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Abstract

Leishmaniasis is a neglected tropical disease which kills an estimated 50,000 people each

year, with its deadly impact confined mainly to lower to middle income countries. Leishmania

parasites are transmitted to human hosts by sand fly vectors during blood feeding. Recent

experimental work shows that transmission is modulated by the patchy landscape of infec-

tion in the host’s skin, and the parasite population dynamics within the vector. Here we

assimilate these new findings into a simple probabilistic model for disease transmission

which replicates recent experimental results, and assesses their relative importance. The

results of subsequent simulations, describing random parasite uptake and dynamics across

multiple blood meals, show that skin heterogeneity is important for transmission by short-

lived flies, but that for longer-lived flies with multiple bites the population dynamics within the

vector dominate transmission probability. Our results indicate that efforts to reduce fly life-

span beneath a threshold of around two weeks may be especially helpful in reducing dis-

ease transmission.

Author summary

Two recent discoveries hold particularly important ramifications for Leishmania trans-

mission. First, parasites are heterogeneously distributed within the skin of an infected

host. Second, the discovery of a new lifecycle stage known as the retroleptomonad pro-

mastigote changes the within-vector parasite dynamics. It is not yet known how these

newly identified factors may interact to influence transmission. In this study, we design a

tractable model for parasite population dynamics in the sand fly vector that consolidates

these new results into a single system. We first demonstrate that our model can replicate

established experimental results. We then interrogate this model, both analytically and

numerically, to draw conclusions about Leishmania transmission in an ecological and epi-

demiological context. We conclude that the relative importance of the two focal factors

depends critically on sand fly lifespan. In short-lived sand flies the heterogeneity in the

number of parasites initially taken up by a sand fly is typically the crucial factor in Leish-
mania transmission, whereas for longer-lived sand flies the retroleptomonad lifecycle

stage is likely to drive transmission. In a practical context these results suggest that
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minimising the expected sand fly lifespan could be an effective strategy to reduce Leish-
mania transmission.

Introduction

Leishmaniasis is caused by parasites of the Leishmania genus. Details of the infection depend

on the particular species [1], but all species share the same general vector-borne lifecycle, with

distinct and complex life cycle stages in the mammalian host and sand fly vector [2]. Leish-
mania parasites have two main morphological forms. Broadly speaking, amastigotes (ovoid,

non-flagellated) dominate the mammalian stage of the lifecycle. Promastigotes (larger, flagel-

lated) are found in the vector, and are divided into multiple developmental subclasses [3, 4].

Sand flies in natural settings are often opportunistic feeders, capable of feeding on a variety

of mammalian and avian species [5, 6]. Mature female sand flies require a blood meal during

each oviposition cycle. When an uninfected female sand fly bites an infected mammal, it

ingests amastigote-infected macrophages from the host’s skin or blood [7]. Within the first few

days, amastigotes differentiate into procyclic promastigotes, which are resistant to the digestive

enzymes of the sand fly midgut [2]. Procyclics then exponentially replicate before differentiat-

ing into nectomonad promastigotes [3]. Nectomonads are able to migrate towards the thoracic

midgut [2] and bind to the midgut epithelium [8] where they differentiate into leptomonad

promastigotes [3]. Leptomonads are the second replicative stage, and migrate through the tho-

racic midgut to the stomodeal valve [3] where these differentiate into metacyclic promasti-

gotes, the human-infectious stage. Metacyclics have a short cell body and long flagellum to

enhance motility [3], and can be transmitted to a new host where they infect host macrophages

via phagocytosis. (The infection dynamics in the host are similarly complex [9, 10], but are not

relevant to this investigation which focuses on transmission potential from vector to host.)

Two recent key findings concerning details of Leishmania biology offer new insights into the

possibility of understanding, and possibly controlling, the spread of the disease. They are

described below.

Patchy landscape of infection in the host Transmission from host to vector occurs when a

sand fly consumes a blood meal from an infected host. Doehl et al. [7] examined amastigote

Leishmania donovani infections in immunodeficient mice. By evaluating the correlation of the

sand fly parasite burden with multiple measures of host parasite burden, they showed first that

the parasite load in mammalian host skin, rather than blood, is the major determinant of suc-

cessful sand fly infection. They further found that skin parasite burden is highly variable within

and between mammalian hosts and developed a modelling approach to investigate the conse-

quences of this patchiness. For a host with a low mean parasite burden, a patchy skin landscape

enhanced outward transmission (although the overall probability of successful transmission

remained low), whereas for a host with a high parasite burden a homogenous distribution

favoured transmission.

Retroleptomonads A new lifecycle stage was identified by Serafim et al. [11], the retrolep-

tomonad promastigote [11]. When a sand fly with a mature (metacyclic enriched) infection

takes another blood meal, the metacyclic stage can de-differentiate into a leptomonad-like

stage, termed the retroleptomonad. These replicate for 3-4 days before differentiating back

into metacyclics [11]. This serves to greatly amplify the parasite load prior to the next bite (4.5

fold increase in the number of metacyclics 18 days post infection in comparison to a sand fly

that has fed only once) and thus increases the probability of disease transmission [11], a find-

ing confirmed experimentally under laboratory conditions.
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Doehl et al. [7] observed that often the sand flies would only carry a relatively small infec-

tion after a single feed, suggesting that perhaps sand flies may only be expected to infect once

they had taken 2 previous bites (and thus had their infection amplified via the the retrolepto-

monad stage [11]), but the correlation between these two mechanisms has not yet been fully

explored.

