
Allergy. 2020;75:1649–1658.	﻿�    |  1649wileyonlinelibrary.com/journal/all

 

Received: 24 June 2019  |  Revised: 16 December 2019  |  Accepted: 2 January 2020

DOI: 10.1111/all.14214  

O R I G I N A L  A R T I C L E

Asthma and Lower Airway Disease

Artificial neural network identifies nonsteroidal anti-
inflammatory drugs exacerbated respiratory disease (N-ERD) 
cohort

Katarzyna Ewa Tyrak1 |   Kinga Pajdzik1 |   Ewa Konduracka2 |   Adam Ćmiel3 |   
Bogdan Jakieła1 |   Natalia Celejewska-Wójcik1 |   Gabriela Trąd1 |   Adrianna Kot1 |   
Anna Urbańska1 |   Ewa Zabiegło1 |   Radosław Kacorzyk1 |   Izabela Kupryś-Lipińska4 |   
Krzysztof Oleś5 |   Piotr Kuna4 |   Marek Sanak1  |   Lucyna Mastalerz1

© 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

Abbreviations: ANN, artificial neural network; ATA, aspirin-tolerant asthma; CRSwNP, chronic rhinosinusitis with nasal polyposis; IS, induced sputum; ISS, induced sputum supernatant; 
LTE4, leukotriene E4; N-ERD, nonsteroidal anti-inflammatory drugs (NSAIDs)–exacerbated respiratory disease; PGD2, prostaglandin D2; PGE2, prostaglandin E2; SVM, support vector 
machine.

12nd Department of Internal Medicine, 
Jagiellonian University Medical College, 
Cracow, Poland
2Coronary and Heart Failure Department, 
Jagiellonian University School of Medicine, 
John Paul II Hospital, Cracow, Poland
3Department of Applied Mathematics, 
AGH University of Science and Technology, 
Cracow, Poland
4Department of Internal Medicine, Asthma 
and Allergy, Medical University of Łódź, 
Łódź, Poland
5Department of Oncological and 
Reconstructive Surgery, The Maria 
Sklodowska-Curie Memorial Cancer Center 
and Institute of Oncology, Gliwice, Poland

Correspondence
Lucyna Mastalerz, Department of Internal 
Medicine, Jagiellonian University Medical 
College, ul. Skawinska 8, 31-066 Kraków, 
Poland.
Email: lucyna.mastalerz@uj.edu.pl

Funding information
Narodowe Centrum Nauki, Grant/Award 
Number: N402 593040, UMO-2013/11/B/
NZ6/02034 and UMO-2015/19/B/
NZ5/00096

Abstract
Background: To date, there has been no reliable in vitro test to either diagnose or 
differentiate nonsteroidal anti-inflammatory drug (NSAID)–exacerbated respiratory 
disease (N-ERD). The aim of the present study was to develop and validate an artifi-
cial neural network (ANN) for the prediction of N-ERD in patients with asthma.
Methods: This study used a prospective database of patients with N-ERD (n = 121) 
and aspirin-tolerant (n = 82) who underwent aspirin challenge from May 2014 to May 
2018. Eighteen parameters, including clinical characteristics, inflammatory pheno-
types based on sputum cells, as well as eicosanoid levels in induced sputum superna-
tant (ISS) and urine were extracted for the ANN.
Results: The validation sensitivity of ANN was 94.12% (80.32%-99.28%), specific-
ity was 73.08% (52.21%-88.43%), and accuracy was 85.00% (77.43%-92.90%) for 
the prediction of N-ERD. The area under the receiver operating curve was 0.83 
(0.71-0.90).
Conclusions: The designed ANN model seems to have powerful prediction capabili-
ties to provide diagnosis of N-ERD. Although it cannot replace the gold-standard as-
pirin challenge test, the implementation of the ANN might provide an added value for 
identification of patients with N-ERD. External validation in a large cohort is needed 
to confirm our results.
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1  | INTRODUC TION

Nonsteroidal anti-inflammatory drug (NSAID)–exacerbated respi-
ratory disease (N-ERD) is characterized by the presence of asthma, 
chronic rhinosinusitis with nasal polyposis (CRSwNP), and acute 
respiratory reactions precipitated by aspirin (acetylsalicylic acid) or 
other NSAIDs. Previous studies have demonstrated that patients 
with N-ERD experience a more severe course of asthma, require 
higher doses of corticosteroids to control the disease, and suffer 
from a particularly aggressive polypoid hypertrophy of the sinus mu-
cosa compared with individuals without N-ERD.1,2 The prevalence of 
N-ERD is about 7% in adult patients with asthma and twice as high in 
those with severe asthma.3

