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Chromosome 16 open reading frame 54 (C16orf54) is a protein coding gene, showing a biased expression in the bone marrow,
lymph node, and 11 other tissues. Reports on the function of C16orf54 in the onset and development of tumours remain
scarce. Clinical information and tumour expression profile data from The Cancer Genome Atlas (TCGA), Cancer Cell Line
Encyclopedia (CCLE), and Genotype-Tissue Expression (GTEx) were utilized to determine the relationship between C16orf54
expression and prognosis, diagnosis, immune microenvironment, heterogeneity, and stemness across pan-cancer. The findings
ascertained that C16orf54 was expressed at a low level in most cancers. Furthermore, C16orf54 could distinguish between
cancer and normal tissues with high accuracy in most cancers, and the prognostic significance of low C16orf54 mRNA levels
differs across cancers. C16orf54 expression was positively linked to the stromal, immune, and ESTIMATE scores. On the other
hand, C16orf54 was reported to be negatively correlated with tumour purity in most cancers. Further, C16orf54 expression was
positively correlated with immune cell infiltration and the expression of immune regulatory genes, including chemokines,
receptors, major histocompatibility complexes, immune inhibitory, and immune stimulatory genes, in most cancers.
Additionally, C16orf54 expression was significantly associated with tumour heterogeneity indicators, such as tumour mutation
burden (TMB) and microsatellite instability (MSI), and was significantly correlated with DNAss and RNAss tumour stemness
indicators. Moreover, Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis, as well as Gene Set Enrichment analysis
(GSEA), revealed that C16orf54 expression was closely linked to the signalling pathways of immune cells and factors. The
integrated analysis of C16orf54 indicates it as a potential prognostic, diagnostic, and immune marker, which could be adopted
as a novel target for adjuvant immunotherapy across pan-cancer.

1. Introduction

The latest global cancer burden data issued by the Interna-
tional Agency for Research on Cancer (IARC) reported
19.29 million new malignancy individuals and nearly 10 mil-
lion cancer-related mortalities globally in 2022 [1]. Reducing
the cancer mortality rate remains a major hurdle as currently
there is no absolute cure for cancer.

Recently, tumour immunotherapy, especially the advent of
immune checkpoint inhibitors, has become another promi-
nent and effective tumour treatment measure. Different from

traditional chemotherapy and targeted therapy, immune
checkpoint inhibition therapy does not directly act on tumour
cells, but on the immune cells. It can recognize and kill tumour
cells by restoring the previously “suppressed” immune system.
The emergence of immunotherapy has greatly improved cur-
rent cancer treatments. However, the interaction between
tumour cells and the immune system is a continuous,
dynamic, and evolving process. Furthermore, tumour malig-
nancy largely depends on the development of the immune
escape function of tumour cells [2], which hinders the efficacy
of cancer immunotherapy. The main mechanism of tumour
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cell immune escape is the reduction of cytokine (CXCL9,
CXCL10, and CCL3) secretion and killer immune cells, that
is, T cells and natural killer (NK) cell infiltration levels. The
increased secretion of IL-6, IL-33, and CXCL7 and the high
expression of PD-L1 immune checkpoint ligand inhibit the
function of T cells and reduce their infiltration. Various
tumours have the potential to inhibit the effective recognition
and killing of tumour cells by the immune system via various
pathways, thereby producing immune tolerance and promot-
ing tumour occurrence and development. The identification of
biomarkers that can accurately predict the treatment response,
aid in formulating individualised treatment regimens, and
reduce the injury and burden caused by overtreatment and
improper treatment is not only an urgent clinical need but also
the biggest challenge faced by tumour immunotherapy [3–5].

Tumour multiomics databases, including The Cancer
Genome Atlas (TCGA), offer endless possibilities for identi-
fying novel prognostic, diagnostic, and immunotherapy rel-
evant markers. Chromosome 16 open reading frame 54
(C16orf54) is a protein coding gene which located at
16p11.2 and is expressed in 11 normal tissues, such as the
bone marrow and lymph node. Moreover, the encoded pro-
tein is mainly located in the cell membrane. To the best of
our knowledge, the role of C16orf54 in tumourigenesis,
development, and immune remains unknown. In this study,
multiple bioinformatics tools are used to integrate multiple
multiomics high-throughput data, such as TCGA data, to
analyse the differential expression of C16orf54 and its prog-
nostic and diagnostic roles in pan-cancer. Furthermore, the
link between C16orf54 expression and tumour immune
microenvironment (TIME), tumour heterogeneity, and
stemness are analysed. Additionally, the possible molecular
mechanism of C16orf54 across pan-cancer is elucidated
using Kyoto Encyclopaedia of Genes and Genomes (KEGG)
analysis and Gene Set Enrichment analysis (GSEA).