The objective of the work presented here is to build a mathematical model to incorporate

these new findings and assess the impact upon Leishmania transmission. A simple differential

equation model, parameterised by data from [3], was developed to describe the population

dynamics of nectomonad, leptomonad and metacyclic promastigote stages within the vector

(Model A). This model was then refined by the addition of the retroleptomonad lifecycle stage,

using data and observations from [11] (Model B). These models of population dynamics

within the sand fly provide a framework for a series of stochastic simulations which describe

the random processes of feeding and parasite ingestion across multiple blood meals. Such sim-

ulations allow the consequences of changes in disease prevalence at the epidemiological scale

and the thresholds of disease transmission to be quantifiably predicted.

1 Model details

1.1 Modelling approach

The modelling strategy is summarised in Fig 1. First, we develop a simple, algebraically tracta-

ble and computationally efficient model for parasite population dynamics within a single

infected sand fly, and then parameterise this model according to the available information.

This model then forms a key ingredient in a series of larger stochastic simulations intended to

extract useful details about the transmission of Leishmania.

In order to create a tractable model, several key assumptions are made. In addition to those

represented in Fig 1, we also assume that differentiation between parasite life cycle stages

occurs at 100% efficiency and that there is a single globally applied sand fly carrying capacity

of Leishmania parasites.

Fig 1. Flowchart overview of the modelling approach. Two dynamic models, calibrated to replicate prior results, evaluate parasite

population dynamics in the sand fly vector. These can be used as part of larger simulations to obtain insights into Leishmania
transmission.

https://doi.org/10.1371/journal.pntd.0009033.g001
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1.2 Model definitions

Model A describes the dynamics of Nectomonads (N), Leptomonads (L) and Metacyclics (M)

using a simple set of near-linear ordinary differential equations (ODEs),

dN
dt
¼ � aN ð1Þ

dL
dt
¼ aN þ rL 1 �

N þ LþM
C

� �

� sL ð2Þ

dM
dt
¼ sL � uM ð3Þ

The assumptions are biologically parsimonious: N differentiate into L at rate α, L replicate

at rate r (limited by a carrying capacity C) and differentiate to M at rate s, and M are also sub-

ject to mortality at rate u.

Model B extends Model A to incorporate the dynamics of the Retroleptomonads (R) [11]

using two sets of near-linear ODEs. Under standard conditions ‘normal mode’ is used,

dN
dt
¼ � aN ð4Þ

dL
dt
¼ aN þ rL 1 �

N þ LþM þ R
C

� �

� sL ð5Þ

dM
dt
¼ sLþ vR � uM ð6Þ

dR
dt
¼ qR 1 �

N þ LþM þ R
C

� �

� vR ð7Þ

In addition to the original assumptions, it is assumed that any existing R differentiate to M
at rate v and replicate at rate q limited by carrying capacity C. For a four-day period after sub-

sequent bites ‘dedifferentiation mode’ is used,

dM
dt
¼ sL � gM � uM ð8Þ

dR
dt
¼ qR 1 �

N þ LþM þ R
C

� �

þ gM ð9Þ

Now, M dedifferentiate to R at rate g and R no longer differentiate to M.

Parameterisation of Model A was performed using data obtained from Rogers et al [3] (see

S1 Method) but due to a lack of suitable data, it was not possible to perform similar parameter

fitting for the new parameters in Model B.

Table 1 includes a summary of the default parameter values chosen.

For an implementation of the above models see Supplementary S1 Code.
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Results

1.2.1 Replicating experimental results on sand fly feeding schedules and

mammalian infection heterogeneity

In order to verify that our retroleptomonad-inclusive Model B is capable of replicating the

experimental results observed by Serafim et al. [11], we ran a set of 20,000 Monte Carlo simula-

tions designed to imitate their experimental setup. In this scenario, all flies take a bite at day 0

from an infected host. Half the flies take an additional bite at day 12 from an uninfected host,

the other half take no subsequent bites. We fix the mean skin parasite burden to 2 × 106 and let

k = 2 to mimic the blood source used by Serafim et al. After the initial bite, we take up a num-

ber of amastigotes according to the methods in S2 Method. In this example, the initial number

of nectomonads N0 has mean μ and variance σ2:

m ¼ 9; 600 s2 ¼ 46; 108; 800

Of particular interest are the numbers of metacyclics and retroleptomonads present in each fly

throughout their adult lifespan. Fig 2A compares the numbers of metacyclics and retrolepto-

monads at each day sampled by Serafim et al.
Fig 2A reflects the qualitative dynamics observed in the experiments of Serafim et al. We

observe a similar reduction in the number of metacyclics immediately after the bite at day 12

and a corresponding increase in the number of retroleptomonads over the same time period.

Similar behaviour can be observed for the proportions of metacyclics and retroleptomonads

(S1 Fig), and this behaviour is sufficiently robust to be observed even with parameter randomi-

sation (S2 Fig).