N-ERD is a heterogeneous disease, usually associated with eo-
sinophilic inflammation in the airways, although neutrophilic, mixed, 
or paucigranulocytic cell phenotypes based on induced sputum (IS) 
can also be found in some patients.1,4 Another key feature of N-ERD 
is the dysregulation of arachidonic acid metabolism pathways,1,5 in-
cluding a decrease in anti-inflammatory prostaglandin E2 (PGE2) lev-
els and an overproduction of proinflammatory eicosanoids such as 
cysteinyl leukotrienes and prostaglandin D2 (PGD2). The imbalance 
of these lipid mediators has been observed in various body fluids, 
including urine and IS supernatant (ISS).4-6

Despite a relatively broad knowledge on the pathophysiology of 
N-ERD,1 only a few in vitro diagnostic tests have been proposed. The 
investigated parameters included basophil activation7; 15-hydroxye-
icosatetraenoic acid generation in peripheral blood leukocytes8; 

plasma eosinophil–derived neurotoxin levels9; serum periostin levels10; 
serum leukotriene E4 (LTE4) levels and the ratio of LTE4 to prostaglandin 
F2α

11; and urinary LTE4 levels.12 Unfortunately, none of these param-
eters can be recommended for the purpose of diagnosing N-ERD. In 
clinical practice, the most reliable diagnostic method is an intranasal, 
bronchial, and oral aspirin provocation test, the latter being the gold 
standard.13-15 However, oral aspirin challenge is time consuming and 
carries a risk of severe hypersensitivity reactions. Moreover, bronchial 
and oral aspirin challenge tests are difficult to perform in individuals 
with uncontrolled asthma whose forced expiratory volume in the first 
second (FEV1) is below 70% of the predicted value.14,15 Thus, it can 
only be performed in a limited number of patients. Therefore, safe 
methods that could facilitate the diagnosis of N-ERD are needed. Cahill 
et al suggested that an informatics algorithm applied to electronic 
health records could help identify patients with N-ERD.16

The most common machine learning techniques are artificial 
neural networks (ANNs) and support vector machines (SVMs). The 
ANN is a type of computer software inspired by biological neurons. 
The main concept of the ANN is a learning ability to recognize com-
plex patterns on the basis of imputed information (variables and 
outcomes), which can then be used for solving similar problems in 
the future.17 Machine learning techniques are gaining popularity in 
the field of medicine18-20 because they are noninvasive, easy to im-
plement, and cost-effective. The aim of the present study was to 
design the first artificially intelligent program based on clinical char-
acteristics, sputum cell phenotypes, and eicosanoid levels in ISS and 
urine, which could predict the diagnosis of N-ERD. This approach is 

G R A P H I C A L  A B S T R A C T
Artificial neural network based on a set of clinical and biochemical parameters is able to stratify N-ERD patients among asthmatic 
population. The sensitivity of the present artificial neural network is 94.12% and specificity is 73.08% for the prediction of N-ERD. Artificial 
neural network could become a screening tool and allow to quickly identify patients with a high suspicion of N-ERD
Abbreviations: ATA, aspirin-tolerant asthma; BMI, body mass index; CRSwNP, chronic rhinosinusitis with nasal polyposis; FEV1, forced 
expiratory volume in the first second; ICS, inhaled corticosteroid; ISS, induced sputum supernatant; LTE4, leukotriene E4; N-ERD, 
nonsteroidal anti-inflammatory drug–exacerbated respiratory disease; OCS, oral corticosteroid; PGD2, prostaglandin D2;
PGE2, prostaglandin E2; uLTE4, urinary leukotriene E4
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not burdensome for patients, and sputum induction is now almost a 
routine procedure in specialized clinical centers, where treatment of 
asthma is tailored to individual patient needs based on sputum cell 
phenotypes.

2  | MATERIAL AND METHODS

2.1 | Data sets

This study used a prospective database of patients with N-ERD 
and aspirin-tolerant asthma (ATA) who were recruited from among 
patients with asthma treated at the Andrzej Szczeklik Department 
of Internal Medicine, Jagiellonian University Medical College, 
Cracow, Poland. Demographic data of patients as well as blood, 
IS, and urine samples were collected from all study participants 

between May 2014 and May 2018 on 3 different occasions (3 
grants): (a) 1 day before bronchial aspirin challenge4; (b) 1.5 hours 
before diagnostic oral aspirin challenge21; and (c) 1 day before oral 
aspirin challenge conducted because of aspirin desensitization.22 
None of the included patients underwent a sinus surgery within 
3  months preceding the aspirin challenge test. The study group 
included 121 patients with N-ERD and 82 patients with ATA. The 
diagnosis of aspirin hypersensitivity was established based on 
the guidelines of the European Academy of Allergy and Clinical 
Immunology (EAACI) and Global Allergy and Asthma European 
Network (GA2LEN).14 None of the patients with asthma had been 
treated with leukotriene modifiers 6 weeks prior to the study or 
with other medications except inhaled corticosteroids, small doses 
of oral corticosteroids (not exceeding 10  mg of prednisolone or 
equivalent) and long-acting beta2-agonists. The clinical character-
istics of the patients are presented in Table 1.