2. Methods

2.1. Data Processing and Pan-Cancer Analysis of C16orf54
Expression. Normalised expression profile data and clinical
data from TCGA and Genotype-Tissue Expression (GTEx)
were retrieved from the website known as UCSC XENA
(https://xenabrowser.net/datapages/) [6]. The Cancer Cell Line
Encyclopedia (CCLE) data were downloaded from the DepMap
portal (https://depmap.org/portal/download/). Besides,
C16orf54 expression profile data were log2 transformed for
comparison between groups. The Simple Nucleotide Variation
dataset of level 4 of every TCGA sample was processed using
the MuTect2 software and such data were downloaded from
GDC (https://portal.gdc.cancer.gov/). The tmb function of the
R software package “maftools” was used to calculate each
tumour mutation burden (TMB). Based on the previous study
[7], we obtained the microsatellite instability (MSI) score and
the purity data for every tumour. Similarly, tumour stemness
scores of DNAss and RNAss for each tumour were obtained
from a previous study [8].

The R software (version 3.6.4) was used to compute
C16orf54 expression across pan-cancer, and “ggplot2” was
used for visualisation. The immunohistochemical results of

C16orf54 protein were queried and downloaded from the
Human Protein Atlas (HPA) website (https://www
.proteinatlas.org/). p < 0:05 indicated statistical significance
for the difference between tumour and normal tissues.

2.2. Prognostic and Diagnostic Significance Analysis. R soft-
ware package “survival” for Cox regression analysis was utilized
to study the relationship between C16orf54 expression and the
prognosis of tumour patients, such as overall survival (OS),
disease-specific survival (DSS), disease-free interval (DFI), and
progression-free interval (PFI). Additionally, the prognostic dif-
ferences between the two groups were analysed using “survmi-
ner” and “survival” R packages.

The potential value of C16orf54 expression in each
tumour diagnosis was analysed using the R software package
“pROC” and visualised using the “ggplot2” package.

2.3. Tumour Microenvironment (TME) Analysis. The stro-
mal, immune, and ESTIMATE scores of each patient were cal-
culated using the R software package “ESTIMATE.” The purity
data of each tumour were obtained from a previous study [9],
and the corr.test function of the R software package “psych”
was used to calculate the Pearson’s correlation coefficient of
C16orf54 expression in each tumour along with the immune
infiltration score and tumour purity.

2.4. Analysis of Immune Cell Infiltration. The link between
C16orf54 expression and each immune cell infiltration
(p < 0:05) was analysed using the TIMER2.0 (http://timer
.cistrome.org/) platform [10].

2.5. Analysis of Tumour Immunoregulatory Genes. Pearson’s
correlation coefficient of C16orf54 and immunoregulatory
gene expression in each tumour [11] was analysed using
the corr.test function of the R software package “psych.”

2.6. Analysis of Tumour Heterogeneity and Stemness. Pear-
son’s correlation coefficient between C16orf54 expression
and TMB, MSI, DNAss, and RNAss in each tumour was
computed using the corr.test function found in the R soft-
ware package “psych.”

2.7. C16orf54 Functional Enrichment Analysis. The biological
significance of C16orf54 expression in tumours was elucidated
using the KEGG signal pathway analysis [12] and GSEA [13].

The R software package “stat” was utilized to compute
the link between protein-coding genes and C16orf54 expres-
sion in each tumour, and the top 300 genes that positively
linked to C16orf54 expression were obtained. The “cluster-
Profiler” and “org.Hs.eg.db” packages were used for KEGG
enrichment analysis, using the “ggplot2” package for
visualisation.