We also wish to verify that our model can describe the role of heterogeneity in the skin par-

asite distribution as reported by Doehl et al [7]. To do so, we ran sets of 1000 Monte Carlo sim-

ulations for parameter combinations corresponding to mice 10-18 as calculated by Doehl et al
(S1 Table). Each simulated fly fed on an infected host at t = 0. We then sampled the number of

metacyclics in each fly after 7 days. Based on the work of Sadlova et al. [12], we consider a sand

fly to be infectious if 500 metacyclics are present at day 7 post-infection. This is a distinct, but

similar, approach to that of Doehl et al. [7] Whereas Doehl et al. predicted the number of flies

with mature infections based upon amastigote uptake, we evaluate this number directly using

a comparable threshold. Fig 2B compares the number of infectious sand flies for each mouse.

Table 1. Table of default model parameter values.

Parameter Name Default Value Units Source

α Nectomonad differentiation rate 1.52 d−1 [A]

r Leptomonad replication rate 1.45 d−1 [A]

s Leptomonad differentiation rate 1.65 d−1 [A]

u Metacyclic decline rate 1.61 d−1 [A]

C Carrying capacity 2 � 106 individuals [B]

v Retroleptomonad differentiation rate 4.0 d−1 [B]

q Retroleptomonad replication rate 3.5 d−1 [B]

g Metacyclic dedifferentiation rate 4.0 d−1 [B]

All parameters and their default values. [A]: Values are derived from parameterisation based on data from Rogers et al. [3], see S1 Method. [B]: Parameter estimates

chosen to be consistent with population data from Serafim et al. [11].

https://doi.org/10.1371/journal.pntd.0009033.t001
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We observe that heavily infected mice, such as mouse 13, result in a large proportion, if not

all, of the sand flies being mammalian-infectious at day 7 post-infection (S1 Table). Relatively

smaller infections, such as those of mice 10 and 16, typically lead to negligibly-infectious sand

flies. This matches the observations made by Doehl et al [7] and verifies that our model suc-

cessfully captures the relationship between outward transmission potential and skin

patchiness.

1.3 Analytic results

In this section we provide analytically-derived properties and consequences of simplified ver-

sions of our models. These serve to reinforce and validate the numerically derived behaviours

discussed in Section 1.4 and to highlight the key processes driving transmission. In particular,

we present expressions bounding implied disease transmission probabilities in a range of

hypothetical scenarios.

In order to render it analytically tractable, it is necessary to make two simplifications to our

model. Explicitly, we assume that 1) blood meals only occur at specific predetermined times,

rather than at random gamma-distributed times as in the full model, 2) no sand fly mortality

occurs during our simulations. This simplifies the probabilistic model such that the only ran-

dom variables affecting the parasite transmission events are the initial number of parasites

present in the sand fly, and the presence or absence of a second blood meal.

More specifically, we restrict our attention to scenarios in which a sand fly takes either two

or three blood meals over a period of 12 days. In all scenarios let N0 be the number of necto-

monads present in the sand fly 4 days post-blood meal. We choose t = 0 such that each sand fly

initially carries N0 nectomonads. We also assume that the fly feeds on an uninfected host at

time t = 12, when it deposits M12 parasites in the metacyclic life cycle stage. N0 is considered a

random variable. M12 is considered a deterministic function of N0, and so inherits probabilistic

behaviour from this random variable. A transmission event is associated with the sand fly

depositing a number of parasites (M12) exceeding a threshold T. Thus transmission is also a

random variable inheriting probabilistic behaviours from N0.

The scenarios we consider differ in terms of the occurrence of an additional blood meal

from an uninfected host at time t = 6. In our model, this 2nd ingested blood meal triggers dif-

ferentiation to the retroleptomonad lifecycle stage, associated replication and re-differentiation

Fig 2. Replicating the results of [7] and [11]. A) Comparison of the numbers of metacyclics (top) and

retroleptomonads (bottom) at specific days throughout the lifespan of the simulated flies. Blue represents flies that bite

only at day 0, orange represents flies that take a subsequent blood meal at day 12. The two categories are combined

prior to day 12. B) Number of simulated sand flies considered infectious at 7 days post-infection for RAG mice 10-18,

parameterised according to Doehl et al. (see S1 Table.).

https://doi.org/10.1371/journal.pntd.0009033.g002
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back to metacyclic stage, impacting the number of metacyclics that can be deposited at time

t = 12.

Given that there are blood meals only at times 0 and 12, the structure of the model

described in Section 1 is such that M12 is proportional to N0 i.e.

M12 ¼ C2N0 ð10Þ

where C2 is a constant derived by solving the system of equations in Section 1. It is implicitly a

function of the model’s differentiation rate parameters and the time elapsed between blood

meals.

If an additional blood meal at time t = 6 does occur, a different set of equations that involve

the retroleptomonads is used to determine the resulting number of metacyclics at time t = 12.

M12 is now determined by N0 and a correspondingly different multiplicative constant

M12 ¼ C3N0 ð11Þ

Expressions (10) and (11) can be combined to give

M12 ¼ C3N01B þ C2N0ð1 � 1BÞ ð12Þ

where 1B is an indicator function taking value one when the t = 6 blood meal occurs, and zero

otherwise.

We can now, for instance, consider the expectation of M12

EðM12Þ ¼ C3EðN0ÞEð1BÞ þ C2EðN0Þð1 � Eð1BÞÞ

¼ ½C2 þ ðC3 � C2ÞEð1BÞ�EðN0Þ
ð13Þ

which follows on the assumption that 1B and N0 are considered probabilistically independent.