TA B L E  1   Characteristics of the study groups

Parameter N-ERD (n = 121) ATA (n = 82) P

Age (years) 49 (39-55) 48 (38-57) .97

Sex (female/male) (% of female) 86/35 (71.1%) 45/37 (54.9%) .02

Asthma duration (years) 10 (6-17) 11 (5-20) .38

Age at asthma onset >12 years (yes/no) 
(% of yes)

119/2 (98.3%) 69/13 (84.1%) <.001

ACT score 23 (18-25) 23 (22-25) .07

Present level of asthma control (well-
controlled/partially controlled/
uncontrolled)

48/46/7 (39.7%/38%/22.3%) 45/25/12 (54.9%/30.5%/14.6%) .09

Baseline FEV1 (% predicted) 89.9 (81.2-100.2) 97.4 (84.4-106.6) .02

ICS (yes/no) (% of yes) 108/13 (89.3%) 63/19 (76.8%) .02

Dose of ICS (µg/d fluticasone eq) 400 (100-1000) 400 (100-1000) .32

OCS (yes/no) 8/113 (6.6%) 7/75 (8.5%) .61

CRSwNP (yes/no) (% of yes) 121/0 (100%) 45/37 (54.9%) <.001

History of sinonasal surgery (yes/no) (% 
of yes)

112/9 (92.6%) 41/41 (50%) <.001

BMI > 30 kg/m2 (yes/no) (% of yes) 29/92 (24%) 17/65 (20.7%) .59

Asthma severity
(mild, moderate, and severe)

13/48/60 (10.7%/39.7%/49.6%) 19/31/32 (23.2%/37.8%/39.0%) 0.11

Atopy (yes/no) (% of yes) 79/42 (65.3%) 61/21 (74.4%) .22

Blood eosinophils (mm3) 353 (212-612) 293 (150-500) .04

IS phenotype (eosinophilic, neutrophilic, 
paucigranulocytic, and mixed)

61/18/24/18 (50.4%/14.9%/19.8%/14.9%) 16/25/27/14 
(19.5%/30.5%/32.9%/17.1%)

<.001

ISS PGD2 43.6 (21.2-95.6) 24.0 (13.9-62.3) .002

ISS PGE2 43.6 (21.2-95.6) 51.5 (36.9-90.3) .337

ISS LTE4 58.5 (17.9-167.7) 17.5 (6.7-43.6) <.001

Urinary LTE4 1063.0 (441.5-2635) 327.0 (119.0-758.0) <.001

Note: Asthma control and severity based on GINA 2018 guidelines. Atopy was defined as serum IgE level ≥100 IU/mL or positive skin prick tests, or 
both.
Abbreviations: ACT, asthma control test; ATA, aspirin-tolerant asthma; BMI, body mass index; CRSwNP, chronic rhinosinusitis with nasal polyposis; 
FEV1, forced expiratory volume in the first second; ICS, inhaled corticosteroid; IgE, immunoglobulin E; IS, induced sputum; ISS, induced sputum 
supernatant; LTE4, leukotriene E4; N-ERD, nonsteroidal anti-inflammatory drug–exacerbated respiratory disease; OCS, oral corticosteroid; PGD2, 
prostaglandin D2; PGE2, prostaglandin E2.
A P value of less than .05 was considered significant (in bold type).
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The primary outcome was the occurrence of N-ERD. We reviewed 
clinical data of patients, including sex, age at asthma onset, body mass 
index, Asthma Control Test (ACT) results, asthma severity (according 
to the 2018 Global Initiative for Asthma guidelines), inhaled and oral 
corticosteroid treatment, the presence of CRSwNP (diagnosed on the 
basis of computed tomography scans and ear, nose, and throat exam-
ination), a history of sinonasal surgery, FEV1 value, and the results of 
skin prick tests to aeroallergens. Laboratory tests included blood eo-
sinophil count, total serum immunoglobulin E (IgE) levels, inflammatory 
phenotypes based on IS cells, ISS PGD2, PGE2, and LTE4 levels, as well 

as urinary LTE4 levels. The parameters used in the machine learning 
models are summarized in machine learning is shown in Table 2.

Each of the studies providing data for the presented work was 
approved by Jagiellonian University Ethics Committee, and written 
informed consent was obtained from all study participants.

2.2 | Induced sputum

Induced sputum samples were collected according to the European 
Respiratory Society recommendations.23 The resulting material was 
processed to obtain cytospin slides for a differential cell count and a 
supernatant for eicosanoid evaluation.

