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Few regulatory metabolites coordinate expression
of central metabolic genes in Escherichia coli
Karl Kochanowski1,2,† , Luca Gerosa1,2,† , Simon F Brunner1 , Dimitris Christodoulou1,2,

Yaroslav V Nikolaev3 & Uwe Sauer1,*

Abstract

Transcription networks consist of hundreds of transcription factors
with thousands of often overlapping target genes. While we can
reliably measure gene expression changes, we still understand
relatively little why expression changes the way it does. How does
a coordinated response emerge in such complex networks and
how many input signals are necessary to achieve it? Here, we
unravel the regulatory program of gene expression in Escherichia
coli central carbon metabolism with more than 30 known tran-
scription factors. Using a library of fluorescent transcriptional
reporters, we comprehensively quantify the activity of central
metabolic promoters in 26 environmental conditions. The expres-
sion patterns were dominated by growth rate-dependent global
regulation for most central metabolic promoters in concert with
highly condition-specific activation for only few promoters. Using
an approximate mathematical description of promoter activity, we
dissect the contribution of global and specific transcriptional regu-
lation. About 70% of the total variance in promoter activity across
conditions was explained by global transcriptional regulation.
Correlating the remaining specific transcriptional regulation of
each promoter with the cell’s metabolome response across the
same conditions identified potential regulatory metabolites.
Remarkably, cyclic AMP, fructose-1,6-bisphosphate, and fructose-
1-phosphate alone explained most of the specific transcriptional
regulation through their interaction with the two major transcrip-
tion factors Crp and Cra. Thus, a surprisingly simple regulatory
program that relies on global transcriptional regulation and input
from few intracellular metabolites appears to be sufficient to coor-
dinate E. coli central metabolism and explain about 90% of the
experimentally observed transcription changes in 100 genes.
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Introduction

For most microbes, growth-sustaining environments encompass a

wide range of nutritional conditions (Bochner et al, 2001;

Nichols et al, 2011; Orth et al, 2011). Coping with such diverse

environments requires coordination of metabolism to provide

biomass precursors, redox factors, and energy at appropriate

stoichiometries (Chubukov et al, 2014). Transcriptional regulation

plays a key role in adaptation, such as the induction of uptake

and utilization pathways upon nutrient availability (Kaplan et al,

2008; Aidelberg et al, 2014; Chubukov et al, 2014). Beyond such

relatively simple control of particular pathways, transcriptional

regulation is typically much more complex, where even

subtle environmental changes alter expression of hundreds of

metabolic genes (Kao et al, 2004; Liu et al, 2005; Jozefczuk

et al, 2010; Costenoble et al, 2011; Buescher et al, 2012; Nicolas

et al, 2012). How are such global transcriptional responses

achieved, and are all of these changes actually required for a

given adaptation?

Most work focused on the role of transcription factors, and

efforts in mapping out their targets have cumulated in highly

overlapping and dense transcriptional regulatory networks,

comprising major (with hundreds of target genes) and minor

(with few target genes) transcription factors (Janga et al, 2007;

Goelzer et al, 2008; Martı́nez-Antonio et al, 2008; Seshasayee

et al, 2009; Cho et al, 2012; Salgado et al, 2013; Teixeira et al,

2014). To exert their regulatory function, transcription factors, in

turn, need to receive signals. These signals may be relayed

through two-component systems where detection of internal or

external signals by a designated receptor protein is coupled to the

phosphorylation of the respective transcription factor (Laub &

Goulian, 2007). Alternatively, transcription factor activity may

also respond directly to levels of regulatory metabolites. Examples

of such regulatory metabolites include amino acids that frequently

regulate expression of their own biosynthesis pathway, intermedi-

ates of nutrient utilization pathways such as glycerol phosphate,

and central metabolites such as pyruvate or fructose-1,6-bispho-

sphate (Chubukov et al, 2014). This “one-component” type of

regulation is prevalent in bacteria (Ulrich et al, 2005), allowing
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them to match the transcriptional response to their current

metabolic state. Thus, a cell’s transcriptional response is the result

of the complex interplay of many transcription factors whose

activity is adjusted to the environment by their respective regula-

tory signals (Janga et al, 2007; Martı́nez-Antonio et al, 2008;

Seshasayee et al, 2009).

Understanding how a cell’s transcriptional response emerges

from this interplay of complex regulatory networks and signals is a

daunting task, and two key limitations have hampered our ability to

study such regulatory networks in a quantitative manner. The first

limitation stems from the realization that the activity of a promoter

is determined not only by the network of transcription factors (ter-

med “specific transcriptional regulation”), but also by the global

physiology of the cell (Liang et al, 1999; Dennis et al, 2004;

Zaslaver et al, 2009; Scott et al, 2010; Berthoumieux et al, 2013;

Gerosa et al, 2013; Keren et al, 2013; Shahrezaei & Marguerat,

2015; Barenholz et al, 2016; termed “global regulation”), for exam-

ple, through growth rate-dependent changes in free RNA poly-

merase availability or ribosome abundance (Bremer & Dennis, 1996;

Klumpp & Hwa, 2008; Scott et al, 2010; Borkowski et al, 2016). This

global regulation adds another layer of complexity and is responsi-

ble for a large fraction of the gene expression response in bacteria

and eukaryotes (Keren et al, 2013). To understand this response,

we therefore need to robustly dissect the contribution of global

and specific transcriptional regulation for large-scale networks

across diverse conditions. First attempts have been made but

were restricted to detailed dynamic analysis of few promoters

(Berthoumieux et al, 2013; Gerosa et al, 2013), or large-scale analy-

sis for few conditions (Zaslaver et al, 2009; Keren et al, 2013). The

second limitation is the lack of methods to systematically identify

signals that regulate transcription factor activity. In particular, tran-

scription factor–metabolite interactions are—as all protein–metabo-

lite interactions (McFedries et al, 2013)—notoriously difficult to

detect due to their non-covalent nature (Kochanowski et al, 2015).