GSEA was performed using the “clusterProfiler” package,
wherein the samples were categorized into two groups based
on the C16orf54 expression levels, and the h.all.v7.4.sym-
bols.gmt subset was retrieved from the Molecular Signatures
Database to ascertain the correlation between pathways and
molecular mechanisms [14], p:adjust < 0:05, and false
discovery rate ðFDRÞ < 0:25 were statistically significant.
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2.8. Statistical Analyses. The difference in C16orf54 expres-
sion between normal tissues and different tumour cell lines
was analysed with the aid of Kruskal–Wallis test. Pan-
cancer analysis was performed utilizing unpaired Wilcoxon
Rank Sum as well as Signed Rank Tests for significant differ-
ence analysis. Cox regression and log-rank tests were con-
ducted to analyse the differences in survival time
distribution in different groups. The link between C16orf54
expression and immune indexes was analysed by the Pear-
son’s test (no significant (ns)); p ≥ 0:05; ∗p < 0:05; ∗∗p <
0:01; ∗∗∗p < 0:001. The findings demonstrated that the area
under the curve (AUC) value in the receiver operating char-
acteristic (ROC) curve was closer to 1, indicating better diag-
nostic effects. AUC has low, certain, and high accuracy when
it falls within 0.5–0.7, 0.7–0.9, and above 0.9, respectively.

3. Results

3.1. Differential Expression of C16orf54 across Pan-Cancer.
C16orf54 expression was analysed across pan-cancer and
normal tissues. Different tissues from GTEx showed signifi-
cantly different C16orf54 expression (Figure 1(a), p < 0:001),
with high expression in the blood, spleen, small intestine,
and other tissues. C16orf54 expression in different cell line
from CCLE was also significantly different (p < 0:001), with
higher expression in haematopoietic and lymphatic cells
(Figure 1(b), p < 0:001). TCGA data analysis revealed that
C16orf54 expression was substantially upregulated in glio-
blastoma multiforme (GBM), head and neck squamous cell
carcinoma (HNSC), and kidney renal clear cell carcinoma
(KIRC), whereas it was downregulated in bladder urothelial
carcinoma (BLCA), breast invasive carcinoma (BRCA),
colon adenocarcinoma (COAD), lung squamous cell carci-
noma (LUSC), rectum adenocarcinoma (READ), lung ade-
nocarcinoma (LUAD), uterine corpus endometrial
carcinoma (UCEC), and thyroid carcinoma (THCA) com-
pared to the corresponding samples from normal tissues
(Figure 1(c)). TCGA integrated GTEx data showed that the
C16orf54 gene was significantly upregulated in BRCA, cervi-
cal squamous cell carcinoma and endocervical adenocarci-
noma (CESC), GBM, KIRC, ovarian serous
cystadenocarcinoma (OV), HNSC, kidney renal papillary
cell carcinoma (KIRP), brain lower grade glioma (LGG),
liver hepatocellular carcinoma (LIHC), acute myeloid leuke-
mia (LAML), pancreatic adenocarcinoma (PAAD), stomach
adenocarcinoma (STAD), testicular germ cell tumours
(TGCT), skin cutaneous melanoma (SKCM), esophageal
carcinoma (ESCA), and THCA but downregulated in BLCA,
adrenocortical carcinoma (ACC), lymphoid neoplasm dif-
fuse large B-cell lymphoma (DLBC), LUSC, and thymoma
(THYM) compared to their respective samples from normal
tissues (Figure 1(d)). The analysis of paired samples revealed
that C16orf54 was substantially upregulated in KIPC but sig-
nificantly downregulated in BRCA, BLCA, COAD, LUSC,
LUAD, UCEC, and THCA in (Figure 1(e)). Furthermore,
immunohistochemical results showed that protein levels of
C16orf54 in endometrial cancer, thyroid cancer, liver cancer,
and urothelial cancer were decreased compared with those

in normal tissues (Figures 1(f)–1(i)). Therefore, C16orf54
expression in various tissues and tumours is heterogeneous.

3.2. The Prognostic and Diagnostic Value of C16orf54. To
explore the clinical significance of C16orf54 expression in
tumours, the correlation between C16orf54 expression and
the prognosis of patients, including OS, DSS, DFI, and PFI,
and diagnosis in each tumour was analysed.