Four cell phenotypes based on IS examination were distin-
guished.4,21 The ISS levels of eicosanoids were measured by gas 
chromatography/mass spectrometry for PGD2 and PGE2 and by 
high-performance liquid chromatography/tandem mass spectrome-
try for LTE4. The results were expressed in picograms per milliliter 
[pg/mL]. Analytical details were presented elsewhere.4,21

2.3 | Urine

Morning urine samples were collected after a 2-hour accumulation 
of urine in the bladder. Urinary LTE4 excretion was assessed with an 
enzyme-linked immunosorbent assay (Cayman Chemical Co.). The 
results were recalculated in picograms per mg of creatinine.

2.4 | Machine learning implementation

We used the ANN and SVM to predict the occurrence of N-ERD among 
asthma patients on the basis of 18 clinical and biochemical parameters. 
The data set (n = 203) was randomly divided into training (n = 143) and 
validating (n = 60) samples using a random numbers generator. The in-
terval [0, 1] was divided into 2 subintervals: [0, 0.7] and [0.7, 1]. The 
cases were classified to learning and validation samples depending on 
which subinterval the generated random number was assigned to. We 
used an external selection process of training and validation samples to 
compare the performance of the ANN and SVM models using the same 
training and validation sets. All patients with N-ERD and ATA included 
in the analysis had the diagnosis of aspirin hypersensitivity or tolerance 
previously established on the basis of medical history and aspirin chal-
lenge test according to the EAACI/GA2LEN guidelines.14 Additionally, 
we performed separate analyses excluding cell phenotypes based on IS, 
ISS levels of PGD2, PGE2 and LTE4, as well as urinary LTE4.

2.5 | Artificial neural network

An ANN is based on input variables (input layer), which are integrated 
in a nonlinear process (hidden layer) to finally generate output results 
(output layer). The ANN model is initially fitted on a training sample, 

TA B L E  2   Summary of 18 parameters used in the artificial neural 
network, support vector machine, and multiple logistic regression

Parameter Input type Input range

Sex Qualitative Female or male

Age at asthma 
onset

Qualitative <12 years or 
≥12 years

BMI Qualitative <30 or ≥30

Asthma control Qualitative Well-controlled, 
partially controlled, 
or uncontrolled

Asthma severity Qualitative Mild, moderate, or 
severe

ICS Qualitative Yes or no

OCS Qualitative Yes or no

CRSwNP Qualitative Yes or no

History of sinonasal 
surgery

Qualitative Yes or no

FEV1 Qualitative ≤80% or >80%

Skin prick tests Qualitative Positive or negative

Total serum IgE Qualitative <100 IU/mL or 
≥100 IU/mL

Blood eosinophils Qualitative <400/μL or ≥400/μL

IS phenotype Qualitative Eosinophilic, 
neutrophilic, 
paucigranulocytic, 
mixed

log ISS PGD2 Quantitative 3.57 ± 1.02; 3.55 
(2.79-4.36)

log ISS PGE2 Quantitative 4.17 ± 0.75; 4.01 
(3.71-4.62)

log ISS LTE4 Quantitative 3.50 ± 1.53; 3.43 
(2.40-4.75)

Urinary LTE4 Quantitative 6.52 ± 1.55; 6.44 
(5.48-7.65)

Note: Asthma control and severity based on 2018 GINA guidelines. 
Positive skin tests were defined as a positive skin prick test to at least 1 
aeroallergen.
Abbreviations: ACT, asthma control test; BMI, body mass index; 
CRSwNP, chronic rhinosinusitis with nasal polyposis; FEV1, forced 
expiratory volume in the first second; ICS, inhaled corticosteroids; 
IgE, immunoglobulin E; IS, induced sputum; ISS, induced sputum 
supernatant; LTE4, leukotriene E4; OCS, oral corticosteroids; PGD2, 
prostaglandin D2; PGE2, prostaglandin E2; LTE4, leukotriene E4.
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which comprises data records used to train the neural network. An 
independent set of data named the testing sample (or holdout sample) 
is used to set the architecture of the ANN and prevent overtraining. 
Finally, another set of data records, called the validating sample, is 
used to assess the final neural network. The errors of the validating 
sample give an “honest” estimate of the predictive ability of the ANN 
because the validating cases are not used to build the model.17

We used 143 cases (70.4%) of data (87 N-ERD and 56 ATA cases) 
as the training sample, among which 23 cases were separated as the 
testing sample. Then, 60 cases (29.6%) of data (34 N-ERD and 26 ATA 
cases) were used as the validation sample. We included 18 variables 
(14 qualitative and 4 quantitative; Table 2) in the input layer, which 
consisted of 36 neurons. We attempted to determine the best per-
formance using different (1–5) numbers of ANN hidden layers and 
found that the best performance in our ANN was achieved with a sin-
gle hidden layer constructed with eight neurons (Figure 1). The ANN 
was trained using a backpropagation algorithm. The input quantitative 
variables were previously logarithmically normalized. The activation 
function was logistic in the hidden layer and linear in the output layer. 
The higher output number of our ANN indicated a higher probability of 
N-ERD. In order to convert the fractional N-ERD prediction value into 
a binary N-ERD status (yes or no), the algorithm introduced a cutoff 
value above which our ANN would predict a “yes” N-ERD status. Once 
the training was complete, the algorithm tested a number of cutoff 
values to establish the sensitivity and specificity for the prediction of 
N-ERD. When the cutoff value was selected from the training data set, 
the same value was then used on the validation set, and, similarly, the 
sensitivity and specificity were computed.