Consequently, such interactions have largely been identified

through extensive biochemical analyses or serendipity on a case-

by-case basis. Even for well-studied organisms such as Escherichia

coli, regulatory signals for the majority of transcription factors have

remained elusive (Babu et al, 2003). Efforts to infer such interac-

tions directly from in vivo experimental data have been restricted to

few case studies, without accounting for the confounding influence

of global transcriptional regulation (Cakir et al, 2006; Bradley et al,

2009).

In this work, we aimed to overcome these limitations to

unravel the transcriptional regulatory program of E. coli central

carbon metabolism, whose extensive transcription factor network

is topologically well characterized (Salgado et al, 2013) and

responds to a wide range of environmental perturbations. Using a

library of fluorescent transcriptional reporters, we comprehensively

quantify the activity of central metabolic promoters under a wide

range of environmental conditions. By establishing a mathematical

model, we decompose each promoter’s global and specific tran-

scriptional regulation and systematically infer potential metabolite

regulators of gene expression by correlation. A surprisingly simple

regulatory program based on two transcription factors and very

few intracellular regulatory metabolites is sufficient to coordinate

transcription of E. coli central metabolism under a large number of

conditions.

Results

Quantifying gene expression of E. coli using transcriptional
fluorescent reporters

To unravel the transcriptional regulatory program governing

E. coli’s central metabolism, we used a library of fluorescent tran-

scriptional reporter plasmids (Zaslaver et al, 2006) and expanded it

with 28 additional promoters to cover over 90% of the 100+ genes

in central carbon metabolism. We further included five previously

characterized synthetic constitutive promoters (Gerosa et al, 2013)

that are only affected by global transcriptional regulation, hence

allow to study the impact of global regulation in isolation

(Table EV1 for full list of promoters). In total, we determined the

activity of 95 promoters during steady-state growth (from time

course measurements, see Appendix Fig S1) under 26 diverse

conditions—including different carbon source and amino acid

supplementation, as well as sub-lethal ribosome inhibition by chlo-

ramphenicol, which directly affects global regulation. Under these

conditions, we achieved steady-state growth rates between 0.1 and

1.5/h (see Table EV2 for full list of conditions). Despite promoter

activities spanning several orders of magnitude, there were no

adverse effects of GFP expression on growth rate (Appendix Fig S2).

Day-to-day comparison demonstrated reproducible promoter activ-

ity measurements during exponential growth within 10–20% varia-

tion, which is comparable to previous studies (Zaslaver et al, 2009;

Keren et al, 2013; Appendix Fig S3). Thirty-one of the tested

promoters, predominantly those of minor central metabolic iso-

enzymes, were inactive under all tested conditions and were there-

fore discarded for subsequent analyses.

The remaining 64 promoters showed few distinct patterns across

conditions (Fig 1 and Appendix Fig S4, data in Table EV3). A small

subset of promoters that were mostly part of carbon utilization path-

ways showed highly condition-specific activation in one or two of

the tested conditions (e.g. fruB). Approximately 15% of the tested

promoters, mostly consisting of TCA cycle promoters (e.g. sdhC),

were activated on carbon sources supporting growth rates below

0.8/h, but were not activated by chloramphenicol treatment that led

to similarly low growth rates. The activity of the majority of tested

promoters, however, was consistently related to the growth rate

supported by each condition (as confirmed by hierarchical cluster-

ing, Appendix Fig S5). Notably, all tested synthetic constitutive

promoters, which are only affected by global regulation, fell into the

last category.

Dissecting global and specific transcriptional regulation in
central carbon metabolism

Based on these data, we hypothesized that growth-dependent global

regulation has a strong impact on central metabolic promoter activ-

ity (see also Appendix Fig S6). Next, we established a computational

method to dissect the measured promoter activity of each promoter

into its global and specific transcriptional regulation (Fig 2A). Previ-

ous approaches relied on normalization by synthetic constitutive

promoters (Berthoumieux et al, 2013), prior parameterization of

each promoter’s global regulation by quantifying individual activi-

ties in the absence of specific regulation (Gerosa et al, 2013), or on

a phenomenological scaling factor that captures pairwise differences
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in global regulation between conditions (Keren et al, 2013). To

dissect global and specific transcriptional regulation across many

conditions while retaining a mechanistic description of gene expres-

sion, we developed a mathematical description of promoter activity

(pa; equation 1, see Appendix Text S1 for detailed description):

paij ¼ Ej=KEi

� �aEi � Y
l2fTFg

1þ TFlj=Kli

� �ali (1)

Here, E denotes the activity of the expression machinery (in

condition j) with its promoter-specific parameters KEi and aEi, and
TF denotes the activity of each specific transcription factor (in

condition j) that regulates the respective promoter with its

promoter-specific parameters Kli and ali. Upon transformation into

log space and normalization, for example, to a reference condition

(marked with Dlog in the subsequent text), this equation can be

approximated to (equation 2):

D logðpaijÞ ¼ Gþ S

G ¼ aEi � D logðEjÞ S �
X

l2fTFg
ali � D logðTFljÞ (2)

As a result, log-normalized promoter activity can be described by

a linear combination of global (formalized as expression machinery

activity, denoted here as G) and specific (formalized as transcription

factor activity, denoted here as S) transcriptional regulation. We

hypothesized that global regulation would manifest as a common

promoter activity pattern across conditions, similar to the
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Figure 1. Steady-state promoter activity of 64 central metabolic genes across 26 conditions.

A Steady-state promoter activities in various carbon sources and at different sub-lethal doses of chloramphenicol (Cmp), list of promoters given in Table EV1, and list of
conditions given in Table EV2. Promoter activities were z-score-normalized to aid visualization, and promoters were grouped according to metabolic pathways and
functional categories. Carbon sources were sorted by increasing growth rate (from top to bottom); chloramphenicol data were sorted by increasing chloramphenicol
concentrations (from top to bottom). Last row: M9 glucose with 5 mM cyclic AMP (cAMP).

B Activity of 12 selected promoters across all conditions plotted against steady-state growth rates.
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Figure 2. Singular value decomposition of promoter activity data quantifies the contribution of global regulation.

A Schematic overview of the employed computational approach. Singular value decomposition was used to dissect quantified promoter activities into the contribution
of global and specific transcriptional regulation. Here, global regulation is captured by the first singular vector, which accounts for the largest source of variance
across conditions, whereas specific regulation is captured by the remaining variance, which cannot be explained by global regulation.

