
REVIEW

Metabolic Brain Disease           (2025) 40:48 
https://doi.org/10.1007/s11011-024-01435-3

(HE) in portacaval shunted dogs (Nencki 1895). However, 
a number of recent reports suggest that elevated ammonia 
may have more widespread consequences in chronic liver 
disease. Thus, in acute-on-chronic liver failure, ammonia 
levels predict 30-day mortality (Verma et al. 2021; Chiriac 
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Abstract
Elevated arterial ammonia is associated with several complications of liver disease as it predicts mortality for in-patients 
and decompensation, hospitalization and death in out-patients with cirrhosis. In this review, our aim was to estimate how 
the individual organs contribute to arterial ammonia based on published data from human studies. The brain removes 
ammonia from arterial blood in a concentration-dependent fashion. Ammonia that is released from the gut to portal blood 
is mainly from metabolism of glutamine in the enterocytes using this as a source of energy. Ammonia produced by bac-
terial metabolism of urea and proteins only partially reach portal blood and is likely recycled into bacterial proteins. In 
general, the liver efficiently removes ammonia from arterial or portal blood in proportion to the delivered concentration. 
As a result,– and in some contrast to conventional wisdom–, the hepato-splanchnic region only contributes marginally 
to arterial ammonia; even during a simulated upper GI bleed. The only exception is acute liver failure where hepatocyte 
necrosis allows large quantities of portal ammonia to pass. The kidneys release ammonia from glutamine metabolism into 
systemic blood. The renal ammonia release increases during a simulated upper GI bleed or hypokalemia where it becomes 
a major source of elevated arterial ammonia. In the resting state, muscles remove ammonia in a concentration-dependent 
manner and muscles are the primary ammonia lowering organ in most situations with elevated arterial ammonia. During 
strenuous exercise, muscles produce large amounts of ammonia into systemic blood. Thus, the complete pattern of ammo-
nia metabolism is very dynamic and illustrates the difficulties in designing ammonia lowering therapies.
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et al. 2021; Hu et al. 2020; Patwardhan et al. 2016); Ele-
vated ammonia is related to in-hospital mortality in patients 
with alcoholic hepatitis (Ravi et al. 2017); and in patients 
with cirrhosis admitted to hospital for other reasons, ele-
vated ammonia was related to the failure of multiple organs 
(liver, coagulation, kidneys, and lungs) (Shalimar et al. 
2019). Even in stable out-patients with cirrhosis, elevated 
ammonia is associated with subsequent liver related compli-
cations, hospitalizations and mortality (Tranah et al. 2022; 
Balcar et al. 2023).

So, while the clinical utility of measuring plasma ammo-
nia has been questioned (Deutsch-Link et al. 2022), arterial 
ammonia seems to be a key factor in the development of 
complications in cirrhosis of the liver. Accordingly, ammo-
nia is now linked to a broad range of pathophysiological 
complications in liver disease including not only brain 
edema and the neuropsychiatric syndrome of HE, but also 
stellate cell activation with hepatic fibrosis, risk of liver 
cancer, compromised immune function, hypotension with 
hyperdynamic circulation, and possibly in extreme cases 
also renal and pulmonary injury (Dasarathy et al. 2017; 
Thomsen et al. 2023).

Since the culprit in these cases is the arterial ammonia 
concentration, it is fundamental to understand the dynamics 
of ammonia metabolism; the origin of arterial ammonia and 
its removal in different situations. In the following we will 
try to explore these questions by looking at the contribution 
of different organs to the arterial ammonia concentration.

Ammonia is truly elusive in the sense that it can be both 
synthetized and metabolized in most cells and thus recir-
culate intra- and intercellularly. The focus of this review 
is the sum of these processes expressed as the resulting 
(net-) release of ammonia from the organs into systemic 
blood or removal of ammonia from the systemic blood. 
The removal rate depends on the arterial concentration and 
may also be expressed as a clearance (removal rate/arterial 
concentration).

We aim to describe how the individual organs contrib-
ute in different situations. To provide this overview we 
recalculated values to release- and removal rates in µmol/
min per person and if necessary, a standard body weight of 
70 kg was used. In most studies, ammonia was measured 
in plasma, so we specify only if that was not the case and 
full blood was used. We also used literature values for flow 
rates: Portal vein 750–1000 ml/min fasting, superior mes-
enteric vein (SMV) 600 mL/min, Inferior mesenteric vein 
(IMV) 150 ml/min, and for perfusion of jejunum (300 mL/
min), ileum (300 mL/min) and colon (150 mL/min) (Bjorck 
and Bergqvist 2006; Burkart et al. 1993; Naganawa et al. 
1994). We only used studies in humans.