2.6 | Support vector machine

A SVM performs classification of tasks by constructing nonlinear 
decision boundaries. The machine conceptually implements the 
idea that input vectors are nonlinearly mapped to a very high dimen-
sional feature space. A linear decision surface is constructed in this 
feature space. Owing to the nature of the feature space in which 
these boundaries are found, the SVM can exhibit a large degree of 
flexibility in handling classification and regression tasks of varied 
complexities. There are several types of SVM models including lin-
ear, polynomial, radial basic function, and sigmoid.24 We checked all 
of these models and finally chose the radial basic function.

2.7 | Multiple logistic regression

Additionally, for statistical comparison we used a MLR, which is a sta-
tistical method in which two or more measurement variables are taken 
into consideration simultaneously to predict a value of one nominal 
(binary) variable. Since the explanatory variables (nominal and contin-
uous) were dependent, we found the best model according to Akaike 
information criterion (AIC). The optimal MLR model could also provide 
information about the most important discriminant variables.25

2.8 | Statistical analysis

All calculations were performed with Dell Statistica v. 13 (data analy-
sis software system). Categorical variables were presented as num-
bers and percentages, and analyzed using the Fisher exact test. The 
Freeman-Halton extension of the Fisher exact test for 2 rows by 3 
columns contingency table was used for small samples. Continuous 
variables were expressed as mean with standard deviation (SD) or 
median with lower and upper quartiles. A P value of less than .05 
(type I error) was considered significant. Data from the test cohort 
were implemented as an input into the ANN, SVM, and multiple lo-
gistic regression (MLR). The results were recorded and compared 
with a receiver operating characteristics (ROC) curve analysis. The 
predictive value of N-ERD was compared using an area under the 
ROC curve (AUROC).

3  | RESULTS

3.1 | Artificial neural network

The training sensitivity (with 95% CI) of the ANN for the prediction 
of N-ERD was 95.40% (88.64%-98.73%); specificity, 87.50% (75.93%-
94.82%); and accuracy, 92.31% (86.65%-96.10%). The validation 
sensitivity was comparable and reached 94.12% (80.32%-99.28%); 
specificity, 73.08% (52.21%-88.43%); and accuracy, 85.00% (77.43%-
92.90%). The AUROC was 0.85 (0.73-0.93) and 0.83 (0.71-0.90) for 
training and validation, respectively (Figures 2 and 3). The diagnostic 

F I G U R E  1   Schematic presentation of the artificial neural network 
(ANN). Each line represents weight connecting one layer to the next, 
with each square representing an input, hidden, and output layer



1654  |     TYRAK et al.

odds ratio (with 95% CI) was 145.25 (40.46-278.3) and 43.43 (8.17-
521.48) for training and validation, respectively (Table 3).

3.2 | Support vector machine

The training sensitivity (with 95% CI) of the SVM for the prediction 
of N-ERD was 100% (95.85%-100%); specificity, 75.00% (61.63%-
85.61%); and accuracy, 90.21% (84.12%-94.54%). The valida-
tion sensitivity was 82.35% (65.47%-93.24%); specificity, 61.54% 
(40.57%-79.77%); and accuracy, 75.33% (60.34%-83.93%). The 
AUROC was 0.82 (0.70-0.91) and 0.75 (0.62-0.85) for training and 

validation, respectively (Figures 2 and 3). The diagnostic odds ratio 
was 275.00 (15.35-4925.67) and 7.47 (4.08-13.66) for training and 
validation, respectively (Table 3).

3.3 | Multiple logistic regression

The training sensitivity (with 95% CI) of the MLR for the predic-
tion of N-ERD was 93.10% (85.59%-97.43%); specificity, 64.29% 
(50.36%-76.64%); and accuracy, 81.82% (74.51%-87.77%). The vali-
dation sensitivity was 82.35% (65.47%-93.24%); specificity, 69.23% 
(48.21%-85.67%); and accuracy, 76.67% (63.96%-86.62%). The 

F I G U R E  2   Comparison of sensitivity, 
specificity, accuracy and area under 
receiver operating characteristics (ROC) 
curve of the 3 models for determining 
nonsteroidal anti-inflammatory drug–
exacerbated respiratory disease among 
patients with asthma: artificial neural 
network (ANN), support vector machine 
(SVM), and multiple logistic regression 
(MLR) in the validation cohort

F I G U R E  3   Receiver operating 
characteristics (ROC) curve according to 
the 3 models: artificial neural network 
(ANN), support vector machine (SVM), and 
multiple logistic regression (MLR) in the 
validation cohort
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AUROC was 0.85 (0.73-0.93) and 0.79 (0.67-0.88) for training and 
validation, respectively (Figures 2 and 3). The diagnostic odds ratio 
was 19.05 (7.42-48.91) and 6.14 (1.98-19.04) for training and valida-
tion, respectively (Table 3).