B First singular vector (SV1, explaining 68% of the total variance) plotted against the respective growth rate. Black line: second-degree polynomial fit used for
predictions in (D), dashed lines: 95% confidence interval of fit.

C Pearson correlation between measured and reconstructed promoter activities across all promoters. Reconstruction was performed using only the first singular vector.
Promoters were sorted according to their correlation coefficients. The majority of promoters are sufficiently explained by the first singular vector.

D Comparison of predicted (red) and measured (black) promoter activity during a diauxic shift from glucose to succinate for the 18 promoters with the strongest input
from global transcriptional regulation (see C). Data show the mean of three biological replicates, and gray shaded areas indicate the standard deviation across
replicates for each time point. Dynamic SV1 values were calculated from growth rates using the polynomial fit in (B) and then reverted back to the original linear
scale. Red shaded areas show the corresponding 95% confidence intervals. Pearson correlation coefficients between measured and predicted promoter activity time
courses of each promoter are shown in brackets.

Molecular Systems Biology 13: 903 | 2017 ª 2017 The Authors

Molecular Systems Biology Coordination of E. coli central metabolism Karl Kochanowski et al

4



aforementioned scaling factor when comparing two conditions

(Keren et al, 2013). Given the linearized description of promoter

activity shown above, such patterns could then be inferred using

linear decomposition approaches such as singular value decomposi-

tion (Alter et al, 2000) or principal component analysis (Bollenbach

& Kishony, 2011). In this case, dominant global regulation would

emerge as the first singular vector (i.e. the singular vector that

captures most of the data set’s variability), in analogy to the first

principal component of the data set. Converse, specific transcrip-

tional regulation would be the remaining variance that cannot be

explained by the first singular vector (Fig 2A).

When applying singular value decomposition to the log-normal-

ized promoter activity data, few common patterns, or singular

vectors, captured most of the data set’s variability (Appendix Fig

S7). Importantly, the first singular vector showed strong growth rate

dependence (Fig 2B, data in Table EV4), in line with our hypothesis

that it captures the effect of dominant global regulation on promoter

activity. Although the growth rate dependence of the first singular

vector was particularly pronounced in the chloramphenicol condi-

tions, which directly affect global regulation, we found that this

dependence was also maintained when excluding these conditions

from the analysis (Appendix Fig S8). To quantitatively assess how

well the first singular vector explains the activity of individual

promoters, we next compared measured promoter activities with

their respective reconstruction purely based on the first singular

vector. We found very good agreement particularly for the synthetic

constitutive promoters (Fig 2C, data in Table EV4). These results

suggested that the first singular vector indeed captures the growth-

dependent impact of global transcriptional regulation. Conversely,

we hypothesized that by measuring the growth rate in another

condition and using the aforementioned relationship between

growth rate and singular vector (Fig 2B), we should be able to

predict the expression of constitutive-like promoters. We tested this

hypothesis by measuring promoter activities during a diauxic shift

from glucose to succinate (Gerosa et al, 2015). During this diauxic

shift, cells transition from fast growth on glucose to slow growth on

succinate, separated by a transient lag phase without growth. We

compared measured promoter activities to predictions utilizing the

relationship between measured growth rate and the first singular

vector (Fig 2D, data in Table EV5) and found that promoters whose

steady-state activity was dominated by the first singular vector (as

determined in Fig 2C) were also well predicted during the diauxic

shift. For some promoters, such as pfkA, pykF, and rpoH, measure-

ment and prediction disagreed during the lag phase, presumably

due to regulators that are only activated in response to the stress

encountered during transient carbon starvation. One such regulator

is the stress sigma factor RpoS, which is active during carbon starva-

tion (Peterson et al, 2012) and has been reported to regulate these

promoters (Salgado et al, 2013).

As a second validation experiment, we predicted the activity of

central metabolic promoters in six additional conditions (measure-

ments in Table EV3 and prediction in Table EV4) that do not consti-

tute carbon source changes based on the respective steady-state

growth rate and its relationship with the first singular vector (shown

in Fig 2B). We found that not only constitutive-like promoters, but

also in fact the vast majority of promoters could be predicted well

(Appendix Fig S9). This result shows that our approach indeed

allows to quantify growth rate-dependent global regulation, and

suggests that global regulation has a strong impact on promoter

activity also beyond carbon source changes.

Thus, the straightforward computational approach presented

here enables dissection of global and specific transcriptional regula-

tion based on singular value decomposition for large numbers of

promoters without prior promoter-specific parameterization (Gerosa

et al, 2013), and without the requirement for constitutive promoters

to be used for normalization (Berthoumieux et al, 2013). The contri-

bution of global regulation thus quantified is considerable, account-

ing for 68% of the total variability in promoter activities across

conditions. Conversely, the remaining 32% of variability is the

consequence of specific regulation.

Systematic identification of metabolites affecting specific
transcriptional regulation

Subtracting the confounding contribution of global regulation allows

us now to investigate the specific, presumably transcription factor-

driven regulation of each promoter. In particular, we were inter-

ested in potential regulatory metabolites and the transcription

factors that ultimately exert the regulatory function on the promot-

ers. To establish a link between promoters and potential regulatory

metabolites, we started from the observation that in central metabo-

lism, bacterial transcription factor activity is typically not regulated

by changes in transcription factor expression itself (Ishihama et al,

2014; Gerosa et al, 2015) but rather post-translationally. For the

frequent cases where direct binding of regulatory metabolites modu-

lates transcription factor activity (Ulrich et al, 2005), a promoter’s

specific transcriptional regulation S can be described by the sum of

metabolites M regulating its cognate transcription factors, weighted

by two condition-independent and promoter-specific parameters ali
and blk (denoting the impact of each metabolite on the respective

transcription factor; equation 3):

S �
X

l2fTFg;k2fMg
ali � blk � D logðMkjÞ (3)

where i denotes the promoter and j denotes the condition. In prin-

ciple, regulatory signals could therefore be identified by correlating

the activity of a promoter’s transcription factor activity to changes

in potential regulatory metabolite concentration (Appendix Text

S2). In practice, however, this inference is challenging because

promoters are often regulated by several transcription factors and

transcription factors may receive more than one regulatory signal.

