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	 Background:	 Diabetic retinopathy (DR) is a progressive neurodegenerative disease with early-stage symptoms such as dys-
function of Muller cells, which leads to ganglion cell death. Its pathogenesis is probably associated with oxida-
tive stress and a recently discovered protein, thioredoxin-interacting protein (TXNIP).

	 Material/Methods:	 To explore the role of TXNIP in DR, we cultured Muller cells under diabetic conditions, and then used immuno-
histochemistry, Western blot, and RT-PCR to detect the expression level of TXNIP under diabetic conditions. We 
demonstrated the expression level of glutamine synthetase (GS) when TXNIP was inhibited. To explore the po-
tential pathway of TXNIP-induced cell damage in DR, we confirmed the role of IL-1b under diabetic conditions.

	 Results:	 Diabetes induces TXNIP expressions at mRNA levels, but shows the opposite effect on GS. IL-1b plays an im-
portant role in this pathway. Azaserine effectively increased the expression of GS via attenuating the expres-
sion of TXNIP.

	 Conclusions:	 This study demonstrates the role of TXNIP and its mechanism in DR, provides a possible treatment for DR, and 
lays a new theoretical foundation for the clinical treatment of DR and other diabetic microvascular changes.
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Background

Diabetic retinopathy (DR) is a progressive neurodegenerative 
disease, with early-stage symptoms such as dysfunction of 
Muller cells, which leads to ganglion cell death. Its pathogen-
esis is probably associated with oxidative stress, which pro-
motes the production of reactive oxygen and nitrogen spe-
cies (ROS/RNS) and leads to a vicious cycle of macromolecular 
damage. However, the details of this process are not entire-
ly understood [1]. The incidence of diabetes has increased in 
recent years. There were 170 million people with diabetes in 
2000, and the number of diabetics is expected to increase to 
360 million by 2030 [2]. The microvasculature of diabetic pa-
tients is severely damaged through complex molecular mech-
anisms that are accompanied by serious complications, such 
as diabetic retinopathy (DR) [3]. About 43.1% of diabetic pa-
tients have DR [4], with symptoms of retinal hemorrhage, ex-
udation, and traction retinal detachment, which are the most 
serious causes of blindness [1,5]. The lack of effective measures 
for treatment and prevention of DR leads to serious econom-
ic and emotional burdens to individuals, families, and society.

Recent studies found that DR is a neurodegenerative disease 
with a rapidly progressive course [6]. The pathological microen-
vironment of diabetes (e.g., hyperglycemia and hypoxia) causes 
abnormal structure and dysfunction of retinal cells, including ret-
inal ganglion cell apoptosis, retinal vascular endothelial cells dis-
orders, and abnormal metabolism in Muller cells [7]. There are 
10 layers in the retina, in which Muller cells are the primary glial 
cells, playing important roles in maintaining the stability of the 
retinal environment. Early pathologies of DR, such as Muller cell 
dysfunction, directly lead to the apoptosis of ganglion cells [8]. 
The latest international studies tend to regard DR as “diabetic 
retinitis”, indicating that inflammatory damage, including a series 
of processes such as oxidative stress, apoptosis, and cell prolif-
eration, is the key to the pathogenesis of DR. However, the com-
plex etiology makes prevention and treatment of DR difficult.

Our previous studies found that early pathologies of DR in-
volve glutamate-mediated oxidative stress. High glucose lev-
els cause disorders of the glutamate system, resulting in in-
creased concentration of glutamate [9], in which glutamine 
synthetase (GS) is of crucial importance. However, our previ-
ous work failed to clarify the pathways and the relationships 
between upstream and downstream proteins. The recently 
discovered thioredoxin-interacting protein (TXNIP) can cause 
damage in oxidative stress via activating the reactive oxygen 
system, which induces cell death [10], but the exact pathways 
are still unclear. In a previous study, we found that GS plays 
an important role in glutamate-mediated oxidative stress, and 
the level of GS in Muller (retinal glial) cells was decreased un-
der conditions with high glucose levels. Therefore, we hypoth-
esized that TXNIP could initiate an oxidative stress reaction 

resulting in decreased GS, which leads to irreversible damage 
of ganglion cells in DR.

To further explore the role of expression of TXNIP in DR, as well 
as the relationship between TXNIP and GS, we designed the fol-
lowing experiments. In this study Muller cells were cultured in a 
high-glucose environment. Then immunohistochemistry, Western 
blot, and RT-PCR were used to detect the expression level of 
TXNIP under diabetic conditions, demonstrating the expression 
level of TXNIP and GS during retinal neuron damage. After the 
TXNIP damage function was identified, working on the relevant 
pathways of TXNIP and using the inhibition or siRNA of TXNIP 
will provide new mechanisms and therapeutic targets for DR.