Whole-body ammonia metabolism

A novel methodology enabled us to quantify whole-body 
release of ammonia into and clearance from systemic blood 
in vivo (Eriksen et al. 2023). In that study, arterial ammonia 
in fasted, resting patients with cirrhosis was 4 times higher 
than in healthy individuals. This difference was caused by 
a ~ 3-fold increase in ammonia release into arterial blood 
and a 25% lower clearance of arterial ammonia in patients 
with cirrhosis (Fig. 1). These findings will constitute the 
basis of this paper, in which we present and discuss the pri-
mary organs responsible for these metabolic alterations and 
how they may be affected in health and disease.

The inter-organ trafficking of ammonia is mainly a result 
of three important metabolic processes. First, the immedi-
ate detoxification of ammonia mediated by the glutamine 
synthetase reaction:

Glutamate + NH+
4 + ATP → Glutamine + ADP + Pi + H+ (1)

Second, the glutaminase reaction that releases ammonia and 
is the reverse of Eq. 1:

Glutamine + ADP + Pi + H+ → Glutamate + NH+
4 + ATP (2)

These two reactions can simultaneously take place in most 
cell types, but with different weight. An important excep-
tion is the brain, where the glutamine synthetase reaction 
is absent in the neurons which therefore rely on astrocytic 
glutamine synthetase to remove ammonia.

As a third possibility, ammonia is produced in contract-
ing muscles through the metabolism of adenosine mono-
phosphate (AMP) to inosine phosphate (IMP), as explained 
below under Muscle.

Generally speaking, ammonia can be regarded as a 
waste product of protein metabolism after the carbon skel-
etons have been used for energy production. It is detoxified 
through the glutamine synthetase reaction. However, while 
that reaction helps the transient control of arterial ammonia, 
it does not provide a route of excretion. The only quanti-
tatively important pathway for elimination of ammonia 
derived nitrogen is when glutamine (from Eq. 2) or other 
amino acids after transamination from glutamine enter the 
urea cycle and the subsequent urinary excretion of urea. The 
synthesis of urea (25 g/day ~ 460 µmol/min) exceeds the 
release of ammonia into arterial blood (Fig. 1). Thus, the 
total level of plasma nitrogen (including ammonia) is con-
trolled by the urea synthesis, whilst the short-term regula-
tion of ammonia is governed by Eqs. 1–2 and the dynamics 
explained below.
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Brain

The brain is a net remover of ammonia. Reports from the 
1990’s suggested that the blood-brain-barrier permeability 
for ammonia was increased in cirrhosis but more recent PET 
studies showed no permeability difference between healthy 
controls and patients with cirrhosis with or without HE or 
patients with ALF (Keiding et al. 2006; Strauss et al. 2001; 
Clemmesen et al. 1999; Ott and Larsen 2004). In accor-
dance, the cerebral uptake is proportional to the arterial 
ammonia concentration (Clemmesen et al. 1999; Keiding 

et al. 2006). As presented in Fig. 2, the net cerebral uptake 
increases linearly with arterial ammonia concentration. This 
linear relation is similar in healthy individuals, patients with 
cirrhosis, and patients with ALF (Fig. 2, Panel C).

The transport of ammonia across the BBB may both 
be mediated by diffusion of the gaseous form NH3 and by 
carrier-mediated transport of NH4

+ which constitutes 98% 
at physiological pH. Carrier-mediated transport is likely the 
most efficient, since change in pH does not affect ammonia 
permeability as would be expected if the diffusion was more 
prominent (Strauss et al. 2001; Sørensen 2013; Ott and 

Fig. 2 The net cerebral uptake of ammonia increases linearly with arte-
rial concentration in acute liver failure (Panel A and B), as well as in 
healthy persons and patients with or without hepatic encephalopathy 
(Panel C). As seen in Panel C, the correlation is identical in healthy 

persons and patients with cirrhosis with or without HE. References: 
Panel A (Clemmesen et al. 1999), B (Strauss et al. 2001), C (Keiding 
et al. 2006)

 

Fig. 1 A simple model of the turnover of arterial ammonia. In this context the release of ammonia is the sum of ammonia released from different 
organs into the arterial blood, and clearance is the net clearance of arterial ammonia by all organs
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concentration of 100 µmol/L and 30–60 at arterial concen-
tration of 200 µmol/L.