Since not all transcription factors/regulatory signals are likely to

affect a promoter to the same extent in a given set of conditions,

we first aimed for a systematic identification of promoters whose

specific transcriptional regulation can be explained by single domi-

nant regulatory signal. Given our focus on central metabolism,

these regulatory signals are likely to be central metabolites. To test

our hypothesis, we therefore quantified the concentration of 47

central metabolites during exponential growth in 23 of the 26

conditions by targeted metabolomics (Buescher et al, 2010;

Appendix Fig S10, data in Table EV6). For each metabolite, we

tested whether it can explain the specific transcriptional regulation

component of any of the tested promoters based on the model

described in equation 3 (Fig 3A). Specifically, we determined Pear-

son correlation coefficients between the measured specific
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transcriptional regulation and its reconstruction (obtained by linear

regression based on equation 3, see Materials and Methods) to

assess the explanatory power of each metabolite. Leave-one-

condition-out cross-validation showed that in the vast majority of

cases, the obtained correlation coefficients were not affected by

omitting one of the tested conditions from the analysis (Appendix Fig

S11). Similar results were obtained with a non-parametric method

(rank correlation) to assess the agreement between measured and

reconstructed data (Appendix Fig S12).

Typically, only one or few single metabolites could potentially

explain each promoter’s specific transcriptional regulation compo-

nent (Fig 3B and Appendix Fig S13, full data in Table EV7). Cases

with more than one potential regulatory metabolite were always

based on strong cross-correlation of the metabolites across condi-

tions. For example, the six metabolites identified for pykF, namely

F1P, FBP, DHAP, Ru5P, R5P, and Xu5P, exhibited a median correla-

tion of 0.83, making it difficult to differentiate which one(s) of them

are true signals. Conversely, most metabolites appear to be irrele-

vant for explaining specific transcriptional regulation of any of the

promoters, and few metabolites were inferred to regulate more than

one promoter. For example, F1P and FBP were identified as poten-

tial regulatory signals for several glycolytic promoters, and cyclic

AMP was identified as a potential regulatory signal for a third of the

tested promoters, in particular in TCA cycle and carbon uptake

systems (Appendix Fig S13A).

In total, for about 50% of the promoters, at least one of the avail-

able metabolites could explain the specific transcription as a single

input. When considering only promoters without a dominant contri-

bution of global regulation (correlation coefficient R < 0.75 for

reconstruction of the promoter based on global regulation alone, see

Fig 2C), the percentage increased to 66%. To also systematically

identify potential double metabolite inputs to promoter activities,

we next tested all metabolite pairs for explaining the specific tran-

scriptional regulation of each promoter. Statistical significance of
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Figure 3. Systematic identification of metabolites affecting specific transcriptional regulation.

A Outline of approach using pykF as an example: First, global regulation is removed from each promoter by subtracting the first singular vector (SV1, see Fig 2A). Its
remaining specific regulation is then related to each metabolite separately by linear regression to identify potential metabolic signals (goodness of fit assessed by
Pearson correlation between measured data and the prediction based on its reconstruction).

B Summary of analysis for five promoters. Full circles: correlation coefficients when correlating each promoter’s specific regulation with each metabolite across all
conditions. Gray circles: metabolites that do not pass the correlation coefficient cutoffs [�0.75 < R < 0.75]. If metabolites pass the correlation coefficient cutoffs, their
respective correlation coefficients without removal of global transcriptional regulation (combined output of global and specific regulation) are shown in empty circles.
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the improvement was assessed through the Akaike information

criterion that accounts for different numbers of parameters in the

model (Burnham et al, 2011; Link et al, 2013). In the vast majority

of cases, no metabolite pair explained specific regulation better than

the best single metabolite (Appendix Fig S14B). One of the few

exceptions was the cyaA promoter, which was best explained by

cyclic AMP and L-phenylalanine (Appendix Fig S14A). Thus, these

results suggest that central metabolic promoters are mostly regu-

lated by single dominating regulatory signals.

To obtain a quantitative, single-promoter resolution picture of

the transcriptional program governing E. coli central metabolism,

we next combined the metabolite-dependent specific transcriptional

regulation with global regulation (Fig 4A, data in Table EV7). For

the majority of promoters, the contribution of global regulation was

large, suggesting that specific transcriptional regulation merely

modulates a dominant global regulatory input. However, there were

also cases with a strong contribution of specific transcriptional regu-

lation, such as uptake systems and TCA cycle promoters that were

mostly explained by cyclic AMP. Another exception was the gluco-

neogenic ppsA promoter, which was largely explained by FBP.

Conversely, only the three metabolites cyclic AMP, F1P and FBP

explained the majority of observed specific transcriptional regula-

tion. Notably, only few promoters, such as those associated with

gluconate utilization (idnD, idnK gntK, gntT), could not be

explained by either global or specific transcriptional regulation,

presumably because we did not quantify the underlying metabolic

signal (see Appendix Fig S15 for individual reconstructions of each

promoter based on the network depicted in Fig 4A). Leave-one-

condition-out cross-validation further corroborated that these few

metabolite signals were sufficient to quantitatively predict the activ-

ity of most promoters in the excluded condition (Fig 4C,

Appendix Fig S16). Taken together, these results demonstrate that

the transcriptional program of E. coli central metabolism is domi-

nated by global regulation with few specific regulatory signals in

response to nutrient variations or perturbations of the expression

machinery itself.

Since we used GFP-based reporters, global regulation at the level

of translation (Borkowski et al, 2016) could mask some of the tran-

scriptional responses that occur only at the mRNA level. To explore

this possibility, we compared published transcriptomics data

(Gerosa et al, 2015) of central metabolic genes to our promoter

activity data under eight common conditions. For 50% of the

considered metabolic genes, expression changed little across condi-

tions (Appendix Fig S17). Importantly, when considering those

genes whose expression does change across conditions (at least one

condition with a log2 fold-change < �1 or > 1), we found that their

expression patterns agree well with the specific transcriptional regu-

lation component of the corresponding promoters (Appendix Fig

S18). This consistency suggests that our experimental data do

capture most of the transcriptional regulatory response. Moreover,

even in cases where the agreement between transcriptomics and

promoter activity data was only moderate (e.g. gapA, pykF, fumA in

Appendix Fig S18), we were still able to identify known regulatory

metabolite signals (Fig 4A). One exception is malate synthase

(aceB), for which transcriptomics and promoter activity data devi-

ated substantially, possibly because some of the regulatory elements

in its complex promoter (Salgado et al, 2013) may not have been

included in the respective reporter plasmid.

