become more native or near-native as the average
RMSD decreases via optimization.

Different from previous methods (16,17,25,26) which
only focused on the improvement of accuracy in comput-
ing the binding affinity of nucleic acid–ligand interactions,
binding specificity quantified by the ISR was incorporated
in the optimization. It can be seen that the average ISR value
of the training dataset was increased by the optimization
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(Figure 2C). This suggests that the native conformations be-
come more discriminated against the decoy ensembles and
binding energy landscape becomes more funneled toward
the native binding mode. The increase of ISR value also in-
dicates that the competitive binding modes are suppressed,
smoothing the energy funnel (18,27,44). Thus, the optimiza-
tion satisfies the requirement that the stability of the native
conformation is enhanced while the stabilities of the non-
native conformations are weakened.

As described, the native conformations of the training
dataset are directly obtained from the X-ray crystal struc-
ture while the non-native conformations were generated by
the docking tool AutoDock4.2 (32). The reason to choose
AutoDock 4.2 as the docking tool in our work is based on
several aspects. First of all, except AutoDock and rDock
(17), most of the docking tools were originally designed
to docking small molecules to proteins rather than nucleic
acids. Second, AutoDock is the most popular one among a
large number of docking tools. It is well known and widely
recognized in the research community. Third, AutoDock is
an open-source tool and has well-maintained tutorial doc-
uments and forum on the website (http://autodock.scripps.
edu/). Whereas, the docking tool is just the conformation
generator aiming to sample all possible conformations. Dif-
ferent docking tools can give similar answers if enough con-
formations are sampled to explore the underlying binding
energy landscape. In this sense, the optimization of scoring
function should be less sensitive to the docking tools. To
validate this point, the alternative docking tool rDock (17)
was used to generate another set of 1000 decoys for each
nucleic acid–ligand complex of the training dataset. The
procedure of docking with rDock was conducted in three
steps as introduced in the website (http://rdock.sourceforge.
net/docking-in-3-steps/). The scoring functions optimized
based on the decoys generated by AutoDock4.2 were ap-
plied on the decoys generated by rDock. It can be seen that
the optimization has similar effect as Figure 2 on the decoy
conformations generated by rDock (Supplementary Figure
S1). This validates the robustness of the optimization on the
decoys generated by different docking tools, i.e. the conver-
gence of the optimization is intrinsically dependent on the
underlying binding energy landscape which is unique for
each nucleic acid–ligand complex.

Test of SPA-LN

The scoring function is often used in structure-based drug
discovery for seeking the lead compounds from the large
database of the small molecules and identifying specific tar-
gets. This requires that the scoring function needs to not
only accurately predict the binding affinity but also cor-
rectly discriminate the native pose (or ligand) against non-
native ones. Thus, the performance of SPA-LN was tested
by the ability in predicting the binding affinity and bind
pose.

The performance of predicting the binding affinity is re-
flected by reproducing experimental determined affinities.
Pearson correlation between the computed affinities pre-
dicted by SPA-LN and experimental affinities of the bench-
mark is shown in Figure 3. The correlation coefficient (R
= 0.58) is high compared to those predicted by other scor-

Figure 3. Pearson correlation between computed affinities and experimen-
tal affinities for 77 nucleic acid–ligand complexes of the testing dataset. The
correlation is 0.58 with statistical significance P < 0.001.

ing functions (see Table 1) (15). This suggests that SPA-LN
is relatively accurate in predicting the binding affinities. It
is noting that the performance of SPA-LN is still modest
compared to the predictions of some protein–ligand scor-
ing functions (30,45). The limited number of available high-
quality nucleic acid–ligand complex structures could be one
of the main obstacles for improving the knowledge-based
scoring functions.

The performance of predicting the binding pose is re-
flected by the success rate of identifying near-native poses
mimicking known experimental structure. The success rate
predicted by SPA-LN is compared to other scoring func-
tions (Table 1). SPA-LN achieves 76.62 and 50.64% suc-
cesses for the loose criterion C(5, 3.0Å) and the stringent
criterion C(3, 1.5Å ) (C(X,Y) means that at least one of the
top X ranked poses has RMSD under the threshold RMSD
value Y). As expected, SPA-LN ranks best among the com-
pared scoring functions whenever the loose criterion or the
stringent criterion was imposed. This suggests that SPA-LN
also has relatively high capability in characterizing the bind-
ing specificity by discriminating native or near-native poses
against non-native ones. The collective advantages of SPA-
LN in both predictions of binding affinity and pose (Table
1) validates the effectiveness of our development framework
coupling the specificity and affinity together. It also pro-
vides a promising direction in improving available nucleic
acid–ligand scoring functions.