Note that r≔ Eð1BÞ is the probability that the blood meal bite takes place.

Eq (12) can also be used to produce an expression for the transmission probability at time

t = 12

PðTransmissionÞ ¼ PðM12 � TÞ

¼ PðM12 � Tj second biteÞPð second biteÞ

þ PðM12 � Tj no second biteÞPð no second biteÞ

¼ PðN0 � T=C3ÞEð1BÞ þ PðN0 � T=C2Þð1 � Eð1BÞÞ

ð14Þ

We will use Eq (14) to express how the variability in N0, which was the subject of interest in

Doehl et al. [7], and the variability in the blood meal availability, which was the subject of

interest in Serafim et al. [11], both contribute to the probability of disease transmission.

To help progress our arguments here we appeal to Chebyshev’s inequality, which tells us

that a random variable takes values close to its expectation with high probability, more pre-

cisely it says that the probability of the random variable being further than k> 0 standard devi-

ations from the expectation is smaller that k−2 i.e.

PðjX � EðXÞj � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðXÞ

p
Þ � 1=k2 ð15Þ

or equivalently

PðjX � EðXÞj � kÞ � var ðXÞ=jkj2
þ

ð16Þ
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where we have introduced the rectifier function

jkj
þ
¼

( k k > 0

0 k � 0
ð17Þ

in order to accommodate negative k.

In the case when there is no bite at time t = 6 Chebyshev’s inequality allows us to put an

upper bound on the transmission probability

P½Transmission j no second bite� ¼ P½M12 � T j no second bite�

¼ P½C2N0 � T�

¼ P½N0 � EðN0Þ � T=C2 � EðN0Þ�

� P½jN0 � EðN0Þj � T=C2 � EðN0Þ�

� var ðN0Þ=jT=C2 � EðN0Þj
2

þ

ð18Þ

Such an upper bound is useful because it suggests ways the transmission probability can, in

principle at least, be forced down. We could, for example, force down the variance of the num-

ber of parasites ingested at time t = 0. Alternatively, by decreasing the conversion rate from

nectomonads at time t = 0 to metacyclics at time t = 12 we would decrease C2 which also serves

to bring down the upper bound.

Considering the average over cases in which the blood meal bite does and does not occur at

time t = 6, Chebyshev’s inequality leads us to an expression of the form

P½Transmission� ¼ P½M12 � T�

� var ðN0Þ
r

jT=C3 � EðN0Þj
2

þ

þ
1 � r

jT=C2 � EðN0Þj
2

þ

 !

� var ðN0Þ
1

jT=ðrC3 þ ð1 � rÞC2Þ � EðN0Þj
2

þ

¼ var ðN0Þ
1

jT 0=C2 � EðN0Þj
2

þ

ð19Þ

where the second line follows from Jensen’s inequality. Since C3 > C2, the second bite/retro-

leptomonad phenomenon effectively leads to a version of Eq (18) in which the transmission

threshold has been lowered from T to

T 0 ¼ T �
1

1þ rðC3=C2 � 1Þ
ð20Þ

As well as providing quantitative predictions, this ‘equivalent threshold’ result is intended to

provide another angle from which to interpret the significance of the retroleptomonad repro-

duction mechanism. Specifically, the retroleptomonads do not negate the capacity for skin het-

erogeneity to increase metacyclic numbers to transmission-sufficient levels for a subset of flies.

Rather, they make these levels easier to attain. We see the effects of skin heterogeneity and the

retroleptomonads act together to contribute to disease transmission.

An alternative expression linking the retroleptomonads to the transmission probability fol-

lows from assuming that the number of metacyclics derived from retroleptomonads is very

large relative to the transmission threshold (i.e. C3 N0� T). In this case we can consider the

PLOS NEGLECTED TROPICAL DISEASES Modeling Leishmania sand fly transmission dynamics in patchy bites

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009033 January 25, 2021 8 / 18

https://doi.org/10.1371/journal.pntd.0009033


transmission probability, given the blood meal bite at t = 6, is close to one

PðM�
12
� Tj second biteÞ � 1 ð21Þ

Then, using Chebyshev’s Inequality we see that

PðM�
12
� TÞ � rþ ð1 � rÞ

mM� ð1þ mM�=kÞ
ðT=C2 � mM� Þ

2

¼ rþ ð1 � rÞ
var ðN0Þ

ðT=C2 � EðN0ÞÞ
2

ð22Þ

This bound provides another way to assess the relative influences of key parameters on the

probability of transmission. For cases in which the transmission threshold is high relative to

the number of metacyclics produced without the retroleptomonads (i.e. C2 N0� T) and the

blood meal bite probability ρ is reasonable large, the rightmost summand in Eq (22) domi-

nates. We then see the transmission probability reduced to the blood meal bite probability.

When ρ is very small, however, the variance of N0, and the skin heterogeneity that drives it,

becomes important again. In this case it is this heterogeneity that provides each sand fly with

the greatest likelihood of depositing a sufficient number of Leishmania parasites at time t = 12

to cause transmission.

Our simplified model, via Eq (22), re-frames the competing roles of the second blood meal

and the skin heterogeneity in a mathematically precise way. The simulations and discussions

below do the same at increasing levels of realism, but necessarily decreasing levels of mathe-

matical formalism.

