
Introduction
Assessment of the risk of development of invasive breast
cancer has recently become a significant problem. This is
partly due to the recognition that invasive breast cancer
can be prevented by mammographic detection and the
treatment of earlier pre-invasive breast lesions [1,2]. These
lesions have been defined by epidemiological, histological
and molecular observations and comprise progressive mor-
phological changes in breast epithelium that might parallel
the process of evolution towards invasive carcinoma [3,4].

Mammographic density is a risk factor for breast cancer
and is attributed to alterations in the composition of breast
tissue [5,6]. Previous studies seeking to understand the
biological basis of mammographic density have focused on
associations with epithelial changes [7–10]. However, the
major tissue component in breast is stroma, and stromal
alterations are also a well recognized component of benign
and pre-invasive breast lesions. Furthermore, although
breast cancer is a direct manifestation of alterations in the
expression of multiple genes and cellular pathways within

DCIS = ductal carcinoma in situ; IGF = insulin-like growth factor; NPD = non-proliferative disease; PDWA = proliferative disease without atypia;
SLRP = small leucine-rich proteoglycan.
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Abstract

Background: Mammographic density and certain histological
changes in breast tissues are both risk factors for breast
cancer. However, the relationship between these factors
remains uncertain. Previous studies have focused on the
histology of the epithelial changes, even though breast stroma
is the major tissue compartment by volume. We have previously
identified lumican and decorin as abundant small leucine-rich
proteoglycans in breast stroma that show altered expression
after breast tumorigenesis. In this study we have examined
breast biopsies for a relationship between mammographic
density and stromal alterations.

Methods: We reviewed mammograms from women aged
50–69 years who had enrolled in a provincial mammography
screening program and had undergone an excision biopsy for
an abnormality that was subsequently diagnosed as benign or
pre-invasive breast disease. The overall mammographic density
was classified into density categories. All biopsy tissue
sections were reviewed and tissue blocks from excision

margins distant from the diagnostic lesion were selected.
Histological composition was assessed in sections stained
with haematoxylin and eosin, and the expression of lumican and
decorin was assessed by immunohistochemistry; both were
quantified by semi-quantitative scoring.

Results: Tissue sections corresponding to regions of high in
comparison with low mammographic density showed no
significant difference in the density of ductal and lobular units
but showed significantly higher collagen density and extent of
fibrosis. Similarly, the expression of lumican and decorin was
significantly increased.

Conclusion: Alteration in stromal composition is correlated
with increased mammographic density. Although epithelial
changes define the eventual pathway for breast cancer
development, mammographic density might correspond more
directly to alterations in stromal composition.
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the breast epithelial cell, it is now recognized that perturba-
tions in stromal–epithelial interactions might also influence
tumorigenesis and progression through direct effects on
growth factor pathways and indirect effects mediated
through cell adhesion and structure [9–12].

We and others have previously shown that distinct genetic
alterations can occur in the stromal compartment of breast
tumours [13–15]. We have also shown that the small
leucine-rich proteoglycans (SLRPs) lumican and decorin
are a highly abundant component of breast tissue stroma
and that altered expression of stromal proteins is associ-
ated with tumour progression and outcome [16,17].
These SLRPs might be important in both stromal integrity
and growth factor pathways through their influence on fib-
rillary collagen cross linking and, at least for decorin, the
ability to bind to growth factors such as transforming
growth factor-β and growth factor receptors such as epi-
dermal growth factor [18–21].

We therefore wished to examine the relationship between
mammographic density, breast tissue composition and
expression of stromal proteins, to establish whether the
increased risk attributed to increased mammographic
density might reflect stromal alteration.

Materials and methods
Study cohort and mammographic density assessment
An initial cohort of potential study cases was identified by
chart review and comprised patients over 50 years of age
who received a screening mammogram at the Manitoba
Provincial Screening Program between 1996 and 2000
that had led to a subsequent breast biopsy at either St
Boniface Hospital or the Health Sciences Center, Win-
nipeg, Manitoba, to remove a mammographically detected
lesion. Original screening mammograms were then
reviewed and the location of the lesion that prompted the
subsequent biopsy was identified. The surrounding breast
tissue distant from the lesion was then assigned a mammo-
graphic density score by using a previously described
semiquantitative scale [9,22]. With this scoring system the
percentage of the breast which is composed of radi-
ographically dense tissue is assessed in six categories:
0%, 0–10%, 10–25%, 25–50%, 50–75% and 75–100%.