3.4 | Artificial neural network, support vector 
machine, and multiple logistic regression—
additional analyses

3.4.1 | Clinical, blood, ISS eicosanoid, and urine data 
(excluding phenotype based on IS)

The validation sensitivity (with 95% CI) of the ANN for the predic-
tion of N-ERD was 97.06% (84.67%-99.73%); specificity, 57.69% 
(36.92%-76.65%); and accuracy, 80.00% (67.67%-89.22%). The 
AUROC was 0.82 (0.70-0.94). For the SVM, the validation sensitivity 
was 81.25% (63.56%-92.79%); specificity, 61.54% (40.57%-79.77%); 
and accuracy, 72.41% (59.10%-83.34%). The AUROC was 0.74 (0.62-
0.86). For the MLR, the validation sensitivity was 76.32% (61.62%-
91.02%); specificity, 67.45% (46.76%-88.14%); and accuracy, 70.21% 
(56.13%-82.43%). The AUROC was 0.70 (0.57-0.83).

3.4.2 | Clinical, blood, urine, and sputum cell 
phenotype data (excluding ISS eicosanoids)

The validation sensitivity (with 95% CI) of the ANN for the predic-
tion of N-ERD was 96.88% (83.78%-99.92%); specificity, 61.54% 
(40.57%-79.77%); and accuracy, 81.03% (68.59%-90.13%). The 
AUROC was 0.79 (0.70-0.88). For the SVM, the validation sensitivity 
was 87.50% (71.01%-96.49%); specificity, 61.54% (40.57%-79.77%); 
and accuracy, 75.86% (62.83%-86.13%). The AUROC was 0.74 (0.63-
0.81). For the MLR, the validation sensitivity was 81.32% (69.76%-
92.31%); specificity, 68.17% (57.17%-79.32%); and accuracy, 75.32% 
(66.72%-84.45%). The AUROC was 0.76 (0.66-0.86).

3.4.3 | Clinical, blood, and urine data (excluding all 
IS parameters)

The validation sensitivity (with 95% CI) of the ANN for the predic-
tion of N-ERD was 96.88% (83.78%-99.92%); specificity, 57.69% 
(36.92%-76.65%); and accuracy, 79.31% (66.65%-88.83%). The 

AUROC was 0.78 (0.70-0.86). For the SVM, the validation sensi-
tivity was 89.47% (75.20%-97.06%); specificity, 54.55% (32.21%-
75.61%); and accuracy, 76.67% (63.96%-86.62%). The AUROC was 
0.74 (0.63-0.81). For the MLR, the validation sensitivity was 80.23% 
(68.30%-90.53%); specificity, 68.17% (57.17%-79.32%); and accu-
racy, 74.34% (65.86%-83.14%). The AUROC was 0.75 (0.66-0.84).

3.4.4 | Clinical, blood, and sputum data (excluding 
urinary LTE4)

The validation sensitivity (with 95% CI) of the ANN for the prediction 
of N-ERD was 97.06% (89.69%-100%); specificity, 65.38% (44.33%-
82.79%); and accuracy, 83.33% (71.48%-91.79%). The AUROC was 
0.80 (0.70-0.90). For the SVM, the validation sensitivity was 79.41% 
(62.10%-91.30%); specificity, 61.54% (40.57%-79.77%); and accu-
racy, 71.67% (58.56%-82.55%). The AUROC was 0.72 (0.61-0.83). 
For the MLR, the validation sensitivity was 76.34% (61.14%-90.54%); 
specificity, 59.23% (39.21%-79.42%); and accuracy, 66.32% (50.21%-
82.72%). The AUROC was 0.64 (0.53-0.75).

4  | DISCUSSION

There are no reliable in vitro tests that would allow to diagnose N-ERD 
with high probability. None of the single biomarkers have been gen-
erally recognized as being able to determine the presence of the dis-
ease in clinical practice. Our center has been involved in research on 
N-ERD for many years. It was initiated by Professor Andrzej Szczeklik, 
who presented the cyclooxygenase theory of aspirin-induced asthma, 
which indicated that aspirin hypersensitivity is related to the pharma-
cological inhibition of cyclooxygenase.26 We have been investigating 
various diagnostic methods for aspirin hypersensitivity, including in 
vitro tests, yet without much success. In a recent systematic review 
and meta-analysis, Hagan et al have shown for the first time that the 
measurement of urinary LTE4 could be used as a clinical test to identify 
the risk of aspirin intolerance among patients with asthma.27 However, 
further research is needed to standardize the normative values for 
each of the major methodologies used to analyze urinary LTE4 levels 
and define the clinical utility of this biomarker. So far, the prediction 
of N-ERD diagnosis can only be established on the basis of a patient's 
medical history and a positive aspirin challenge test.