1.4 Simulation study

This simplified model is useful because it allows us to make analytical predictions about the

behaviour of our system. However such predictions are useful only where their implications

can be related to more sophisticated systems. Let us once more consider the full system for

both models as originally defined (Model A: Eqs 1-3; Model B: Eqs 4-9). Each sexually mature

female fly has a predetermined lifespan drawn from an exponential distribution with a mean

and standard deviation of 13 days. These sand flies bite throughout their lives, with inter-bite

times drawn from a gamma distribution of mean 6 days, standard deviation
ffiffiffi
3
p

days and with

bite loads as previously defined (S2 Method). We also reinstate a 3-day delay before the emer-

gence of nectomonads and assume that all sand flies are initially uninfected.

We require a suitable metric to assess the infectiousness of Leishmania under a variety of PB

and k values. One such metric commonly used in epidemiology is the R0 [13] defined as “the

number of secondary infections generated from a single infected individual introduced into a

susceptible population” [14]. As we do not explicitly model individual hosts, this measure is

unsuitable. Let us instead consider a proxy value: mean sand fly transmission capacity (hereaf-

ter referred to as mean R0), defined to be the average number of infections caused by a single

sand fly. Though this is not strictly an R0 value, higher mean R0 values imply a higher R0 value

for the disease assuming that the number of sand flies biting a given infected host remains

unchanged.

We determine that a transmission has occurred at a given bite using either a binary thresh-

old or a smooth ‘threshold function’. In the case of the binary threshold, we assume that if the

number of metacyclics transferred (MT) exceeds some fixed threshold T, an infection is

guaranteed (and if not an infection never occurs). For the smooth ‘threshold function’, we
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assume the chance of infection PT at a given bite depends on MT such that:

PT ¼ 0:5ðtanhð0:015ðMT � 200ÞÞ þ 1Þ ð23Þ

Whilst the binary threshold is easier to relate to our analytical work it is very unlikely to be

applicable to a real situation, especially as it disregards any nutritional or genetic variation

between potential hosts. Thus, let us consider the smooth threshold function. Corresponding

figures for the binary threshold function can be found in the supplementary information, and

we observe qualitatively similar behaviour with both the binary and smooth thresholds.

We compare our two models’ outputs for a range of different scenarios. Assume that some

proportion of hosts is initially infected and that this proportion is fixed with no dependence

on time or transmissions. Initially, we will consider two scenarios where our simulated flies

bite at random from a population of hosts in which either 100%, or 25%, of hosts are infected

(see Fig 3; for further scenarios see S3 Fig. and for the binary threshold equivalent see S4 Fig).

Although the simplest conclusion we can draw from these heatmaps is that introducing ret-

roleptomonads increases our mean R0 value, there are several other notable results. We

observe that for Model A there is a peak in the mean R0 value for low skin homogeneity and

high mean skin parasite burden for both scenarios. Though our analytic approach does not

deal directly with Model A, we could consider Model A to simply be the scenario where flies

never take 3 blood meals (and thus where the retroleptomonad lifecycle stage has no signifi-

cant role in day 12 transmission). In this context, we note that a low skin homogeneity

increases the probability of transmission as some flies are able to ingest a sufficient number of

parasites to become infectious by the next blood meal. In contrast, more homogeneous skin

environments reduce the probability that any individual sand fly would ingest sufficent para-

site numbers for strong transmission capacity. These findings support the prediction of Doehl

et al. [7].

The peak is entirely absent from the corresponding heatmaps for Model B; instead we have

a plateau spanning most of the parameter space with a slight decrease in mean R0 for very low

Fig 3. Retroleptomonad dynamics dominate over skin heterogeneity and result in elevated mean R0 values.

Heatmaps of the mean R0 for simulated sand flies for both Model A (left half) and B (right half) with 100% (top half) or

25% (bottom half) chance of biting an infected host. Note that each model utilises a different scale for clarity.

https://doi.org/10.1371/journal.pntd.0009033.g003
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k values (i.e. very patchy environments). We note from our analytical section that as ρ (the

chance of taking 3 bites) increases, k (skin homogeneity) has a progressively reduced impact.

Thus, given that ρ effectively remains constant (and non-zero) regardless of k one might antic-

ipate that the mean R0 would be independent of k. Similarly, considering the magnitude of the

amplification of the metacyclics (Fig 2A) it is reasonable to expect that the mean skin parasite

burden would be relatively unimportant. This does not hold for very low skin homogeneity

and/or parasite burdens, because under these conditions it is possible that the sand fly may fail

to be initially infected or may not remain infected by the time of their second blood meal. In

such instances, the Leishmania parasite burden may not increase sufficiently for transmission

despite the retroleptomonad-dependent population boost.

Accordingly, skin homogeneity has a particularly reduced role in very long lived sand flies

that bite many times. In these flies, the number of metacyclics are repeatedly amplified, result-

ing in almost guaranteed parasite transmission to mammalian hosts at the third and subse-

quent blood meals for the majority, rendering such sand flies potential “super spreaders”. To

assess the impact of such flies, let us restrict the lifespans of the simulated flies to 20 days

(Fig 4A, and see S5 Fig for the binary threshold equivalent). Restricting the lifespan of the flies

to 20 days appears to have minimal effect on the influence of skin homogeneity, though a

reduced plateau in mean R0 value is achieved. This impact is predominantly due to the abbre-

viated capacity for metacyclic-enhancing blood meals in female sand flies with reduced life-

spans. It should be noted that with a mean inter-bite time of 6 days, it is not unlikely that a

given individual could take 3 blood meals in 20 days.