Gut

In this section we will examine the release of ammonia from 
the gut to portal blood. To contribute to the systemic ammo-
nia concentration, portal ammonia should first pass through 
the liver or bypass it through portosystemic shunts. The 
resulting contribution of the splanchnic region (gut + liver) 
to systemic ammonia will be discussed in the next two sec-
tions: Liver and Hepato-splanchnic region. The data will 
question the current dogma that elevated arterial ammo-
nia in patients with cirrhosis is gut-derived and primarily a 
result of bacterial metabolism in the colon.

To measure gut release of ammonia from the gut to the 
portal vein, portal blood sampling is required and only few 
human studies are available (van de Poll et al. 2008; van der 
Hulst et al. 1997; Olde Damink et al. 2003; Olde Damink et 
al. 2002; Plauth et al. 2000).

From these studies we calculated the following values 
for gut ammonia release to portal blood in the fasting state; 
in non-cirrhotic patients: 34 µmol/min (van der Hulst et 
al. 1997) and 37 µmol/min (van de Poll et al. 2008) and in 
stable cirrhotic patients with a transjugular intrahepatic por-
tosystemic shunt (TIPS): 38.5 µmol/min (Olde Damink et 
al. 2002), 42 µmol/min (Olde Damink et al. 2003) and 37.5 
µmol/min (Plauth et al. 2000). Thus, in fasting conditions 
the release of ammonia from intestines to portal blood is 
around 30–40 µmol/min, and comparable between healthy 
persons and patients with cirrhosis.

Changing circumstances may influence this value. Thus, 
in patients with cirrhosis, a simulated upper gastrointesti-
nal (GI) bleed increased the release of ammonia from gut 
to portal blood from 42 ± 14 to 80 ± 28 µmol/min (Olde 
Damink et al. 2003). Feeding seems to have a similar effect; 
enteral administration of 40 g of amino acids including 
6 g of glutamine, doubled the ammonia concentration dif-
ference between the superior mesenteric artery and -vein 
(Plauth et al. 2000).

Two hypotheses that do not exclude each other have been 
proposed as the source of gut-derived ammonia into por-
tal blood: the intestinal epithelial glutaminase activity and 
luminal bacterial metabolism.

Deamidation of glutamine by glutaminase (Eq. 2) is an 
important source of energy for the enterocytes. In all stud-
ies quoted above (Olde Damink et al. 2003; Olde Damink 
et al. 2002; Plauth et al. 2000; van de Poll et al. 2008; van 
der Hulst et al. 1997) and a study including liver vein cath-
eterization in healthy, stable cirrhosis, acute-on-chronic 
liver failure and acute liver failure groups (Clemmesen et 

Larsen 2004). The most important transport proteins remain 
to be determined. Candidates include specific transport pro-
teins for NH4

+, such as members of the Rhesus glycoprotein 
C transporter family and non-specific transport via trans-
porters of potassium, that has a similar size and charge as 
NH4

+ (Ott and Larsen 2004).
Hyperammonemia is involved in both cerebral edema 

with risk of herniation and HE but the pathophysiological 
role of ammonia may be different in these two complica-
tions. In patients with acute liver failure, cerebral edema is 
clearly related to arterial ammonia: Levels > 100 µmol/L 
predicted cerebral edema (Bernal et al. 2007), and > 150 
µmol/L predicted cerebral herniation (Clemmesen et al. 
1999) as well as 28 day mortality (Drolz et al. 2013). The 
mechanism by which hyperammonemia causes HE is still 
under debate and beyond the scope of this paper.

The relationship between HE and arterial ammonia is 
related to the severity of the liver disease. In acute liver fail-
ure, the correlation between arterial ammonia and the clini-
cal HE grade (Westhaven Criteria) is unambiguous (Kundra 
et al. 2005). In acute-on-chronic liver failure the association 
is somewhat weaker (Patwardhan et al. 2016; Chiriac et al. 
2021; Verma et al. 2021). In hospitalized patients with cir-
rhosis the correlation is still present but with considerable 
overlap of ammonia levels between HE grades (Nicolao et 
al. 2003; Ong et al. 2003). In out-patients with compensated 
cirrhosis, it required 1868 patients to demonstrate a weak 
association between ammonia levels and minimal HE and a 
large proportion of patients with hyperammonemia did not 
exhibit cognitive impairment (Kimer et al. 2021; Thomsen et 
al. 2016; Lauridsen et al. 2011; Lauridsen, Schaffalitzky de 
Muckadell, and Vilstrup 2015; Gairing et al. 2023; Tsai et al. 
2019; Nakai et al. 2022). Nevertheless, direct evidence for 
the role of ammonia in HE is supported by the effect of the 
ammonia-lowering glycerol phenylbutyrate, which caused 
simultaneous amelioration of blood ammonia concentration 
and HE (Rockey et al. 2014), while this has not been con-
sistently shown for other HE treatments (Gluud et al. 2015; 
Goh et al. 2018; Morgan and Hawley 1987; Sharma et al. 
2013). The likely explanation for these findings is that the 
pathophysiology of HE includes several components such 
as hyperammonemia, systemic inflammation, and oxidative 
stress (Häussinger et al. 2022).