Relating metabolic regulatory signals to transcription factors

Finally, we asked which transcription factors mechanistically estab-

lish the inferred regulatory links between metabolites and promot-

ers. Based on the known transcriptional regulatory network of

E. coli central metabolism (Salgado et al, 2013) with over 30 dif-

ferent transcription factors (Table EV8), we determined the overlap

between each metabolite’s target promoters (as shown in Fig 4A)

and the frequency at which these promoters were regulated by a

given transcription factor (Fig 4B, data in Table EV7). Here, we

focused on the four metabolites (F1P, FBP, PEP, and cyclic AMP)

with more than two predicted promoter targets. Reassuringly, this

analysis correctly predicted the well-known interactions between

cyclic AMP and the transcription factor Crp (activation) and

between the FBP and F1P and the transcription factor Cra (inhibi-

tion). In the case of PEP, no interacting transcription factor could be

identified: The only transcription factor with an overlap in inferred

promoter targets of PEP of over 50% was Crp, but this overlap was

not statistically significant when accounting for the large number of

reported Crp targets in central metabolism (Fig 4B). Given the corre-

lation of PEP and the main Crp regulator cyclic AMP across condi-

tions (R = 0.55), PEP likely constitutes a false-positive signal.

Notably, a considerable fraction of the promoters predicted to be

regulated by cyclic AMP were either so far unknown Crp targets or

responded opposite to the reported regulatory interaction. For exam-

ple, our analysis predicted activation of talA and pck promoters by

Crp-cAMP, in contrast to previous reports using reporter plasmids in

Crp deletion (talA) or Crp overexpression strains (pck), respectively,

which did not account for global regulation (Shimada et al, 2011;

Nakano et al, 2014). We independently confirmed the talA and pck

activation by Crp-cAMP through external supplementation of cyclic

AMP, which increased promoter activity in the wild-type, but not in

a Crp knockout strain (Appendix Fig S19A). Moreover, activation of

these promoters in carbon sources supporting slow growth required

Crp (Appendix Fig S19B). These results highlight the importance of

taking global regulation into account when interpreting promoter

activity measurements, especially when the growth rate is different

between strains or conditions.

While our approach recovered many reported interactions (boxes

with thick edges in Fig 4A), about 30 previously reported interac-

tions were not recovered (gray boxes in Fig 4A), some of which had

been validated in vivo (such as between ppc and Cra-FBP/Cra-F1P

(Shimada et al, 2010), or between pgi and Crp-cAMP (Shimada

et al, 2011)]. Since these in vivo validations were performed by GFP

or LacZ reporter expression in transcription factor deletion mutants,

it is conceivable that the observed expression differences were indi-

rect consequences of altered global regulation in slower growing

mutants. However, an alternative explanation could be that we

missed these interactions in the process of removing the contribu-

tion of global regulation, for example, due to the singular value

decomposition. To exclude this possibility, we focused on four

previously reported metabolite–transcription factor pairs (GlpR-

glycerol-P, Cra-F1P, Cra-FBP, Crp-cAMP) and examined the distribu-

tion of correlation coefficients across all reported target promoters

with and without removal of global regulation (Fig 4D). Reassur-

ingly, we did not detect any examples of reported promoter–metabo-

lite interactions that were only recovered if the effect of global

regulation on promoter activity was retained. Conversely, over 20%
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Figure 4. Inferred global and specific transcriptional regulatory program of Escherichia coli central carbon metabolism.

A Inferred promoter–metabolite regulation network (Table EV7). Promoters were sorted according to metabolic pathways. Top panel: metabolite regulatory signals as
determined in Fig 3 and Appendix Fig S14. Activating and inhibiting interactions are shown in green and red, respectively. Interactions that had been validated
in vivo in previous studies [i.e. Shimada et al (2010, 2011)], but were not recovered in this work, are shown in gray with thick black edges. Only metabolites with at
least one potential promoter target are shown. In parentheses: number of potential promoter targets for a given metabolite. Bottom panel: contribution of global
transcriptional regulation across conditions for each promoter (gray), and unexplained part of the promoter response (black). Gray circle sizes denote the contribution
of global transcriptional regulation to the respective promoter as determined in Fig 2B. Black circle sizes denote how much of the promoter’s response remained
unexplained after including metabolite signals (= 1 minus the correlation coefficient between measured promoter activity and reconstruction based on global
regulation + inferred metabolite signals if applicable).

B Inference of potential transcription factor–metabolite interactions based on the reported transcriptional regulatory network (as reported in RegulonDB; Salgado et al,
2013, Table EV8). For each metabolite with more than two target promoters, its target overlap with each of the transcription factors regulating central carbon
metabolism was calculated (Table EV7). Thick black edge: transcription factor showing the largest target overlap with the respective metabolite. Hypergeometric
testing (Zampar et al, 2013) was used to assess the enrichment of transcription factor targets among each metabolite’s targets. All highlighted transcription factor–
metabolite interactions showed significant enrichment (P-value < 0.1, Table EV7), with the exception of the interaction between Crp and PEP (P-value 0.14), which is
shown with a thick gray edge.

C Leave-one-condition-out cross-validation of the network in (A). R2 denotes the overall goodness of fit between measured and predicted promoter activity across all
conditions and promoters.

D Correlation coefficients of reported promoter–metabolite interactions, which were obtained from RegulonDB based on four metabolite–transcription factor
interactions (Glycerol-P–GlpR, F1P–Cra, FBP–Cra, and cAMP–Crp), without (�) or with (+) confounding global regulation. Percentage: fraction of reported interactions
that falls into the respective sector (divided by black lines).
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of reported interactions were only recovered after removing the

confounding impact of global regulation (see also Appendix Fig

S13A and B for a comparison of identified regulatory metabolites

with or without confounding global regulation). This finding

re-iterates that removing global regulation is pivotal for the identifi-

cation of functionally relevant promoter–metabolite interactions.