Cox proportional hazards regression model analysis con-
firmed that high C16orf54 expression was related to poor OS
in LGG, LAML, pan-kidney cohort (KIPAN), and uveal mel-
anoma (UVM), whereas low expression was associated with
a poor prognosis in SKCM, SKCM-M, sarcoma (SARC),
CESC, LUAD, LIHC, and OV (Figure 2(a)). Kaplan–Meier
analysis revealed that low C16orf54 expression was related
to poor OS in SKCM, LUAD, CESC, SKCM-M, and SARC
(Figures 2(b)–2(f)), whereas high expression was associated
with poor OS in UVM, LGG, LAML, and KIPAN
(Figures 2(g)–2(j)). DSS analysis affirmed that the high
expression of C16orf54 was linked to poor prognosis in
LGG and UVM, but low expression was associated with a
poor prognosis in SKCM, SKCM-M, CESC, SARC, LUAD,
LIHC, THCA, and OV (Figure 2(k)). Forest plots of PFI
revealed that high C16orf54 mRNA levels were associated
with a poor prognosis in LGG and UVM while low levels
were associated with a poor prognosis in LIHC, CESC,
SKCM, SKCM-M, BRCA, LUAD, cholangiocarcinoma
(CHOL), ACC, and SARC (Figure 2(l)). DFI analysis further
revealed that low C16orf54 expression was associated with a
poor prognosis in LIHC and OV (Figure 2(m)). Addition-
ally, Kaplan–Meier analyses demonstrate the correlation
analysis between C16orf54 expression and DSS, DFI, and
PFI. DSS analysis revealed that low C16orf54 expression
was linked to a lower DSS in OV, SKCM, SKCM-M, SARC,
CESC, and LUAD and a higher DSS in LIHC, UVM, and
LGG (Supplementary Figure 1). DFI and PFI analyses
showed that the low expression of C16orf54 was associated
with a lower PFI in CESC, SKCM, SKCM-M, SARC,
LUAD, LIHC, BRCA, CESC, LGG, and UVM and a lower
DFI in LIHC and OV (Supplementary Figure 2).

Additionally, the ROC curve analysis revealed that
C16orf54 had a high accuracy in anticipating tumour and nor-
mal outcomes in LAML (AUC = 1), testicular germ cell
tumours (TCGT) (AUC = 0:986), LUSC (AUC = 0:968),
PAAD (AUC = 0:968), GBM (AUC = 0:967), READ
(AUC = 0:917), COAD (AUC = 0:902), had a certain accuracy
in SKCM (AUC = 0:898), LGG (AUC = 0:895), KIRC
(AUC = 0:883), OV (AUC = 0:865), LUAD (AUC = 0:84),
BLCA (AUC = 0:759), and DLBC (AUC = 0:734), but lower
accuracy in other tumours (Figure 3).

3.3. Correlation between the TME and C16orf54 Expression.
To explore the possible roles of C16orf54 in TME, the link
between C16orf54 expression and TME index and tumour
purity were analysed [15, 16]. C16orf54 expression was
found to be substantially positively related to immune indi-
cators, including stromal, immune, and ESTIMATE scores
(Figure 4(a)). Additionally, it was negatively linked to
tumour purity in the majority of the tumours (Figure 4(b)).
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3.4. Relationship between Immune Cell Infiltration and
C16orf54 Expression. The relationship between C16orf54
expression and immune cell infiltration levels in different
tumour types was evaluated utilizing the TIMER website
tool. This tool serves as a comprehensive resource for
immune infiltrate-related systematic analysis across different
cancer types [10]. Although the results of different algo-
rithms may vary slightly, the overall trend remains the same.
This study shows that C16orf54 expression in the majority of
tumour types was significantly positively linked to immune
cell infiltration, including T cell CD4 +, T cell CD8 +, T cell
regulatory (Tregs), B-cell, neutrophil, NK cell, monocyte,
endothelial cell, macrophage, T cell follicular helper, and
myeloid dendritic cell, and significantly negatively correlated
with common lymphoid progenitor and eosinophil and
myeloid-derived suppressor cells infiltration. Additionally,
the correlation between C16orf54 expression and the
immune cell infiltration of cancer-associated fibroblast,
common myeloid progenitor, granulocyte-monocyte pro-
genitor, T cell gamma delta, hematopoietic stem cell, T cell
NK and mast cell across pan-cancer was not significant
(Figure 5).