As the brain is a net remover of ammonia from the sys-
temic circulation, we produced quantitative estimates based 
on studies reporting arterio-jugular venous ammonia con-
centration differences (Clemmesen et al. 1999; Strauss et 
al. 2001; Keiding et al. 2006; Dam et al. 2013). Using a 
cerebral perfusion of 750 mL/ min and brain weight of 
1200 g (Cosgrove et al. 2007), total removal of ammonia 
by the brain was calculated to be 0–15 µmol/min at arterial 
concentrations 0–50 µmol/ L, 11–30 µmol/min at arterial 
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will be used for bacterial replication. The finding that 15% of 
injected urea could not be recovered in urine was unchanged 
in patients without a colon (Gibson et al. 1976). Finally, the 
urease hypothesis would predict that most ammonia origi-
nates from the colon while– as explained above– a substan-
tial fraction of gut derived ammonia in portal blood in fact 
originates from the small intestines. In healthy persons, the 
ammonia concentration difference between systemic artery 
and colonic vein was 30.1 ± 9.2 µmol/L and assuming a 
colonic perfusion of 150 mL/min (Naganawa et al. 1994), 
the release of ammonia from the colon to portal blood would 
be 4–5 µmol/min which is much smaller than predicted by 
the hypothesis. Taken together the urease activity may not 
be as important for portal vein ammonia in patients with cir-
rhosis as previously thought.

Bacterial proteolysis is present in the intestines, again 
mostly in the colon. The nitrogen content in terminal ileum 
is higher than in faeces, and the colonic nitrogen loss was 
estimated to be 0.6 g/day, corresponding to 30 µmol nitro-
gen/min of which some may be released as ammonia to por-
tal blood.

Taken together, our interpretation of present data is that 
most ammonia that is released from the gut to the portal 
blood originates from the small intestines, and that con-
sumption of glutamine (Eq. 2) by enterocytes is the most 
prominent source of portal ammonia. In resting persons, 
with or without cirrhosis, the release from gut to portal 
blood is ~ 30–40 µmol/min. During simulated or actual 
upper GI bleed, this value may approximately double (Olde 
Damink et al. 2003).

The liver

The normal liver has a large potential for removal of ammo-
nia which is affected by functional and circulatory changes 
associated with cirrhosis.

Ammonia is delivered to the liver via the hepatic artery 
(25% of the hepatic blood flow in healthy persons) at the 
systemic concentration and via the portal vein (75%) at 
a somewhat higher concentration. In the liver sinusoid, 
ammonia is taken up from blood in the perivenous zone 
through active transport of the NH4

+-ion, mediated by the 
Rhesus glycoprotein B (Weiner et al. 2003) (Fig. 3). This 
part of the sinusoid contains high glutamine synthetase 
activity and detoxifies ammonia by the formation of gluta-
mine (Eq. 1), which is then released to systemic blood via 
the hepatic veins. After systemic circulation, glutamine re-
enters the liver via the hepatic artery and the portal vein, 
and is taken up in the periportal zone of the sinusoid to enter 
the urea cycle where the ammonia-nitrogen is finally elimi-
nated through formation of urea and subsequent urinary 

al. 2000), a correlation between intestinal glutamine uptake 
and ammonia release was observed as would be expected 
if the source of ammonia was metabolism of glutamine. In 
all these studies, intestinal glutamine consumption was suf-
ficient to explain ammonia release. The use of glutamine as 
an energy source is supposed to be most important in the 
small intestines. In accordance, 85% of intestinal glutamin-
ase activity is located in the small intestines and only 15% in 
the colon (James et al. 1998). In further support, the superior 
mesenteric vein that primarily drains small intestines, con-
tributed with a significant fraction of intestinal glutamine 
consumption and ammonia release into portal blood in both 
persons without liver disease (van de Poll et al. 2008; van 
der Hulst et al. 1997) and in patients with cirrhosis (Olde 
Damink et al. 2002; Plauth et al. 2000).