We next consider a further restriction of the lifespan to 15 days (Fig 4B, and see S6 Fig for

the binary threshold equivalent). Under this new, harsher restriction we see that skin

Fig 4. Retroleptomonad dominance is dependent on having a sufficiently large maximum lifespan. A, B) Heatmaps of

the mean R0 for simulated sand flies in Model B with 100% chance of biting an infected host and with lifespans restricted to

20 days (A) or 15 days (B). Crosses indicate the mean skin parasite burden and skin homogeneity of various mice from [7].

C) Mean R0 value against maximum lifespan for RAG mice 1-18 from Doehl et al. [7] (S1 Table).

https://doi.org/10.1371/journal.pntd.0009033.g004
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homogeneity has much stronger influence on the mean R0 value. The peak observed in Model

A is present again. The mean R0 value does not drop to zero away from that peak, however.

This is likely because some flies will still manage to bite three times and thus benefit from the

retroleptomonad replicative cycle (this could also be interpreted as having a low, but non-zero,

ρ and thus we would expect a similarly low but non-zero mean R0).

Further simulations based on the Doehl et al. mice help elucidate the transition between

these two states. Using the parameterisation for mice 1-18 from Doehl et al. [7] (S1 Table), we

ran sets of 5,000 sand flies for each mouse for a range of different maximum lifespans and cal-

culated the mean R0 value for each set. We can then compare the trajectory taken by the mean

R0 value for each population of simulated sand flies as we increase the maximum lifespan

(Fig 4C).

We note that the mean R0 value increases with the maximum sand fly lifespan for all mice,

especially once it exceeds 15 days, as anticipated from Fig 4A and 4B. As sand fly longevity

increases it stimulates a smooth transition away from a patchiness-dominated scenario and

towards a retroleptomonad-dominated scenario. Thus the conclusions of Doehl et al [7] do

not hold for flies with unrestricted lifespans, but provide valuable insight into the transmission

potential of shorter-lived sand fly populations. Reducing the maximum lifespan of the sand

flies (and thus enlarging the shorter-lived portion) can have a tangible impact on the mean R0

value.

It is important to consider the sensitivity of our conclusions to certain model assumptions.

Firstly, we have not fully addressed the effect of Leishmania infection on the sand fly vector. It

has been documented that sand flies experience a reduction in their lifespan when infected

[15], although the effect is not yet fully understood. In S3 Method, we modify the model to

incorporate a 20% reduction in sand fly lifespan once infected. Supplementary S7 Fig demon-

strates a quantitative reduction in mean R0 but no qualitative changes to the behaviour of our

system: we maintain the single peak exhibited by Model A, and the plateau of Model B.

Though reduced, parasite infection and transmission dynamics are essentially unchanged.

We have also assumed that there exists a standard sand fly carrying capacity, suggesting a

constant tolerance for infection by all parasite lifecycle stages. Supplementary S8B Fig shows

the mean R0 against maximum lifespan for a representative subsample of the RAG mice used

by Doehl et al., as in Fig 4C, but in simulations where no limit to population size is imposed.

We note that the results are almost indistinguishable from those of the full system (S8A Fig,

Fig 4C). Our final sensitivity check removes the assumption of 100% efficiency in parasite dif-

ferentiation. To represent this reduction in efficiency, we include a population sink at each life-

cycle stage (see S3 Method for model specification and parameters). Supplementary S8C and

S8D Fig correspond to the small and large sinks, respectively. Although Supplementary S8D

Fig shows a marked decrease in mean R0, in all cases we still observe the same qualitative rela-

tionship between mean R0 and maximum lifespan.

Discussion

We observe both numerically and analytically that the inclusion of retroleptomonads allows

sand flies which take multiple bites to transfer more parasites on subsequent bites and thus be

more effective at transmitting leishmaniasis, as anticipated by Serafim et al [11]. Less trivially,

we also observe that the inclusion of retroleptomonad-dependent amplification in the model

alters the relationship between the mean R0 and skin homogeneity. In scenarios where the ret-

roleptomonad life cycle stage is absent (Model A) or play a substantially reduced role (Fig 4B)

we see a strong dependence on skin homogeneity, with patchy environments leading to more

transmissions as some flies take up many parasites and can then cause infections, as predicted
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by Doehl et al [7]. In scenarios where retroleptomonads are more important however, we see

the opposite: skin homogeneity is unimportant to the transmission of the disease, as even

small numbers of parasites initially present can be amplified greatly.

This result may reduce the perceived importance of the predictions made by Doehl et al.