Notably, about 60% of reported promoter–metabolite interactions

were not recovered in either case, suggesting that these interactions

are not relevant under the tested conditions.

Overall, the results demonstrate that our approach systematically

identifies in vivo relevant regulatory signals of transcriptional regu-

lation and also the responsible transcription factors, provided the

underlying regulatory network topology is at least partially known.

Discussion

Here, we unravel the transcriptional program that governs E. coli

central metabolism at an individual promoter level. Starting from

measured activities of about 100 central metabolic promoters during

steady-state growth under 26 environmental conditions, we identi-

fied global regulation by the growth rate-dependent cellular expres-

sion machinery as the dominant regulatory input for the majority of

promoters, accounting for about 70% of the total expression vari-

ance across conditions. Specific, transcription factor-mediated regu-

lation was confined to relatively few promoters, in particular in the

TCA cycle. Interpreting the metabolome response under the same

conditions with an approximate mathematical description of

promoter activity, we further identified candidate metabolites that

might serve as regulatory signals for the transcription factors. Our

data-driven approach reveals a surprisingly simple transcriptional

regulatory program of central carbon metabolism, in which global

regulation, together with two transcription factors (Cra and Crp)

governed by three regulatory metabolites (FBP, F1P, and cAMP),

was sufficient to explain the majority of changes in promoter activ-

ity across conditions (Fig 4). Thus, this work provides a first quanti-

tative map of the in vivo relevant mechanisms that are responsible

for the coordination of central metabolic genes in E. coli.

The dominant role of global regulation is consistent with previous

observations (Zaslaver et al, 2009; Berthoumieux et al, 2013; Gerosa

et al, 2013; Keren et al, 2013) and may explain why transcriptional

adaptation to environmental changes is typically accompanied by a

large number of gene expression changes, even for very closely

related conditions (Kao et al, 2004; Jozefczuk et al, 2010; Costenoble

et al, 2011; Buescher et al, 2012; Nicolas et al, 2012). A limitation of

our and many other GFP reporter-based studies is that the assessed

global regulation becomes a conglomerate of transcriptional (Klumpp

& Hwa, 2008) and translational effects (Borkowski et al, 2016).

Recently, Borkowski et al showed that growth-dependent global

regulation exerts its effect predominantly at the level of translation in

Bacillus subtilis (Borkowski et al, 2016). Nevertheless, experimental

evidence suggests that global regulation also affects transcriptomics

data. For example, transcriptomics studies of yeast in various nutri-

ent limitation experiments have shown that the expression of a large

fraction of genes strongly depends on the cellular growth rate regard-

less of the exact type of limitation (Brauer et al, 2008).

Surprisingly, only two transcription factors, Cra and Crp, trig-

gered by cyclic AMP, FBP, and F1P, suffice to explain a large

fraction of the specific transcriptional regulation. In particular, FBP/

F1P inhibition of Cra regulates glycolysis and cyclic AMP activation

of Crp regulates expression of TCA cycle and carbon source utiliza-

tion pathways (Appendix Fig S20). These findings concur with

previous studies highlighting the importance of Cra in regulating the

switch between glycolysis and gluconeogenesis (Ramseier, 1996;

Kotte et al, 2014) and for the sensing of glycolytic flux (Kotte et al,

2010; Kochanowski et al, 2013). Similarly, our results are consistent

with the demonstrated importance of Crp for regulating TCA cycle

fluxes (Nanchen et al, 2008; Haverkorn van Rijsewijk et al, 2011)

and carbon utilization (Kaplan et al, 2008; Aidelberg et al, 2014).

Notably, F1P and FBP affected different sets of promoters more

strongly through the same transcription factor Cra. This difference

in effector specificity appears to be largely encoded in the respective

Cra binding sites, since addition of a Cra binding site from a F1P-

regulated promoter rendered a synthetic promoter more specific for

F1P, and vice versa (Fig 4A). Although structural information about

Cra together with its effectors is limited, our results suggest that

binding of F1P and FBP may trigger distinct conformational changes

in Cra. Importantly, this work not only identifies Cra and Crp to be

the two key transcriptional regulators of central metabolism using a

data-driven approach, but also provides, for the first time, quantita-

tive information on which genes they actually affect in vivo. Beyond

quantifying the regulatory effect on known target genes, we found

many instances of known regulatory interactions that do not seem

to affect gene expression in vivo under the tested conditions and

also identified potential novel interactions (Fig 4). These findings

may aid future computational investigations of E. coli metabolism,

which typically have to rely on reported regulatory interactions to

assume a transcriptional network when constructing mathematical

models (Kotte et al, 2010; O’Brien et al, 2013; Kremling et al, 2015;

Jahan et al, 2016).

The effect of Cra on glycolytic promoters was rather weak, only

modulating the dominant global transcriptional regulation. What

could be the physiological relevance of such a modulating regula-

tory signal? One attractive hypothesis emerges when considering

protein concentration (as the final output of gene expression; Fig 5).

Proteins expressed from constitutive promoters exhibit a negative

relationship between growth rate and protein concentration under

varying carbon source availability (Klumpp et al, 2009). If such

proteins are required at high concentration to enable high fluxes

during fast growth, global regulation alone will lead to even higher

concentrations at slow growth (Fig 5B, upper panel), placing addi-

tional burden on the cell. Since glycolytic carbon sources tend to

support fast growth and result in higher FBP concentrations, regula-

tion through Cra-FBP (i.e. repression by Cra which is alleviated by

FBP) may counter this effect, causing more constant protein concen-

trations across different growth rates (Fig 5, middle panel). Conver-

sely, the regulatory input of Crp-cAMP yields a previously described

linear negative relationship between protein concentration and

growth rate under carbon limitation for catabolic proteins (You

et al, 2013; Hui et al, 2015; Fig 5, lower panel). Thus, few such

regulatory signals may allow cells to coarsely allocate proteome

resources based on the supported growth rate.