These findings support that the intestinal release of 
ammonia is predominantly derived from the metabolism of 
glutamine in the enterocytes. The effects of meals (Plauth et 
al. 2000) and simulated upper GI bleed (Olde Damink et al. 
2002) on portal ammonia are not in conflict with this view, 
since the increased ammonia release was followed stoichio-
metrically by an increase of glutamine removal.

Luminal bacterial metabolism includes urease activity 
and proteolysis. The bacterial hydrolysis of urea and deami-
nation of intestinal protein produce ammonia. At the same 
time, ammonia is a powerful growth factor for the intestinal 
microbiota and used for synthesis of new proteins and bacte-
rial replication. Accordingly, a certain degree of re-cycling 
takes place and it is in fact unclear to what extend intestinal 
luminal derived ammonia ever reaches the portal circulation 
(Magasanik 1993; Levitt and Levitt 2018).

Intestinal bacterial urease activity was earlier regarded as 
an important source of portal ammonia. Around 15% of the 
daily produced urea cannot be recovered in the urine and was 
assumed to be hydrolysed primarily by the colonic micro-
biota, (Levitt and Levitt 2018; Jackson et al. 1984; Hansen 
and Vilstrup 1985; Walser and Bodenlos 1959) even though 
bacterial overgrowth is common in cirrhosis (Maslennikov 
et al. 2018). This would correspond to ~ 80 µmol ammonia/
min. In certain extreme situations like after administration 
of large amounts of urea into the rectum (Evans et al. 1966) 
or after ureterosigmoidostomy where total urea produc-
tion reaches colon (Kaufman 1984), elevation of systemic 
ammonia have been reported.

However, it is unclear whether intestinal hydrolysis of 
urea is of quantitative important in patients with cirrhosis. 
The studies did not account for urea-derived nitrogen that 
could be recovered as bacterial proteins in the faeces. The 
colon is almost impermeable to urea (Wolpert et al. 1971) 
and the amount of urea that enters the colon from ileum 
is only around 3.5 mmol/day corresponding to a colonic 
release of ammonia of only 5 µmol/min, of which a fraction 
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ammonia: 46–61 µmol/L) and 39 µmol/min in patients 
with acute-on-chronic liver failure (arterial ammonia: 120 
µmol/L) (Clemmesen et al. 2000). In patients with stable 
cirrhosis and a TIPS, the hepatic removal was 25 µmol/min 
(70% shunting) (Olde Damink et al. 2003) increasing to 40 
µmol/min during simulated upper GI bleed (Olde Damink 
et al. 2003).

Thus, except for acute liver failure, portal vein ammo-
nia only reaches the systemic circulation via portosystemic 
shunting. This is partly compensated by hepatic arterialisa-
tion and increased arterial delivery of ammonia to the liver 
for efficient removal. The combined effect will be discussed 
in the next section.

The hepato-splanchnic region

In this section we will summarize the combined effect of 
the hepato-splanchnic region on the arterial ammonia con-
centration by use of three different scenarios based on spe-
cific publications: Healthy persons (van de Poll et al. 2008), 
patients with stable cirrhosis and a TIPS and a simulated 
upper GI bleed (Olde Damink et al. 2003), and similar 
patients with stable cirrhosis (Olde Damink et al. 2002) 
(Fig. 4).

excretion. Consequently, there is a continuous peri-portal 
removal of glutamine and peri-venous removal of ammonia. 
As explained in the accompanying paper (Vilstrup 2025), 
the rate of hepatic urea release is much higher than the rate 
of ammonia removal by the liver.

The hepatic removal of ammonia is highly efficient. The 
liver removes ammonia from portal blood so efficiently that 
the hepatic vein ammonia concentration is lower than arte-
rial concentration in healthy persons, patients with compen-
sated cirrhosis, patients with acute-on-chronic liver failure 
and in patients with a simulated or an actual upper GI bleed 
(Clemmesen et al. 2000; Olde Damink et al. 2002, 2003, 
2009; van de Poll et al. 2008; van der Hulst et al. 1997). The 
only situation in which the liver becomes a net producer of 
ammonia and the concentration in the hepatic vein is higher 
than in systemic artery is in acute liver failure as reported in 
a single study of 22 patients with ALF in which the etiology 
was paracetamol in 13, hepatitis A-D in 4 and unknown in 
5. (Clemmesen et al. 2000).