Pathology reports from an initial cohort of 127 cases were
then reviewed to identify all cases in which the biopsy had
been a lumpectomy or mastectomy and the eventual
pathology had been some form of benign or pre-invasive
breast disease. All core and local excision biopsies with
limited tissue sample size, as well as cases with invasive
carcinoma, were eliminated. Finally, all cases with an inter-
mediate mammographic density score of 25–50% (cate-
gory 3) were eliminated to ensure that the final study
cohort of 62 cases comprised cases that could be sub-
classified into two distinct subgroups.

Histological assessment
For each case two tissue blocks corresponding to the
specimen margin were identified from the pathology
report. This was to ensure that these would be representa-
tive of breast tissue distant from the lesion. Sections
stained with haematoxylin and eosin were cut from these
blocks and used for histological review to confirm that
these comprised breast tissue distinct from the principal
lesion in the specimen. Additional sections were cut for
immunohistochemical analysis of lumican and decorin
expression. For each section several parameters were
assessed by semiquantitative scoring, including (1) the
overall percentage of collagenous stroma within the tissue
section (range 0–100%), (2) the average density of colla-
gen or fibrosis (scored as low = 1, intermediate = 2 or
high = 3), (3) the extent of peri-ductal fibrosis scored with
a 40× objective microscopic field by the extent of collage-
nous stroma relative to the margin of a duct or duct-lobular
unit (less than one high-power field scored 1; less than
two high-power fields scored 2; more than two high-
power fields scored 3), and (4) the numbers of ducts and
duct-lobular units counted at 10× objective magnification
within the tissue section, divided by the area of the tissue
section (in mm2)

Immunohistochemistry
Immunohistochemistry was performed on paraffin sections
as described previously [16]. In brief, sections (5 µm thick)
were cut, de-paraffinized, cleared and hydrated in Tris-
buffered saline (10 mM Tris-HCl, pH 7.6, containing
150 mM NaCl) and then pretreated with 3% hydrogen
peroxide for 10 minutes to remove endogenous peroxi-
dases. Non-specific binding was blocked with normal pig
serum, 1:10 dilution (Vector Laboratories S-4000). Tris-
buffered saline was used between steps for rinsing and as
a diluent. Primary antibody against lumican was applied at
1:400 dilution overnight at 4°C, followed by biotinylated
secondary pig anti-rabbit IgG, 1:200 dilution (DAKO) for
1 hour at 22°C (room temperature). Tissue sections were
incubated for 45 minutes at 22°C (room temperature) with
an avidin–biotin horseradish peroxidase system (Vecta-
stain ABC Elite; Vector Laboratories) followed by detec-
tion with diaminobenzidine, counterstaining with 2%
methyl green and mounting. A positive tissue control and a
negative reagent control (no primary antibody) were run in
parallel. The level of expression was assessed by light
microscopic visualization and scored as described previ-
ously by estimating the signal intensity (0–3) and the per-
centage of the tissue section staining positive (0–100%).

Results
The clinical-pathology characteristics of the study
cohort
The overall pathology of the cases that led to an excision
biopsy is listed in Table 1. The 62 cases included
24 cases diagnosed with benign non-proliferative disease
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(NPD; including fibrocystic changes without ductal hyper-
plasia), 24 cases with proliferative disease without atypia
(PDWA), and 14 cases with ductal carcinoma in situ
(DCIS). In all cases the tissue blocks selected for this
study were from the resection margins and were reviewed
to ensure that none represented the primary lesion (such
as DCIS or florid epithelial hyperplasia lesions) that had
been the principal focus of the biopsy. Patient ages
ranged from 54 to 75 years with an overall mean of
62 years, and means of 64, 62 and 61 years for each of
the above three categories of pathology, respectively.