The simple transcriptional program identified here suggests that

E. coli uses only a small fraction of its transcriptional regulation

network in a given environment, which is consistent with recent

observations (Zaslaver et al, 2009; Keren et al, 2013). How can this
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finding be reconciled with the dense transcriptional regulation

network of E. coli central metabolism that comprises over 30 addi-

tional transcription factors (Salgado et al, 2013)? Firstly, methods to

physically map transcription networks, such as ChIP-chip (Cho et al,

2012), ChIP-seq (Furey, 2012), or SELEX (Shimada et al, 2010,

2011), typically provide binding information without assessing

under which conditions binding occurs. Since our approach relies on

detecting (metabolite-dependent) changes in transcription factor

activity across conditions, we cannot capture changes that are not

triggered by internal metabolite signals and changes that occur under

other, not tested conditions. We certainly expect additional specific

transcriptional regulation under different types of stress conditions,

as already suggested by the few stress conditions tested here

(Appendix Fig S9). Nevertheless, for the broad range of investigated

carbon source conditions, we can explain about 90% of the observed

transcription changes in central metabolism (Fig 4C, Appendix Fig

S16) by the simple program, leaving only a relatively small unex-

plained portion to be subject to additional transcriptional regulation.

This proof-of-concept study focused on the relatively well-char-

acterized central metabolism of E. coli (Chubukov et al, 2014). Our

unbiased mathematical approach for systematic identification of

potential metabolic regulatory signals can easily be extended to

other cellular networks and organisms, in particular because it does

not necessarily require information about the underlying regulatory

network. Moreover, this approach only requires gene expression

and metabolite data in matching conditions (which are becoming

increasingly available) and is computationally straightforward. This

work may serve as a template for data-driven systematic identifi-

cation of novel metabolite regulatory signals, and ultimately tran-

scription factor–metabolite interactions, from the correlation of

steady-state data. The approach is not restricted to gene expression,

but can in principle also be used to infer metabolite regulators of

protein kinases from metabolomics and phospho-proteomics data.

Materials and Methods

Reagents and strains

Unless stated otherwise, all reagents were obtained from Sigma-

Aldrich. Fluorescent transcriptional reporter plasmids were directly

obtained from Zaslaver et al (2006); Gerosa et al (2013) or

constructed as described in the original study (Zaslaver et al, 2006),

and subsequently transformed into the E. coli wild-type strain

BW25113 (Baba et al, 2006). The Crp deletion strain was obtained

from Baba et al (2006) and cured from its antibiotic resistance as

described previously (Datsenko & Wanner, 2000). See Table EV1 for

full list of promoters.

Cultivation

All experiments were performed using M9 minimal medium (see

Table EV2 for full list of conditions). Cultivations for the quan-

tification of promoter activity were performed as described previ-

ously (Gerosa et al, 2013). Briefly, M9 medium batch cultures in

96-deep-well format plates (Kuehner AG, Birsfelden, Switzerland)

were inoculated 1:50 from LB precultures and incubated overnight

at 37°C under shaking. Subsequently, 96-well flat transparent plates

(Nunc, Roskilde, Denmark) containing M9 medium (fill volume

200 ml) were inoculated 1:200 with overnight cultures and sealed

with Parafilm to reduce evaporation. Online measurements of opti-

cal density at 600 nm (OD600) and fluorescence (excitation
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Figure 5. Relationship between promoter activity and protein concentration.

A Activities of promoters only affected by global transcriptional regulation (top panel), mostly by global transcriptional regulation with modulating specific input from
fructose-1,6-bisphosphate (FBP, middle panel), and promoters with dominating specific transcriptional regulation through cyclic AMP (cAMP, lower panel).

B Corresponding GFP concentration. GFP concentrations were calculated by dividing steady-state promoter activity by the respective growth rate.
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wavelength: 500 nm, emission wavelength: 530 nm) were

performed at 37°C with shaking using a plate reader (TECAN infi-

nite M200, Tecan Group Ltd, Männedorf, Switzerland) at 6- to

10-min (steady-state experiments) or 10-min (dynamic experiments)

intervals. Diauxic shift experiments were performed as above, using

M9 medium with 0.5 g/l glucose and 2 g/l succinate that was inocu-

lated from M9 glucose precultures. Cultivations for the quan-

tification of intracellular metabolite concentrations were performed

as follows: M9 medium batch cultures in 96-deep-well format plates

(Kuehner AG, Birsfeld, Switzerland) were inoculated 1:50 from LB

precultures and incubated overnight at 37°C under shaking. Subse-

quently, 96-deep-well plate cultures were inoculated with overnight

cultures to a starting OD600 of 0.03 (total fill volume per well:

1.2 ml) and incubated at 37°C under shaking. Culture OD600s were

monitored by OD600 sampling from parallel wells on the same

deep-well plate and subsequent OD600 measurements using a plate

reader (TECAN infinite M200, Tecan Group Ltd, Männedorf,

Switzerland).

Quantification of intracellular metabolite concentrations

Metabolomics samples were taken during mid-exponential phase at

ODs between 0.5 and 0.7 by fast filtration (sampling volume: 1 ml;

Link et al, 2013) and were immediately quenched in 4 ml quench-

ing/extraction solution (40% methanol, 40% acetonitrile, 20% H2O,

all v/v) at �20°C (Link et al, 2012). To normalize for variations in

sample processing, 100 ll of a fully 13C-labeled E. coli internal meta-

bolome extract was added. Samples were incubated for 2 h at

�20°C, subsequently dried completely at 120 lbar (Christ RVC 2-33

CD centrifuge and Christ Alpha 2-4 CD freeze dryer), and stored at

�80°C until measurements. Before measurements, samples were

resuspended in 100 ll water, centrifuged for 5 min (5,000 g, 4°C) to

remove residual particles, and transferred to V-bottomed 96-well

sample plates (Thermo Fisher Scientific). Measurement, data acqui-

sition, and data analysis were performed as described previously

(Buescher et al, 2010; Kochanowski et al, 2013). Briefly, separation

of compounds was achieved by ion-pairing ultrahigh performance

liquid chromatography (UPLC) using a Waters Acquity UPLC with a

Waters Acquity T3 end-capped reverse phase column (dimensions,

150 mm × 2.1 mm × 1.8 lm; Waters Corporation) and coupled to

compound detection using a tandem mass spectrometer (Thermo

TSQ Quantum Ultra triple quadrupole; Thermo Fisher Scientific).