The effects of hepatic metabolism on arterial ammonia 
depend on the clinical situation. In acute liver failure with 
mean arterial ammonia of 182 µmol/L, the average release 
of ammonia to the blood stream was 100 µmol/min (Clem-
mesen et al. 2000). In most other situations, the liver is a net 
remover of ammonia, removing 0–10 µmol/min in healthy 
persons and patients with compensated cirrhosis (arterial 

Fig. 3 Handling of ammonia and relevant metabolites in the liver sinu-
soid. The blue bars indicate the concentration of amino acids, gluta-
mine, urea and ammonia (NH4

+) in sinusoidal blood, which are utilized 
differently in the anatomical zones of the liver sinusoid. Ammonia and 

glutamine will enter the systemic circulation via the hepatic vein. AA: 
amino acids; Gln: glutamine; Glu: glutamate; GS: glutamine synthe-
tase; NH4

+: ammonia

 

1 3

   48  Page 6 of 13



Metabolic Brain Disease           (2025) 40:48 

portosystemic shunts, including the TIPS. With 70% shunt-
ing, the contribution from the hepato-splancnic region was 
still neutral, and even with 100% shunting, the net release 
of ammonia into the systemic circulation was only 15 µmol/
min, as compared to the release from gut to portal vein of 40 
µmol/min (Olde Damink et al. 2002). When patients with 
stable cirrhosis and a TIPS were administered an oral 46 g 
mixture of amino acids similar to haemoglobin (“a simu-
lated upper GI bleed”, Fig. 4.C), the release of ammonia 
from gut to portal blood increased to 77 µmol/min. Still, 
hepatic removal reduced the hepato-splanchnic release 
of ammonia into the systemic circulation to 15 µmol/min 
with 70% shunt fraction, and 54 µmol/min with 100% 
shunting (Olde Damink et al. 2003). In the latter two stud-
ies, all patients with cirrhosis had a TIPS, which enabled 
sampling from the portal vein during TIPS phlebography. 

In the healthy persons (Fig. 4A), all blood from the portal 
vein passes through the liver, and ammonia that is released 
from the gut into portal blood is removed by the liver. Thus, 
the total exchange of ammonia from the hepato-splanchnic 
region into systemic blood is neutral or there is a net removal 
of systemic ammonia. The removal of ammonia by the liver 
is a clearance, so hepatic removal will increase with increas-
ing influx concentrations. Consequently, gut production of 
ammonia has little or no effect on systemic concentration.

In patients with stable cirrhosis and a TIPS (Olde 
Damink et al. 2002) (Fig. 4B), the release of ammonia from 
the gut was the same as in healthy persons but calculations 
depended on the fraction of portal blood that bypassed 
the liver (van de Poll et al. 2008). Since this fraction was 
unknown, the authors provided calculations with both 70% 
and 100% of portal venous blood bypassing the liver through 

Fig. 4 The combined effect of the hepato-splanchnic region on sys-
temic arterial ammonia concentration (µmol/L) illustrated by differ-
ent scenarios. (A) The healthy situation (van de Poll et al. 2008). (B) 
Stable cirrhosis and a TIPS (Olde Damink et al. 2002) with the effect 

of either 70% and 100% of portal blood bypassing the liver through 
portosystemic shunts. (C) Stable cirrhosis and a TIPS during a simu-
lated upper GI bleed (Olde Damink et al. 2003) at 70% and 100% 
portosystemic shunting, respectively
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Several factors may change this picture, including GI 
bleed and disturbances in pH or potassium levels.

During a simulated upper GI bleed, renal ammonia 
release increased from 7 ± 3 to 49 ± 10 µmol/min, which 
could be explained by increased renal removal of glutamine 
and metabolism (Eq. 2) (Olde Damink et al. 2003). A simi-
lar elevation of renal ammonia release was observed dur-
ing an actual upper GI bleed (Olde Damink et al. 2003). 
In this situation, the kidneys were an important source of 
elevated ammonia, since the hepato-splanchnic region as a 
whole contributed with only ~ 15 µmol/min (70% shunting, 
Fig. 4).

Renal ammonia metabolism is also affected by hypoka-
lemia which is common in cirrhosis (Mikkelsen et al. 2023; 
Maiwall et al. 2016). After a reduction of plasma potassium 
from 4.4 to 2.0 mmol/L in 9 patients with cirrhosis, arte-
rial ammonia increased from 24 to 77 µmol/L (Gabduzda 
and Hall 1966). In two patients examined by use of renal 
vein catheterization, renal ammonia release increased by 
35 µmol/min after a decrease in potassium from 4.5 to 3.7 
mmol/L in one patient and by 120 µmol/min after a reduc-
tion in potassium from 5.0 to 2.5 mmol/L in another patient. 
In both cases, hyperammonemia was reversible by potas-
sium supplementation (Baertl et al. 1963).