3.5. Relationship between Immunoregulatory Genes and
C16orf54 Expression. To further investigate the role of
C16orf54 in TIME, the link between C16orf54 expression
and immunoregulatory genes in various tumour types was
analysed. The Pearson’s correlation coefficient between
C16orf54 expression and 60 immune checkpoint genes,
including 24 inhibitory genes and 36 stimulatory genes
(Figure 6), was calculated, which showed that almost all
immune checkpoint genes, except IFNA1 and IFNA2, were

significantly positively coexpressed with C16orf54 in most
tumours. Furthermore, the Pearson’s correlation analysis of
C16orf54 and immunoregulatory genes (Figure 7), including
41 chemokine, 18 receptor, and 21 major histocompatibility
complex (MHC), showed that C16orf54 was significantly
positively coexpressed with most immunomodulatory genes
across pan-cancer.

3.6. Analysis of the Tumour Heterogeneity, Stemness, and
C16orf54 Expression. Tumour heterogeneity can modulate
immunotherapy effects. Therefore, the Pearson’s correlation
coefficients between C16orf54 and tumour heterogeneity
indicators, TMB and MSI, were analysed. C16orf54 expres-
sion was discovered to be significantly negatively related to
TMB in CHOL, ACC, LUAD, STAD, and BLCA; signifi-
cantly positively associated with TMB in CRC, COAD,
OV, and UCEC (Figure 8(a)); and significantly negatively
related to MSI in DLBC, TGCT, ACC, KIPAN, KIRP,
GBM, LGG, LUSC, STAD, HNSC, and OV (Figure 8(b)).

Tumour stemness is not only associated with metastasis
and heterogeneity, but also with immune checkpoint gene
expression and cell infiltration of the immune system [8].
The analysis of C16orf54 expression and tumour stemness
indicators, DNAss and RNAss, suggested that C16orf54
expression was substantially negatively correlated with
DNAss in 15 tumour types (Figure 8(c)), including THYM,
GBM, and LUSC; significantly positively correlated with
DNAss in 7 tumour types, including LGG, KIRP, and
THCA; significantly negatively correlated with RNAss in
30 tumour types (Figure 8(d)), including GBM, LGG, CESC,
and LUAD; and significantly positively correlated with
RNAss in THYM.

(i)

Figure 1: Differential expression of C16orf54. (a) C16orf54 expression in normal tissues. (b) C16orf54 expression in tumour cell lines. (c)
Expression analysis of C16orf54 by TCGA data, and (d) integrated data of TCGA and GTEx. (e) Expression analysis of C16orf54 in
paired samples. Immunohistochemical results of C16orf54 in (f) endometrium, endometrial cancer, (g) thyroid gland, thyroid cancer, (h)
liver, liver cancer, and (i) urinary bladder and urothelial cancer. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 2: Continued.
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Figure 2: Continued.
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3.7. KEGG and GSEA Analysis. To determine the biological
significance of C16orf54 in different tumour tissues, KEGG
and GSEA analyses, were performed for 6 selected tumours.
KEGG analysis revealed that C16orf54 and its coexpressed
top 300 genes mainly participated in the immune-related
pathways of the cytokine-cytokine receptor interaction,
Th1, Th2, and Th17 cell differentiation, T cell receptor sig-
nalling pathway, and hematopoietic cell lineage in KIRC,
LUAD, lung squamous cell carcinoma (LUCS), COAD,
BLCA, and READ (Figures 9(a)–9(f)). Moreover, the path-
ways of cell adhesion molecules, chemokine signalling path-
way, autoimmune thyroid disease, type I diabetes mellitus,
primary immunodeficiency, and graft versus host diseases
were enriched in KIRC and LUAD (Figures 9(a) and 9(b)),
and the signalling pathway of asthma, allograft rejection, vir-
tual myocarditis, the internal immune network for IgA pro-
duction, and Staphylococcus aureus infection were enriched
in LUCS and READ (Figures 9(c) and 9(f)). Furthermore,
GSEA revealed that C16orf54 expression was significantly
related to various immune-related pathways, such as PI3K/
Akt/mTOR and WNT/BETA CATENIN signalling

pathways in BLCA (Figure 10(a)), IL2/STAT5, inflammatory
response, IL6/JAK-STAT3, TNFA/NFKB, and interferon-
gamma response signalling pathways in COAD, KIRC,
LUAD, LUSC, and READ (Figures 10(b)–10(f)). Interest-
ingly, apoptotic signalling pathways were enriched in vari-
ous tumours (Figures 10(a)–10(f)). Hence, C16orf54 is
closely related to various immune signalling pathways.