[7], yet there are important considerations that highlight its relevance. Doehl et al. predicted

that patchy skin distributions would enhance transmissions because sand flies could occasion-

ally take up higher parasite loads and then can lead to increased sand fly and subsequent mam-

mal infections. Homogeneous skin environments, on the other hand, would reduce the

likelihood of the Leishmania parasite establishing an initial sand fly infection. While we

observe the loss of the relationship between skin homogeneity and mean R0 for the full system

there are scenarios where it re-emerges. Flies with short lifespans (Fig 4B) cause more trans-

missions with patchy than even skin distributions. Such sand flies are unlikely to live long

enough to bite three or more times and thus the parasite populations do not typically benefit

from the amplification step of the retroleptomonad stage in the model. This is reflected in our

analyses. Consider the short-lifespan flies to have a low chance of taking three bites (IE a low

ρ), then from Eq 22 we see that low k values increase the chance of transmission. Thus, there

are conditions under which the scenario posed by Doehl et al. is relevant to the spread of the

parasite. Perhaps an important caveat to the in vivo infection study is that immunodeficient

mice from Doehl et al. may not properly represent a typical immunocompetent individual.

While patchiness has not be reported in immunocompetent mice, the phenomenon of patchy

skin parasite distributions remains applicable to clinically symptomatic Post-Kala Azar Dermal

Leishmaniasis (PKDL) patients.

The extent to which our model’s outcomes apply to parasite transmission in natural settings

is uncertain. Multiple lab-based studies suggest that female sand flies have fairly short adult

lifespans (<20 days) [16] with further reductions when infected [15]. Lab-based sand fly viabil-

ity estimates are confounded by numerous challenges in maintaining sand fly colonies [17]

and additional mortality associated with factors such as oviposition [18] and bacterial infection

[19] that do not appear to impact wild populations as prominently. Release-recapture studies

in natural settings suggest that flies may live much longer than in lab environments [20]. To

address this uncertainty, we have incorporated parasite-induced mortality for an exemplar sce-

nario to begin to assess its influence upon Leishmania transmission. Though this new addition

did not alter the qualitative behaviour of this system for our exemplar scenario, we did observe

a reduction in mean R0 in all tested parameter combinations. This mean R0 reduction will

grow in magnitude for more severe lifespan reductions. We would also observe a loss of the

plateau in Model B if the parasite-induced mortality was sufficiently severe to prevent the ret-

roleptomonads from emerging. Such scenarios are, however, unlikely to be reasonable. In

order to properly model the impact of parasite-induced mortality on the transmission poten-

tial of sand flies, it will be crucial for future studies to discern the true expected lifespan of wild

sand flies and the full extent to which this lifespan is reduced by Leishmania parasite infection.

Transmission dynamics are further complicated by the feeding behaviour of the sand flies.

We chose to model the time between subsequent blood meals (in days) using a gamma distri-

bution of mean 6. Though this is a reasonable approximation for our model, in reality there is

little information available about how often sand flies feed. It is likely that the feeding rate is

linked to the oviposition cycle (given the dependence of oviposition on a blood meal) and the

abundance of potential blood sources and promiscuous feeding behaviour exhibited by sand

flies [6]. The scenario of regular feeds posed by Serafim et al [11] is a significant improvement

upon theories which incorporate only a second blood meal at day 12. This seems appropriate

for sand flies with abundant sources of blood meals, yet it is not uniformly true for all popula-

tions. We also consider human populations with different proportions of initially infected
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hosts (Pi) including values such as 25% and 10% which are more applicable to populations

where leishmaniasis is endemic [21, 22]. Although we observe that our results hold for such

scenarios, we assume that hosts are evenly distributed throughout the populations and this is

unlikely to be biologically accurate.

There is significant evidence that the behaviour of the sand flies is also altered once infected.

A notable component of Leishmania infection known to alter sand fly behaviour is Promasti-

gote Secretory Gel (PSG), a filamentous proteophosphoglycan-based gel secreted into the tho-

racic midgut and stomodeal valve [2, 3]. The occupation of the midgut by PSG causes the sand

flies to feed ineffectively, taking smaller blood meals [3, 23] and demonstrating increased per-

sistence when disturbed (with an increased likelihood of biting a second host after a distur-

bance) [15]. PSG also acts as a filter allowing only metacyclics to pass through [3], and

impedes the unidirectional flow of blood through the stomodeal valve, causing the sand fly to

regurgitate PSG and the parasites within it into the bite. This may amplify the number of infec-

tious parasites transferred to a new host on a successful bite [3, 24]. Giraud et al. [25] recently

investigated the complexity of this impact upon transmission. They reported that sand flies

could regurgitate high “quality” (metacyclic-enriched) parasite doses even after multiple suc-

cessive bites in a feed, likely due to PSG acting as a filter [3], but subsequent maintenance var-

ies as the infection progresses in the fly. They also report that differences in dose quality have

tangible impacts on the trajectory of the resulting infection in a mouse host, with lower quality

bites often leading to larger, but less outwardly infectious lesions.

The interactions between PSG, fly feeding behaviour, and Leishmania population dynamics

could have important implications for transmission. Sand flies that do feed on multiple hosts

during a feed [15] could cause multiple infections given the enriched doses they may transmit,

and the variable dose quality [25] may contribute to the emergence of variable patchiness in

the skin of mammalian hosts observed by Doehl et al [7]. Although we model the regurgitation

of parasites by increasing the number of transferred metacyclics for heavily infected flies [26],

we do not directly model the PSG due to insufficient information regarding its production and

how it interacts with the parasites in the midgut. Similarly the role of superspreading in Leish-
mania transmission, though beyond the scope of this study, may have significant implications

for future models.