Muscle and adipose tissue

Muscle may both remove ammonia from the systemic circu-
lation and release it.

At rest, muscle removes ammonia from arterial blood. 
Through the glutamine synthetase reaction (Eq. 1), ammo-
nia is scavenged into glutamine and released to the blood. In 
PET tracer experiments, a single lower extremity removed 
8.3 ± 2.6 µmol ammonia per/min, corresponding to ~ 46 
µmol/min/person (leg muscle mass 18% of total muscle) in 
resting patients with cirrhosis, higher than the ~ 16 µmol/
min/person in healthy persons (Dam et al. 2011). The 
removal of ammonia by muscles increases with elevated 
ammonia. During a simulated upper GI bleed, arterial 
ammonia concentration increased from 75 ± 6 µmol/L to 
122 ± 6 µmol/L with a parallel increase in muscle ammo-
nia removal from 15 to 42 µmol/min (Olde Damink et al. 
2003). In acute liver failure, with an arterial ammonia of 
182 ± 80 µmol/L, muscle removal amounted to ~ 110 µmol/
min (Clemmesen et al. 2000). Thus, preserved muscle 
mass and quality is an important protective factor towards 
hyperammonemia in patients with cirrhosis. Still, ammonia 
is only temporarily trapped in glutamine that is released 
into the systemic circulation and may be re-metabolized to 
glutamate and ammonia in the gut and kidneys or provide 

In these patients, the fraction of portal blood bypassing the 
liver by flowing through the TIPS is within the 70–100% 
range. Mathematic modelling from literature data suggests 
that with shunt fractions below 50%, the hepato-splanchnic 
contribution to arterial ammonia would be close to zero in 
most cases (Levitt and Levitt 2018). Thus, in patients with 
cirrhosis without portosystemic collaterals, the hepato-
splannic area will be a net remover of ammonia or neutral. 
In accordance, hyperammonemia was related to the magni-
tude of portosystemic collaterals (Tarantino et al. 2009) and 
the hepatic venous pressure gradient (Balcar et al. 2023). In 
40 patients with cirrhosis without a TIPS, the mean shunt 
fraction was 62%, ranging from 0 to 100%. However, this 
fraction was higher in splenic than mesenteric portal blood 
(Groszmann et al. 1972). So, in patients with cirrhosis with-
out a TIPS, a large percentage will have shunt fractions in a 
range where arterial ammonia concentration is not affected 
by the gut metabolism. Reports that a protein rich meal only 
marginally increases arterial ammonia in patients with cir-
rhosis further support that most portal ammonia is removed 
by the liver even in patients with cirrhosis (Bajaj et al. 2020).

These findings challenge conventional wisdom that the 
main source of hyperammonemia in cirrhosis is caused by 
increased release from the hepato-splanchnic region. In 
Sects. 7 and 8 we will consider other potential sources.

Kidney

The kidneys play a complex role in ammonia metabolism 
and generally release ammonia into the systemic circulation 
(Fig. 5).

In the epithelial lining cells of the proximal tubule, gluta-
mine is degraded in a two-step fashion, first by the glutaminase 
reaction (Eq. 2) and subsequently by the glutamate dehydro-
genase reaction (glutamate → α-ketoglutarate + NH4

+) (van 
de Poll et al. 2004). At normal plasma pH, NH4

+ produced 
in the proximal tubule is released with 1/3 to urine and 2/3 
to blood. During acidosis, the ratio reverses to 2/3 to urine 
and 1/3 to blood (Olde Damink et al. 2009).

Specific ammonia transporters belonging to the Rhesus 
glycoprotein C proteins transport the NH4

+ ion from blood 
to urine in the collecting duct (Harris et al. 2023). The trans-
port of ammonia from blood to urine only partly counteracts 
the ammonia release to blood in the proximal tubule, so the 
kidneys are net releasers of ammonia from a systemic point 
of view. In studies including blood sampling from a renal 
vein, renal release of ammonia into the systemic circulation 
was 9 µmol/min in resting and fasting healthy persons (van 
de Poll et al. 2008). Similar values were obtained in fasting 
patients with compensated cirrhosis (Owen et al. 1960; Olde 
Damink et al. 2002).
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Accordingly, short lasting exhaustive exercise may elevate 
ammonia to above 150 µmol/L, even in healthy persons 
(Eriksson et al. 1985; Esbjörnsson et al. 2006; Katz et al. 
1986). In addition, muscle may also metabolize branched-
chain amino acids to ammonia as an energy source during 

nitrogen for urea synthesis and final elimination of ammo-
nia associated nitrogen.