4. Discussion

Tumour malignancy is a significant threat to human health
and life. In the past, clinical treatments mainly focused on
surgery, radiotherapy, and chemotherapy, which included
various limitations, such as prominent side effects, drug
resistance, easy recurrence, and metastasis. Different from
conventional treatment, tumour immunotherapy uses the
human immune system to resist the attack and growth of
tumour cells. It is currently one of the most promising ther-
apies. Tumour immunotherapy usually includes cellular
immunotherapy and immune checkpoint inhibitor therapy
[4, 17]. Cellular immunotherapy directly recognises tumour
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Figure 2: The prognostic value of C16orf54 expression. (a) Forest plot of overall survival (OS) in 37 tumour types. (b–j) Kaplan–Meier
analysis of the association between C16orf54 expression and OS. (k) Forest plot of disease-specific survival (DSS) in 36 tumour types. (l)
Forest plot of progression-free interval (PFI) in 36 tumour types. (m) Forest plot of disease-free interval (DFI) in 30 tumour types.
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Figure 3: Continued.

12 Disease Markers



cell surface proteins and induces cancer cell death by stimu-
lating autoimmune cells. However, owing to the heterogene-
ity of tumour antigens and the failure of tumour-infiltrating
T lymphocytes, the effect of cellular immunotherapy in
treating solid tumours was unsatisfactory [18]. With the
in-depth study of tumour immunotherapy and pathogenesis,
immunomodulatory genes have become potential targets of

immunotherapy, with immune checkpoint inhibitors widely
used as tumour immunotherapy drugs. The immune check-
point is a significant factor in tumour immune tolerance.
The intervention of immune checkpoints can reactivate T
cells, thereby inducing tumour cell death [19–21]. CTLA-4
inhibitor and PD-1 inhibitor (PD-1/PD-L1 inhibitor) have
strong antitumour activities in different tumours including
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Figure 3: The ROC curve of C16orf54. (a) The ROC results of C16orf54 across pan-cancer. (b–m) ROC curves of C16orf54 in various
tumours.
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melanoma, non-small-cell lung cancer and kidney cancer
[22, 23]. Although immunotherapy is considered to be the
most promising tumour treatment method, its efficacy on
different tumour types and patients with the same cancer
type varies. As a result, it is of great significance to determine
novel tumour immune markers and potential therapeutic
targets.

C16orf54 is a protein-coding gene with heterogeneous
expression in different normal and tumour tissues. Expres-
sion profile and immunohistochemical results analysis
showed that C16orf54 expression in BLCA, BRCA, COAD,
LUAD, LUSC, and other tumour tissues decreased signifi-
cantly, suggesting that C16orf54 could play a role in the
occurrence and development of different tumours. Further-
more, evaluating the association between C16orf54 expres-
sion and OS, DSS, DFI, and PFI showed that C16orf54
expression was related to the prognosis of many tumours.
Among them, low C16orf54 expression was considered to
be a risk factor for SKCM, LUAD, CESC, and other tumours.
Liu et al. report that C16orf54 expression levels were associ-
ated with BRCA, LUAD, LGG, and SKCM prognosis, but it
remains unclear whether low or high C16orf54 expression is
a prognostic risk factor [24]. The above results show that
C16orf54 is a potential marker of the poor prognosis of var-
ious tumours, further suggesting that C16orf54 participates
in the progression of tumours. Analysing the role of
C16orf54 in tumour diagnosis using ROC curve revealed
that C16orf54 could distinguish tumour tissues, such as
LAML, TCGT, LUSC, and PAAD, from normal tissues with
high accuracy, which suggests C16orf5 as a potential bio-
marker for tumour diagnosis

The tumour microenvironment (TME) significantly
affects the survival, proliferation, immune escape, diffusion,
metastasis, and clinical prognosis of tumour [25, 26]. As
the main component of the microenvironment, stromal,
immune, and estimate scores in the microenvironment
change with the interaction between tumour cells and the
microenvironment, which has a significant impact on the
immune metabolism of tumour cells [27]. The correlation
analysis between C16orf54 expression and TME affirmed
that C16orf54 expression was significantly positively associ-
ated with the three microenvironment scores of most
tumours and negatively correlated with tumour purity, sug-
gesting that C16orf54 affects the TME. Interestingly, recent
research has revealed that C16orf54 can affect the morphol-
ogy of lipid droplets (LDs) that exist in a variety of cells and
can be used to generate metabolic energy and cell membrane
[28]. This suggests that C16orf54 may regulate homeostasis
of cell energy supply and cell membrane and thereby affect
the crosstalk between various cells in the TME of various
tumours.