In addition, another two sets of benchmarks with smaller
number of nucleic acid–ligand complexes were employed to
evaluate the performance of SPA-LN, here named as testing
dataset 2 (Supplementary Table S5) (15) and testing dataset
3 (Supplementary Table S6) (17). As done in the previous lit-
eratures, testing dataset 2 was used to validate the ability of
affinity prediction and testing dataset 3 was used to validate
the ability of native pose identification. SPA-LN achieved
correlation coefficient of R = 0.60 between the computed
and experimental affinities for the testing dataset 2 (Supple-

http://autodock.scripps.edu/
http://rdock.sourceforge.net/docking-in-3-steps/


e110 Nucleic Acids Research, 2017, Vol. 45, No. 12 PAGE 6 OF 8

Table 1. Performance of nucleic acid–ligand scoring functions in predicting binding affinities and identifying the native pose

Scoring function Affinity prediction Pose identification(%)

Correlation (R2) C(5, 3.0) C(3,1.5)

SPA-LN 0.33 76.62 50.64
Gold Fitness@GOLD5.0.1 0.25 73.21 42.86
ChemScore@GOLD5.0.1 0.03 53.57 23.21
ASP@GOLD5.0.1 0.29 66.07 42.86
AutoDock4.1
Score@AutoDock4.1

0.22 30.36 17.86

Surflex-Dock Score@Surflex 2.415 0.05 44.64 26.79
GlideScore (SP)@Glide 5.6 0.10 53.57 28.57
Emodel (SP)@Glide 5.6 0.14 55.36 28.57
GlideScore (XP)@Glide 5.6 NA 35.71 23.21
Emodel (XP)@Glide 5.6 NA 33.93 23.21
rDock@rDock 2006.2 0.15 60.71 33.93
rDock solv@rDock 2006.2 0.18 73.21 41.07

mentary Figure S2) and success rate of 54% in identifying
the native pose for the testing dataset 3 (Supplementary Ta-
ble S7). The evaluation results for testing dataset 2 and 3
are consistent with those for the testing dataset 1 and fur-
ther validate the performance of SPA-LN.

Performance illustration with examples

SPA-LN is optimized based on PMF (potential of mean
force) directly extracted from available structures by the
widely used inverse Boltzmann relation as Equation 1. In
order to show how the performance of SPA-LN was im-
proved by the optimization, the performance of predicting
the native pose was compared between SPA-LN and PMF
for the testing dataset (Supplementary Table S8). As shown
in Figure 1A, the best-scored conformation is considered to
be native or near-native pose if its RMSD value is smaller
than the RMSD threshold value (=1.5Å). Under this crite-
rion, SPA-LN achieves 51 successful cases among the test-
ing dataset 1 while PMF achieves 46 successful cases. There
are 45 overlaps between them except the case 2ku0 success-
fully predicted by PMF. There are 6 cases for which SPA-
LN succeeds but PMF fails to identify the best-scored pose
as the native one (Supplementary Table S8). Among all the
seven cases, the two cases (3s4p and 2f4s) were chosen to il-
lustrate the improvement of SPA-LN over PMF since their
RMSD deviations of the best-scored conformations pre-
dicted by PMF are large (>6.0Å) . The best-scored con-
formation with large RMSD to the native or near-native
conformation means that there could be a highly compet-
itive state (or binding pocket). The competitive conforma-
tions can be predicted falsely as best-scored conformations
by scoring functions.

In Figure 4, the conformation-energy relations are shown
for these two cases. For both cases, the binding sites con-
sist of competitive pockets which are occupied by the native
pose and competitive pose as shown in Figure 4A and D.
Competitive conformations as local minima are dominant
in energetics when the conformations are scored by PMF
(Figure 4B and E). Whereas, the competitive conformations
are suppressed in energetics by the scoring of SPA-LN. It in-
dicates that SPA-LN stabilizes the native conformation and
makes the competitive conformations less favorable in ener-
getics (Figure 4C and F). Moreover, the ISR values of two

A B C

D E F

Figure 4. Performance improvement of SPA-LN over PMF. (A and D) The
structure of the ligand binding onto the pocket of nucleic acid, the nucleic
acid in green is shown in molecular surface, the pose of the ligand is shown
in sticks. The pose (native pose) in red is predicted by SPA-LN and the the
pose in blue is predicted by PMF. (B and E) Energy-conformation rela-
tion and the spectrum of binding affinities for the conformation ensemble
computed by PMF, the native pose is colored in red. (C and F) Energy-
conformation relation and the spectrum of binding affinities for the con-
formation ensemble computed by SPA-LN, the native pose is colored in
red.

cases are increased when scored by SPA-LN, suggesting that
the optimization smoothes funnel-like binding energy land-
scape toward the native conformation. The performance of
SPA-LN over PMF validates the optimization strategy of
SPA-LN which not only stabilizes the native pose but also
minimizes the stabilities of non-native conformations. The
coupling of the affinity and specificity in the optimization
improves the performance of SPA-LN by stabilizing the na-
tive state as well as discriminating the native state against
competitive states.

CONCLUSION

In summary, we developed a knowledge-based scoring func-
tion SPA-LN. Different from previous scoring functions
for quantifying nucleic acid–ligand interactions, the opti-
mization strategy of SPA-LN couples the improvement of
both binding affinity and specificity which are two essen-
tial ingredients of biomolecular recognition. The funnel-like
binding energy landscape becomes more smoothed and bi-
ased toward the native state via optimization, making the
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native conformation dominant in distribution. By testing
on the benchmark dataset, SPA-LN achieves relatively high
accuracy in predicting binding affinities and in identifying
the native poses compared to other scoring functions. The
good performance of SPA-LN is resulted from the improve-
ment over PMF in stabilizing the native conformation as
well as destabilizing the non-native conformations. Our de-
velopment strategy of SPA-LN also provides a feasible ap-
proach in seeking and designing nucleic acid inhibitors and
aptamers by considering both the specificity and affinity.
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