The relation between mammographic density and
tissue pathology
The distribution of cases in overall mammographic density
categories is shown in Table 1 and was as follows: 0%,
none; 0–10%, 17 cases (27%); 10–25%, 18 cases
(29%); 50–75%, 22 cases (35%); 75–100%, 5 cases
(8%). Cases associated with high mammographic density
(50–100%) distant from the region of the primary lesion
were associated with a significant increase in the propor-
tion of cases diagnosed as DCIS relative to PDWA and
NPD (P = 0.01, χ2 test). High mammographic density was
also associated with differences in the tissue composition

within the tissue blocks examined (Table 2). These cases
exhibited more extensive fibrosis, measured either by the
proportion of collagenous tissue within the tissue sec-
tions, the density of the collagenous tissue, or the extent
of peri-ductal fibrosis. However, there was no difference in
the density of epithelial components as measured by the
number of duct or lobular units per mm2 between cases
with high and low mammographic density (Fig. 1). Patients
ranged in age from 54 to 74 years (mean 64) and 54 to
75 years (mean 60) in the categories of low and high
mammographic density, respectively.

Relation between mammographic density and stromal
proteoglycan expression
Lumican and decorin were assessed by immunohisto-
chemistry (Fig. 2). As observed previously, the expression
of both lumican and decorin was restricted to areas of col-
lagenous stroma surrounding epithelial units. The expres-
sion of both SLRPs was significantly higher in cases with
high mammographic density (Table 2), and was also corre-
lated with the density of duct and lobular elements
(lumican, r = 0.53, P < 0.0001; decorin, r = 0.49,
P < 0.0001). The expression of lumican was also closely
correlated with that of decorin (r = 0.93, P < 0.0001).

Available online http://breast-cancer-research.com/content/5/5/R129

Table 1

The relation between mammographic density category and principal lesion in the adjacent breast

Mammographic density category

0–10% 10–25% 50–75% 75–100%

Pathology No. % No. % No. % No. %

NPD 7 42 9 50 7 32 1 20

PDWA 8 47 8 44 6 27 2 40

DCIS 2 11 1 6 9 41 2 40

DCIS, ductal carcinoma in situ, NPD, non-proliferative disease, PDWA, proliferative disease without atypia.

Table 2

The relation between mammographic density category and tissue properties in the corresponding region of the breast

Low mammographic density (n = 35) High mammographic density (n = 27)

Tissue property Median Minimum Maximum Median Minimum Maximum P

Lumican IHC score 45 0 110 125 60 225 < 0.0001

Decorin IHC score 35 0 90 125 30 225 < 0.0001

Duct fibrosis score 1 0.5 3 2 1 2.5 < 0.0001

Collagen score (%) 30 10 55 60 30 85 < 0.0001

Area of tissue (mm2) 328 150 792 305 160 478 n.s.

Duct-lobular unit density 0.14 0.04 0.41 0.18 0.09 0.36 n.s.

IHC, immunohistochemistry.



Discussion
Mammographic density might be a risk factor for the
development of breast cancer [5,6]. An improved under-
standing of factors influencing changes in mammographic
density would improve its value and practical application
in risk assessment. Mammographic density has been
shown to be influenced by age, menopausal status and
dietary factors and also by inherited genetic factors
[9,10,23–34]. However, the biological basis underlying
variations in mammographic density is unknown [35].

Many studies to explore these factors have examined the
relationship between mammographic density and breast
tissue pathology [8–10,31,32,36,37]. Although several of
these have also noted a close association with stromal
changes [32,36–38], the tendency to focus principally on
the relationship between increased mammographic
density and specific epithelial lesions persists
[7,10,31,39]. The notion that increased mammographic
density is attributable to the presence of more ‘glandular
tissue’ reflects this view [35]. However, although statisti-
cally significant, the strength of the correlation between
mammographic density and proliferative lesions in most
studies is relatively weak.

The major tissue fraction in breast is stroma, not epithelial
tissue. An alternative explanation is therefore that changes
in mammographic density primarily reflect stromal

changes and that these changes influence breast cancer
risk [32]. Alteration of the stromal architecture and compo-
sition of the extracellular matrix is a well-recognized com-
ponent of both benign and malignant breast pathologies,
from the fibrosis within low-risk benign non-proliferative
lesions (often encompassed by the term ‘fibrocystic
changes’) through typical and atypical proliferative ductal
lesions, to the ‘stromal reaction’ associated with ductal in
situ and invasive carcinoma. Although the ‘host reaction’ in
the latter malignant lesions has been attributed to
paracrine perturbations originating from the epithelial
tumour cell, fibrosis and stromal changes also occur in the
absence of epithelial proliferation and can precede it.
Recent studies have shown that both stromal architecture
and composition can exert an important influence on
normal epithelial biology [11,40], and somatic mutations
can be identified in the stromal compartment of breast
tumours independently of mutations in the neoplastic
epithelium [13,14]. These observations are in keeping with
the concept that stromal alterations might not always be
‘reactive’ but might sometimes play an initial ‘landscaping’
role in breast carcinogenesis, as has been proposed for
the colon [41,42].