As a medical and research center dealing with N-ERD patients, 
we have hundreds of individuals with N-ERD and ATA in our cohort. 

TA B L E  3   Comparison of the 3 models for determining nonsteroidal anti-inflammatory drug–exacerbated respiratory disease among patients 
with asthma: artificial neural network (ANN), support vector machine (SVM), and multiple logistic regression (MLR) in the validation cohort

  AUROC (95% CI) P Sensitivity (%) Specificity (%) DOR (95% CI)

ANN 0.83 (0.71-0.91) <.001 94.12 73.08 43.43 (8.17-521.49)

SVM 0.75 (0.62-0.85) <.001 82.35 61.54 7.47 (4.08-13.66)

MLR 0.79 (0.67-0.88) <.001 82.35 69.23 6.14 (1.98-19.04)

Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, confidence interval; DOR, diagnostic odds ratio.
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On various occasions, including research grants, our patients have 
been subjected to aspirin challenge test as well as clinical and bio-
chemical evaluations. These included the assessment of asthma se-
verity and control, spirometry, computed tomography scans of the 
sinuses, total serum IgE levels, skin tests, cell phenotypes based 
on sputum, as well as eicosanoid evaluation in ISS and urine. Using 
this prospectively collected data, we aimed to develop an artificially 
intelligent system for predicting the presence of N-ERD among 
asthma patients. Artificial intelligence is the ability of a learning ma-
chine to interpret external data, learn from it, and use those results 
to achieve certain goals. The ANN is an artificial intelligence tool that 
has recently become popular in medical diagnosing.17,18 It is a human 
brain–inspired computing system, which is able to process complex 
data (input variables and known outcomes), and then use the recog-
nized patterns to solve similar problems in the future. In the present 
study, we have for the first time developed an ANN that transformed 
a combination of 18 clinical and biochemical variables of asthma pa-
tients into an output value differentiating between N-ERD and ATA.

The selected clinical and biochemical data are easily obtainable 
in a clinical setting and seem to be helpful in predicting the presence 
of N-ERD. Six weeks prior to the study, all participants were treated 
in the same way with inhaled corticosteroids, long-acting beta2-ago-
nists, nasal corticosteroids, and, in 15 cases, with small doses of oral 
corticosteroids. The clinical differences between the 2 groups in our 
study concerned sex, the age of asthma onset, baseline FEV1, treat-
ment, the presence of CRSwNP, and a history of sinonasal surgery. 
Such discrepancies between N-ERD and ATA are well recognized 
and were previously acknowledged by other authors.1 Apart from 
blood and urine collection, all study participants underwent sputum 
induction, as it is a relatively noninvasive procedure that allows the 
parallel assessment of inflammation cellular pattern and eicosanoid 
profile in the bronchi. Assessment of cell phenotypes based on spu-
tum is currently a routine procedure in clinical centers providing care 
for asthma patients. However, ISS biomarkers are only evaluated in 
specialist laboratory centers. Therefore, we attempted to exclude 
the phenotype based on IS, ISS eicosanoids (still including cell phe-
notypes based on IS), and then all IS variables (excluding cell phe-
notypes and ISS eicosanoids) from our machine learning model, and 
then performed 3 additional analyses based on the remaining pa-
rameters. Our results showed that the separate exclusion of the phe-
notype based on IS or ISS eicosanoids and the development of ANN 
based on the remaining parameters deteriorated the specificity of 
the ANN from 73% to 57.7% or 61.5%, respectively. Additionally, we 
performed an analysis excluding solely urinary LTE4, as the overpro-
duction of cysteinyl leukotrienes is the key pathologic mechanism 
in N-ERD. Our results showed that the exclusion of this single pa-
rameter deteriorated the specificity of the ANN from 73% to 65.4%. 
This indicates that both the phenotype based on IS as well as ISS and 
urinary eicosanoid concentrations are important in the prediction of 
N-ERD diagnosis. The ANN developed with the exclusion of even 
one of the above parameters was characterized by markedly lower 
specificity. It could also be expected that sputum induction would 
gain popularity in the era of precision medicine.28