Data acquisition and peak integration was performed with in-house

software. To determine the absolute concentration of metabolites, a

1:3 dilution series of a standard solution (containing more than 80

metabolites of central carbon metabolism) with 13C internal stan-

dard was prepared and measured in parallel. Conditions in which a

metabolite was secreted or used as a carbon source were omitted in

the analysis.

Data processing

All data processing steps were performed with custom MATLAB

software. Promoter activities and corresponding growth rates

were determined as described previously (Gerosa et al, 2013).

Briefly, raw GFP and OD600 time courses from each well were

corrected for blank GFP and OD600 before cell addition and

smoothed using a moving average window with size 3. From

these time courses, promoter activity and growth rate were

quantified as dGFP/(dt × OD) and dln(OD)/dt by two-point finite

difference numerical approximation. Promoter activity was

corrected for fluorescence background by subtracting the corre-

sponding signal of the promoter-less plasmid reporter strain p139

(Zaslaver et al, 2006). Promoter activity and growth rate values

for steady-state growth were calculated as the average value in

the time range visually identified as exponential phase. Error esti-

mates of promoter activity measurements were performed based

on day-to-day comparison as described before (Keren et al,

2013). Promoters whose activities were below the detection

threshold (determined by the activity of a promoter-less strain) in

all tested conditions were discarded for further analysis. One-

dimensional hierarchical clustering of z-score-normalized (but not

log-transformed) promoter activity data was performed using the

Pearson correlation coefficient as the distance metric between

promoters (cutoff: 0.225).

Dissecting global and specific transcriptional regulation

Promoter activity data were transformed using the natural logarithm

and z-score-normalized, and singular value decomposition (Alter

et al, 2000) was used (MATLAB function svds). Promoters were

treated as variables, and conditions were treated as observations,

yielding singular vectors that have the same dimension as the

conditions. The first singular vector, which captures most of the

data set’s variability, was defined as global regulation. The specific

transcriptional regulation component of each promoter was

quantified by subtracting this first singular vector. Note that for the

normalized data used here, singular value decomposition and

principal component analysis (Bollenbach & Kishony, 2011) yield

identical results: The first singular vector is equivalent to the first

principal component.

Identification of regulatory metabolites

Metabolites for which absolute quantification was available were

first transformed using the natural logarithm and then normalized

by the mean concentration across all tested conditions. If no abso-

lute quantification was available, metabolite concentrations were

quantified relative to the M9 glucose condition and then trans-

formed using the natural logarithm. Each promoter’s specific

transcriptional regulation component was related to each log-

normalized metabolite by linear regression based on the

equation s = p × metabolite, where s is the specific transcriptional

regulation component and p denotes a parameter that is specific for

each promoter and metabolite (corresponding to the lumped para-

meter (ali × blk) in equation 2) to be determined in the regression.

The goodness of fit was determined as the Pearson correlation coef-

ficient between specific transcriptional regulation component and

the corresponding prediction based on the fitted parameter p and

the metabolite concentrations using the MATLAB function corr.

Conditions in which a metabolite was used as a carbon source, or

secreted by the cells, were omitted. Identification of pairwise regula-

tory metabolites was performed by systematic linear regression of

each promoter’s specific transcriptional regulation component based

on the equation s = p1 × metabolite1 + p2 × metabolite2, where p1

and p2 denote the promoter- and metabolite-specific parameters to
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be determined in the regression. The goodness of fit was again

determined as the Pearson correlation coefficient between measured

and predicted specific transcriptional regulation. To assess whether

any metabolite pair can explain the respective promoter’s specific

regulation component better than the best single metabolite, we

calculated the difference in Akaike information criterion (AIC),

which penalizes the number of parameters when comparing dif-

ferent models (Burnham et al, 2011; DAIC = AICbestSingle –

AICmetabolitePair). The AIC of each promoter–metabolite (or metabo-

lite pair) combination was calculated as described before (Link et al,

2013):

AIC ¼ N � log RSS

N

� �
þ 2K (4)

Where N denotes the number of conditions, RSS denotes the sum

of squared residuals (between measured and predicted data), and K

denotes the number of parameters in the respective model (K = 1

for single metabolite, K = 2 for metabolite pair). See Appendix Text

S3 for a more detailed description of the used algorithm to identify

regulatory metabolites.

Inference of transcription factor–metabolite interactions

Inference of potential transcription factor–metabolite interactions

was performed based on the reported transcriptional regulatory

network (as reported in RegulonDB; Salgado et al, 2013). First, for

each metabolite that was identified as a potential regulator of more

than two promoters, its target overlap with each of the transcription

factors regulating central carbon metabolism was calculated (100%

means that all of the target promoters of a metabolite are regulated

by the respective transcription factor). Based on these calculations,

the transcription factor with the largest overlap was selected. For

these selected transcription factor–metabolite pairs, the enrichment

of transcription factor targets among each metabolite’s targets was

assessed by hypergeometric testing (Zampar et al, 2013) to account

for differences in the number of target promoter between transcrip-

tion factors. Target enrichment was only calculated for the tran-

scription factor with the largest target overlap, since it is error-prone

for small numbers (i.e. 1–2) of target promoters: In these cases,

enrichment analysis will heavily favor transcription factors with few

(or only one) targets.

Leave-one-condition-out cross-validation

The parameters of each identified promoter–metabolite interaction

(see Fig 4) were re-fitted while omitting the data point belonging to

the excluded condition. Using these re-fitted parameters, each

promoter’s specific regulation component in the excluded conditions

was then predicted based on the respective metabolite concentra-

tion. Finally, each promoter’s summed contribution of global and

specific regulation was reverted back to linear scale. This procedure

was repeated for each condition.

Data availability

The data generated in this work are available as Tables EV1–EV8.

Expanded View for this article is available online.
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