In the present study we have also found a significant asso-
ciation between increased mammographic density and
high-risk DCIS lesions. However, despite agreement with
several previous studies, some limitations to the broader
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Figure 1

Graphs showing the relation between categories of low (1 and 2) and high (4 and 5) mammographic density and collagenous stroma, duct-lobular
unit density, lumican and decorin expression. Bars represent the median level within each category. IHC, immunohistochemistry.



interpretation of this study should be noted. The study
cohort was biased towards patients undergoing biopsies
after the identification of lesions by screening mammogra-
phy, and the majority of women were also probably post-
menopausal, reducing the proportion of cases in the
category of high mammographic density [25]. The mam-
mographic density was assessed by subjective catego-
rization, although we used well-established criteria applied
to mammograms performed within a standardized screen-
ing programme and restricted our study set to patients
with clearly distinguishable extents of mammographic
density (less than 25% or more than 50% of the mammo-
gram occupied by dense tissue). The relationship between
the region assessed for density and the tissue blocks
examined was not precise. However, we restricted our
assessments of mammographic density and correspond-
ing tissue to the margins of region of tissue encompassed
by the subsequent biopsy, ignoring the locations influ-
enced by the detected lesion.

Although there was an association with the occurrence of
DCIS, our study showed no significant correlation

between mammographic density and epithelial prolifera-
tion or density of epithelial duct-lobular units within the
corresponding region of breast tissue beyond the primary
lesion. Instead, there was a close correlation between the
extent of collagenous stroma measured with several
indices and its composition measured by the expression of
the stromal proteoglycans lumican and decorin.

Breast stroma includes a variety of extracellular matrix
proteins, of which the fibrillar collagens are perhaps the
most important in determining stromal architecture.
These are secreted as triple-helical procollagen mole-
cules that undergo extracellular processing and assem-
bly into collagen fibrils followed by cross-linking and
aggregation to form collagen fibres. Fibrillogenesis and
fibril spacing are important aspects of stromal integrity
and are affected by several structural proteins and by
proteoglycans, including the SLRPs lumican and decorin
[18,20], which are highly abundant in the stroma
[16,43]. Decorin can also exert biological effects directly
through its influence on growth factors and growth factor
receptors [19,21]. The levels of expression of these
SLRPs are correlated when compared within non-neo-
plastic or within neoplastic tissues, and low levels of
both SLRPs are associated with poor outcome in
primary invasive tumours. This latter observation might
reflect a differential host response to tumour epithelium
[17], although SLRP expression can vary independently
of epithelial proliferative changes, as shown here, and
alteration in the lumican : decorin ratio from that in normal
tissue adjacent to the invasive margin can occur in neo-
plastic stroma [16]. The principal factors determining
SLRP expression in breast are not known, although the
expression of insulin-like growth factor (IGF) has been
implicated as a risk factor for breast cancer [44] and is
also known to be associated with mammographic
density in premenopausal women [45]. IGF-1 can also
induce lumican, decorin and collagen synthesis in model
systems [46–48], with most influence on cells from
younger patients [48], and both lumican and IGF-1 are
often induced in benign disease in other tissues [49].
These last observations are consistent with the hypothe-
sis that increased mammographic density might reflect
primary stromal alterations, including SLRP expression,
that could influence early tumorigenesis.

Conclusion
Our results suggest that mammographic density relates
more to stromal rather than epithelial composition. Further
studies in animal models will be needed to determine
whether altered stromal composition and SLRP gene
expression can exert direct effects on mammographic
density and breast tumorigenesis.
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Figure 2

Representative tissue sections from breast tissue associated with low
(left panels) and high (right panels) mammographic density. Increased
collagenous stroma (upper right) and expression of lumican (middle
right) and decorin (lower right) is present in breast tissue associated
with high mammographic density. H&E sections (upper panels),
lumican immunohistochemistry (middle panels), decorin
immunohistochemistry (lower panels).
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