N-ERD is usually associated with eosinophilic inflammation of 
the airways, but other sputum phenotypes (ie, neutrophilic, mixed, or 
paucigranulocytic) may also occur.4 Another key feature of N-ERD is 
the complex alteration of arachidonic acid metabolism pathways.1,5 
The imbalance between pro- and anti-inflammatory lipid mediators 
was previously observed in the ISS and urine of N-ERD individuals,4-6 
and this determined the selection of PGD2, PGE2, and LTE4 for our 
machine learning analysis. We observed significantly higher baseline 
levels of PGD2 and LTE4 in ISS as well as urinary LTE4 in N-ERD individ-
uals. On the contrary, baseline ISS PGE2 levels did not differ between 
the two groups, which had also been reported previously.5 The inclu-
sion of this lipid mediator in our analysis was prompted by the fact 
that PGE2 is one of the key eicosanoids involved in the pathogenesis 
of N-ERD.1 Moreover, the significant decrease of ISS PGE2 concen-
trations in patients with N-ERD occurs during oral aspirin challenge.21

The present study has shown for the first time that the ANN could 
be successfully used to differentiate between patients with N-ERD 
and ATA. A multi-parameterized ANN was characterized by the high-
est sensitivity, specificity, and accuracy for the prediction of N-ERD 
among the 3 investigated methods including also the SVM and MLR. 
The ANN and SVM concentrate on finding a useful computer algo-
rithm for solving discrimination problem and can be treated as com-
peting solutions. The MLR is a model-based technique, in which two 
or more measurement variables are taken into consideration simulta-
neously to predict a value of one nominal variable.25 In our study, the 
MLR yielded the worst results among the investigated methods and 
should not be recommended for N-ERD prediction based on the ana-
lyzed variables. The sensitivity of our ANN for N-ERD prediction was 
94%, which is a good result when compared with other studies using 
artificial intelligence to predict the diagnosis of various diseases.18,29 
In comparison with the oral aspirin challenge test,14 our ANN was 
characterized by higher sensitivity (94% vs 89%) but lower specific-
ity (73% vs 93%) for N-ERD prediction. Similarly, in comparison with 
bronchial aspirin challenge test,14 our ANN was characterized by 
higher sensitivity (94% vs 77%) and lower specificity (73% vs 93%) for 
N-ERD prediction. The above provocation methods were perfected 
many years ago. For example, the oral aspirin test would take 2 days, 
while currently, a shorter 1-day oral challenge test is used. It is not 
known how our results would compare to the 1-day aspirin challenge 
protocols.15 We believe that it would also be very interesting and 
useful to perform a similar machine learning study between N-ERD 
and ATA only with CRSwNP. In our study, the number of ATA with 
CRSwNP patients was too small to perform a reliable analysis.

Our approach obviously cannot replace the gold-standard diag-
nostic method, which is the oral aspirin challenge test. However, the 
implementation of the ANN might provide an added value for identi-
fying patients with N-ERD in clinical practice (Figure 4). This method 
is time effective, and, unlike the aspirin challenge test, it does not re-
quire patient hospitalization. All necessary procedures and data col-
lection can be conducted in an outpatient setting during a single day. 
The ANN could also be helpful in predicting N-ERD in patients with 
asthma and low baseline FEV1. The inclusion of patients with low 
FEV1 in our study was only limited by sputum induction, for which 
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the minimum FEV1 value is 50%.30 The oral aspirin challenge test can 
be carried out when baseline FEV1 is at least 70%.14,15 In contrast to 
the aspirin challenge test, the procedures necessary to obtain data 
for the presented ANN do not carry a risk of life-threatening reac-
tions. Recently, it has been reported that some asthma patients with 
aspirin hypersensitivity have negative aspirin challenge test results 
when they receive leukotriene receptor antagonists31 or had under-
gone sinus surgery shortly before aspirin provocation.32 However, 
there were no such participants in our study, so it is difficult to con-
clude whether the ANN would be also useful in situations where the 
aspirin challenge is negative in the face of a strong clinical suspicion.

The results of this study should be interpreted within the context 
of its limitations. First, the clinical and biochemical assessment was 
performed directly before the aspirin challenge test in all patients 
with N-ERD and ATA. Therefore, asthma treatment was modified.14 
Second, it may seem that the number of 18 variables included in our 
ANN is high, but the exclusion of IS variables substantially reduced 
the percentage of correctly classified diagnoses. Third, the group of 
203 patients could seem to be relatively small for the development 
of a machine learning system. However, it should be emphasized that 
N-ERD is a specific endotype of asthma and the number of patients 
is limited. We hope to collaborate on the development of the ANN 
with our colleagues from other centers in the future. Finally, as for 
now, our ANN is only a statistical model, which in order to be used 
in clinical practice will require the development of a user interface 
available in the physician's office.

In conclusion, we have developed a multi-parameterized ANN 
that is able to identify patients with N-ERD among the asthmatic 
population. Although it cannot be perceived as a replacement for 
the aspirin challenge test, it shows that machine learning techniques 
might be beneficial in the diagnostic process of N-ERD. Further re-
search is needed to develop a system that would allow for an entirely 
in vitro diagnosis of N-ERD via the implementation of machine learn-
ing techniques.
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