Another avenue of future enquiry that holds potential value relates to improving the para-

meterisation of our model. As the discovery of the retroleptomonad lifecycle stage is very

recent [11] we have insufficient data to parameterise Model B with accuracy. Although our

chosen parameters are informed by the population graphs of Serafim et al. and we can demon-

strate that our model produces similar behaviour to that of the experimental system, it would

be preferable to have more data to base our parameters upon. Future studies may seek to

improve the identification of retroleptomonads using transcriptomics tools as has been done

for previous life cycle stages [27]. Alternatively, they may seek to provide more information

about the two lifecycle stages we omit from our model, the amastigotes and procyclic promas-

tigotes. Either of these options would greatly improve predictions from future models.

Conclusion

This work has produced a basic population dynamic model for nectomonad, leptomonad and

metacyclic promastigotes and integrated the recently discovered retroleptomonad promasti-

gote. This model can be further enhanced via the addition of missing life cycle stages or addi-

tional parameter to improve the fit. This provides a basic tool that can be expanded upon

depending on the aims of a study. For example, a similar model may prove useful if modelling

the impact of interventions on promastigote dynamics. Through using Monte Carlo
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Simulations, we have demonstrated that the addition of retroleptomonads to the model greatly

enhances transmission from the second bite onwards. This could suggest that retroleptomo-

nads are a good stage to target in control efforts, potentially through interventions that reduce

the number of bites a sand fly takes. We have also demonstrated that skin parasite heterogene-

ity does have an impact on Leishmania transmission, although a much smaller impact than ret-

roleptomonads. A patchy distribution slightly enhances transmission when retroleptomonads

are not present (such as the first bite), but a non-patchy distribution enhances transmission

when retroleptomonads develop.

Materials and methods

Model parameterisation was performed in RStudio v1.2.5019 (R version 3.6.1) with the digitize

package [28] using data from [3] (see Supplementary S1 Method for full details). All Monte

Carlo simulations were performed in MATLAB R2019b. Data analysis was performed in RStu-

dio v1.2.5019 (R version 3.6.1).

Supporting information

S1 Table. RAG Mouse parameter combinations. The skin heterogeneity and mean skin para-

site burden values for RAG mice 1-18 used throughout our simulations, as originally calculated

by Doehl et al. [A]: Values derived from Doehl et al. [7].

(PDF)

S1 Method. Parameterisation of Model A.

(PDF)

S2 Method. Bite mechanics.

(PDF)

S3 Method. Population sink mechanics.

(PDF)

S1 Code. Supplementary code. All MATLAB and R code comprising our implementation of

the models and simulations used in this investigation.

(7Z)

S1 Fig. Replicating the results of [11] (parasite proportions). Comparison of the proportions

of metacyclics (top) and retroleptomonads (bottom) at specific days throughout the lifespan of

the simulated flies. Blue represents flies that bite only at day 0, orange represents flies that bite

at day 12. The two categories are combined prior to day 12.

(TIF)

S2 Fig. Evaluating model robustness by randomising parameters. Number of metacyclics

within the sand flies at specific days, with all parameters randomised prior to the start of each

simulation. Parameters lie within 10% of the default value (Table 1). Blue represents flies that

bite only a day 0, orange represents flies that bite at day 12.

(TIF)

S3 Fig. Additional infected host proportions reflect the retroleptomonad dominance.

Heatmaps of the Mean R0 for simulated sand flies for both Model A (left half) and B (right

half) with 100% (top row), 50% (second row), 25% (third row), and 10% (bottom row) chance

of biting an infected host, with the smooth transmission threshold function.

(TIF)
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S4 Fig. Heatmap dynamics remain qualitatively similar under a binary transmission

threshold. Heatmaps of the Mean R0 for simulated sand flies for both Model A (left half) and

B (right half) with 100% (top row), 50% (second row), 25% (third row), and 10% (bottom row)

chance of biting an infected host, with the binary transmission threshold.

(TIF)

S5 Fig. Reduced lifespan (20 days) dynamics remain qualitatively similar under a binary

transmission threshold. Heatmap of the Mean R0 for simulated sand flies in Model B with

100% chance of biting an infected host and with lifespans restricted to 20 days, with the binary

transmission threshold.

(TIF)

S6 Fig. Reduced lifespan (15 days) dynamics remain qualitatively similar under a binary

transmission threshold. Heatmap of the Mean R0 for simulated sand flies in Model B with

100% chance of biting an infected host and with lifespans restricted to 15 days, with the binary

transmission threshold.

(TIF)

S7 Fig. The inclusion of parasite induced mortality results in quantitative, but not qualita-

tive, changes. Heatmaps of Mean R0 for simulated sand flies for both Model A (left half) and B

(right half) with 100% (top row) or 25% (bottom row) chance of biting an infected host, with a

smooth transmission threshold. After infection, sand flies receive a 20% reduction to their

remaining lifespan.

(TIF)

S8 Fig. Removing crucial assumptions of the model has minimal influence. Mean R0 against

maximum lifespan for a representative subsample of RAG mice. A) Full model adapted from

Fig 4c. B) Full model, but with no carrying capacity. C) Full model, but with additional small

population sinks. D) Full model, but with larger population sinks.

(TIF)
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