Furthermore, the function of C16orf54 in the modula-
tion of the tumour immune microenvironment (TIME)
was investigated. In addition to tumour cells, TIME also
includes nontumour cells, such as fibroblasts, endothelial
cells, stromal cells, and immune cells, that interact with
tumour cells [29–31]. Immune cells in TIME, such as mac-
rophages, lymphocytes, and NK cells, have a critical impact
on tumour immune escape and tumour immunotherapy
resistance. Previous studies have reported that the antitu-
mour immune efficacy can be improved by modifying the
TIME, such as reconstructing the immune
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Figure 4: The correlation between C16orf54 expression and TME. (a) Correlation between C16orf54 and stromal, immune and ESTIMATE
scores. (b) The correlation between C16orf54 expression and tumour purity. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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microenvironment by inducing immune cell death in cancer
cells, inhibiting glucose metabolism, and repolarising
tumour-related macrophages [32]. Therefore, TIME is of
great significance in tumour initiation, development, metas-
tasis, and treatment. Immunotherapy shows obvious thera-
peutic differences among patients, which is largely

attributed to the heterogeneity of TIME. Clinical studies
have shown that the degree of immune cell infiltration has
a critical impact on the prognosis of patients with tumours.
Wang et al. report that the tumour-infiltrating IL17+ cells
can activate the antitumour response of the TME [33], and
M2 macrophages contribute to metastasis and invasiveness
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Figure 5: C16orf54 expression and immune cell infiltration.
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of lung and liver tumours [34, 35]. Therefore, immune cell
infiltration could be used as an indicator of the prognosis
of disease and response to treatment. In the present research,

C16orf54 expression was remarkably positively associated
with the infiltration level of different immune cells in most
tumour types, especially UVM, UCEC, THYM, and SKCM,
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Figure 6: C16orf54 expression and immune checkpoint genes. ∗p < 0:05.
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suggesting that C16orf54 can participate in tumour progres-
sion and immunotherapy by regulating immune cell
infiltration.

The immunomodulatory factor is the medium of com-
munication between infiltrating immune cells and tumour
cells. It recruits or expels immune cells into the TME and
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Figure 7: C16orf54 expression and immunomodulatory genes. ∗p < 0:05.
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Figure 8: Analysis of tumour heterogeneity and stemness. (a) The relationship between C16orf54 and mutational burden (TMB), (b)
microsatellite instability (MSI), (c) DNAss, and (d) RNAss.
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mediates immune cells to kill or protect tumour cells. The
interaction between tumour cells and the immune system
is regulated by various immune regulatory factors. Tumour
cells inhibit the antitumour immune response and induce

immune escape by upregulating immunosuppressive factors
or downregulating immune activators [36–38]. Certain pos-
itive regulatory factors, such as CD27, CD28, CD30, ICOS,
and negative regulatory factors, such as CTLA4, PD-1,
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Figure 9: KEGG results of C16orf54 in 6 selected tumours. The 15 typical signalling pathways in (a) KIRC, (b) LUAD, (c) LUCS, (d) COAD,
(e) BLCA, and (f) READ.
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Figure 10: Continued.
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BTLA, TIM3, andLAG3, at immune checkpoints affect the
recognition and apoptotic ability of the immune system
against tumour cells [39–41]. C16orf54 gene is coexpressed
with various immune inhibitors, immune-stimulatory fac-
tors, chemicals and chemokine receptors, MHC genes, and
other immunomodulatory genes across pan-cancer, suggest-
ing that C16orf54 can regulate the expression of immuno-
modulatory genes or it is itself an immunomodulatory gene.