In contrast to its resting state, the working muscle releases 
ammonia into the systemic circulation due to degradation 
of AMP to IMP by AMP deaminase (Katz et al. 1986). 

Fig. 5 Renal ammonia handling with the primary processes illustrated. In the proximal tubule, glutamine is degraded to ammonia (NH4
+), which is 

excreted and reabsorbed depending on the homeostatic situation and to α-ketoglutarate. In the collecting duct, ammonia is secreted
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A dynamic situation

To understand the origin of elevated ammonia in a given 
situation, one has to recognize the very dynamic nature of 
organ interaction in different situations. This is illustrated 
in Fig. 6 with 6 scenarios based on the reviewed data. The 
values should be taken as illustrative, not absolute.

The only situation in which the liver is not a net-remover 
of ammonia is during acute liver failure. In cirrhosis, ele-
vated arterial ammonia is generally caused by increased 
renal release, especially during GI bleed or hypokalemia, 
whereas increased release of ammonia by portosystemic 
shunting likely plays a quantitatively less important role. In 
such situations, increased removal of ammonia by muscles 
is important, a kind of buffering effect that is likely weak-
ened by sarcopenia. In contrast, during exercise muscles 
release ammonia which cannot be completely attenuated by 
increased hepatic uptake and the result may be high levels 
of ammonia.

Some questions arise from this review that could be 
the focus for future investigations. Our conclusions on the 
hepato-splancnic handling of ammonia rest to some extend 
on indirect evidence, so studies with sampling of arterial, 
portal and hepatic venous blood and simultaneous deter-
mination of the porto-systemic shunted fraction of portal 
blood would be of great interest. The role of intestinal ure-
ase is still intriguing. Better understanding of the role of 

prolonged endurance exercise. In one study, the muscle 
release of ammonia was 45.7 ± 15.3 µmol/min in healthy 
persons exercising at 75% VO2max intensity on bicycle 
ergometers in contrast to a minimal ammonia uptake at rest 
(Eriksson et al. 1985). In patients with cirrhosis, exercise 
resulted in higher arterial ammonia concentrations than in 
healthy controls on similar workloads (Dietrich et al. 1990; 
Volianitis et al. 2024), which was likely due to larger muscle 
release of ammonia at a given workload in patients with cir-
rhosis while hepatic clearance of ammonia was less affected 
(Volianitis et al. 2024).

Adipose tissue may also remove ammonia from blood 
through the glutamine synthetase reaction (Eq. 1). In a study 
of strenuous exercise in healthy persons, arterial ammonia 
reached ~ 220 µmol/L in men and ~ 120 µmol/L in women 
and the total body removal of ammonia by adipose tissue 
was estimated to ~ 50 µmol/min in both sexes (Esbjörns-
son et al. 2006) with an equimolar release of glutamine 
(Esbjörnsson et al. 2006). In this way adipose tissue damp-
ened the ammoniagenic effects of exercise. There was no 
exchange of ammonia between blood and adipose tissue at 
rest in healthy persons (Esbjörnsson et al. 2006). Patients 
with cirrhosis have not been studied.

Fig. 6 Ammonia exchange rates (µmol/min) and arterial ammonia con-
centration (µmol/min) in different situations: Panel A, healthy persons 
at rest; B, healthy persons during exercise; C, patients with stable cir-
rhosis with a transjugular intrahepatic portosystemic shunt (TIPS); D, 
patients with stable cirrhosis during exercise; E, patients with cirrhosis 

with a TIPS and an upper GI bleed and F, in patients with acute liver 
failure. In E and F, a 70% shunt fraction was used. The red arrows 
indicate release of ammonia from the organ to the blood stream; the 
green arrows indicates removal of blood ammonia by the organ. Values 
are illustrative, not absolute
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exercise on ammonia levels in patients with cirrhosis would 
be important, since exercise it self seems beneficial. The 
role of adipose tissue in removal of ammonia in patients 
with cirrhosis needs further study. These and similar fields 
of research will hopefully pave the way for prevention of 
the deleterious effects of elevated ammonia in patients with 
cirrhosis.
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