During tumourigenesis and development, the clone type
of tumour cells changes constantly due to differences in gene
mutation, expression, or methylation [8]. These highly het-
erogeneous tumour cells give rise to varying responses to
various tumour treatments. TMB and MSI are closely related
to the prognosis of many tumour types after immunother-
apy and can be used as biomarkers to predict immunother-
apy efficacy [42]. The tumour remission results and survival
benefits after nivolumab treatment were significantly better
than those after chemotherapy for patients with high TMB
levels [43]. MSI detection is also widely used in the clinical
treatment of patients with COAD [44]. This study found
that C16orf54 expression was significantly negatively linked
to TMB and MSI in five and ten tumour types, respectively,
further suggesting that C16orf54 could potentially predict

patient response to immunotherapy. The relationship
between C16orf54 and tumour stemness was also analysed.
Cancer stem cells have the ability to renew themselves and
can produce heterogeneous tumour cells. They play an
essential function in tumour survival, proliferation, metasta-
sis, and recurrence [45–47]. DNAss is the dryness index
derived based on methylation data while RNAss is the stem-
ness indices calculated based on expression data. When the
stemness index is closer to 1, the degree of cell differentiation
tends to be lower, whereas the stem cells’ characteristics
become stronger. This study observed that C16orf54 expres-
sion was negatively correlated with DNAss in most tumours,
such as THYM, GBM, and LUSC; similarly, it was signifi-
cantly negatively correlated with RNAss in all tumours
except THYM. This indicates low C16orf54 expression cor-
responds to strong tumour cell stemness, thus promoting
tumour proliferation and metastasis. Furthermore, this cor-
relation can be used as a predictor of the efficacy of immune
checkpoint inhibition therapy.

In the end, the molecular mechanisms by which
C16orf54 functions were analysed by KEGG and GSEA.
KEGG analysis showed that C16orf54 could be involved in
cytokine receptor interaction, Th1, Th2, and Th17 cell

0.0
–0.2
–0.4
–0.6

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00
Rank in ordered DataSet

H

En
ric

hm
en

t s
co

re

0.0

0.5

–0.5

–1.0Ra
nk

ed
 li

st 
m

et
ric L

LUSC

TGF_BETA_SIGNALING

ALLOGRAFT_REJECTION

INFLAMMATORY_ RESPONSE
IL6_JAK_STAT3_SIGNALING

INTERFERON_GAMMA_RESPONSE

KRAS_SIGNALING_DN
APOPTOSIS
XENOBIOTIC_METABOLISM
TNFA_SIGNALING_VIA_NFKB
INTERFERON_ALPHA_RESPONSE
UV_RESPONSE_DN
ESTROGEN_RESPONSE_EARLY

ANGIOGENESIS

EPITHELIAL_MESENCHYMAL_TRANSITION

IL2_STAT5_SIGNALING

(e)

0.0

–0.2
–0.4

–0.6

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

Rank in ordered DataSet

H

En
ric

hm
en

t s
co

re

0.0
0.2
0.4

–0.2
–0.4
–0.6
–0.8
–1.0Ra

nk
ed

 li
st 

m
et

ric L

READ

XENOBIOTIC_METABOLISM

ALLOGRAFT_REJECTION
INFLAMMATORY_ RESPONSE
IL6_JAK_STAT3_SIGNALING
APOPTOSIS
INTERFERON_GAMMA_RESPONSE
UV_RESPONSE_UP
HYPOXIA
ESTROGEN_RESPONSE_EARLY
INTERFERON_ALPHA_RESPONSE
TNFA_SIGNALING_VIA_NFKB
EPITHELIAL_MESENCHYMAL_TRANSITION
ANGIOGENESIS
TGF_BETA_SIGNALING

IL2_STAT5_SIGNALING

(f)

Figure 10: GSEA results of C16orf54 in 6 selected tumours. The 15 typical signalling pathways in (a) BLCA, (b) COAD, (c) KIRC, (d)
LUAD, (e) LUCS, and(f) READ.
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differentiation, T cell receptor signalling pathway, hemato-
poietic cell lineage, and other signalling pathways. GSEA
further revealed that C16orf54 expression was associated
with various immune factor-related pathways, such as
PI3K/Akt/mTOR, IL2/STAT5, IL6/JAK-STAT3, TNFA/
NFKB, TGF-BETA signalling pathways, E2F targets, and
MYC targets-V2. Therefore, enrichment analyses showed
that the C16orf54 gene could participate in the occurrence
and progression of tumours via the mechanism of the regu-
lation of immune cell infiltration and immune regulatory
factor-related signalling pathways.

5. Conclusions

C16orf54 is a promising new diagnostic, prognostic, immune
marker, and therapeutic target. The following work will
carry out molecular, cellular, and animal experimentation
to verify the conclusions of this study.
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