Material and Methods

Cell culture

Muller cells were obtained from retinas of neonate mice, di-
gested by trypsin, and then cultured in 6-well plates. The cells 
were subcultured in DMEM (1:2 ratio) at a density estimat-
ed to reach 80% confluence. Immunohistochemistry and elec-
tron microscopy were used for morphological identification of 
Muller cells. After 2-4 generations in culture, Muller cells were 
diluted to 1×106/l, and then were washed 3 times in D-hank’s 
solution. Afterwards, cells were divided into 4 groups with dif-
ferent treatments: cells cultured with DMEM medium without 
glucose as the control group, cells cultured with DMEM con-
taining 25 mmol/l glucose as the model group, cells in the 
model group treated with azaserine as the intervention group, 
and cells in the model group treated with the same volume 
of phosphate-buffered saline (PBS) as the intervention control 
group. All cells were incubated at 37°C for 24 h.

Immunofluorescence

Muller cells were cultured with or without high glucose and 
grown to 80% confluence, then fixed in PBS containing 4% 
cross-linking agent (paraformaldehyde, 4%) for 20 min. Then 
cellular contents were washed with 0.05% Triton X-100 for 
30 min and with PBS for 15 min. Cells were then incubated 
overnight with different primary antibodies against GS. Then, 
cells were washed 3 times in PBS with 5-min time intervals. 
Afterwards, fluorescein isothiocyanate (FITC) was used for cell 
immuno-labelling, and then cells were morphologically ob-
served using an epifluorescence microscope.

Western blot

Muller cells in each group were homogenized in lysis buffer and 
the homogenate was centrifuged at 12,000×g for 15 min at 4°C. 
Then protein concentrations were measured by bicinchoninic 
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acid technique. Proteins were resolved by polyacrylamide gel 
and transferred to a polyvinylidene difluoride (PVDF) membrane 
(Amersham Life Science, West Chester, PA, USA) for electropho-
resis. The PVDF membranes were blocked at room temperature 
incubation for 2 h in TPBS containing 5% skim milk powder. 
They were then incubated with primary antibody (TXNIP 1:50) 
for 3 h at room temperature. Afterwards, the membranes were 
washed (3 times, 5 min every time) and incubated with the sec-
ondary antibody for 1 h at room temperature, followed by de-
tection with Western blot reagent. To ensure that equal quanti-
ties were loaded in each lane, the membranes were blotted with 
anti-GAPDH antibody (Sigma Chemical Co., St Louis, MO, USA). 
BioRad Quantity One software was used to analyze absorbance 
value (A) of each band, including target protein and b-actin. The 
ratio of Atarget protein/AGAPDH was considered as a relative integral 
A value presenting the expression level of each target protein.

Real time RT-PCR

The differently treated Muller cells were collected by centrifuga-
tion at 4°C, washed twice with chilled PBS (0.144% KH2PO4, 0.8% 

NaCl, 0.795% Na2HPO4), and then total RNA of differently treat-
ed cells was isolated, as previously described. Complementary 
DNA (cDNA) was synthesized using SuperScript II (Invitrogen 
Life Technologies, Baltimore, MD, USA) according to the man-
ufacturer’s protocol. Semi-quantitative analysis was carried 
out by use of the BioRad GS UV gel imaging system. The prim-
er pairs used were: TXNIP-F: 5’-CGAGTCAAAGCCGTCAGGAT-3’, 
TXNIP-R: 5’-TTCATAGCGCAAGTAGTCCAAGGT-3’; GS-F: 5’-GCCGT 
GGTGCTACTGATTGCT-3’, GS-R: 5’-GCTTCCCAGTTCTGTGCGTTAT-3’; 
IL-1b-F: 5’-TGGCAGCTACCTATGTCTTGC-3’, IL-1b-R: 5’-CCAC 
TTGTTGGCTTATGTTCTG-3’. The PCR procedure was 36 cycles of 
94°C for 1 min, 55–60°C for 1 min, and 72°C for 2 min, using 
the primers described above. The relative expression of the 
tested gene was defined as the copy number ratio of cDNA to 
that of GAPDH in the same sample.

Statistical analysis

All data analyses were performed with SPSS 19.0 software. 
Quantification of mRNA expression is presented as mean ± 
standard error, and data were submitted to Student’s t-test 
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Figure 1. �Identification of Muller cells by immunofluorescence. (A) GS expression in cells colored by FITC. (B) Cell nuclei dyed by DAPI. 
(C) Merged picture of (A) and (B). (D) Muller cells in white-light (scale bars, 100 µm).
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to compare results between the 2 groups. All P values were 
2-sided and a P value less than 0.05 was considered statisti-
cally significant.

Results

Culture and identification of Muller cells

GS was specifically expressed in Muller cells, which is a key 
enzyme that converts glutamate into glutamine; therefore, it 
can serve as a specific immune marker of Muller cells. In this 
study we selected GS to identify the separation of Muller cells 
(Figure 1) and the positive rate was about 90%.

High glucose affects expression levels of TXNIP and GS in 
Muller cells

Muller cells were cultured in DMEM containing high concen-
trations of glucose (25 mM) for 24 h. The protein and mRNA 
expression levels of TXNIP and GS in cells cultured with or 
without high glucose were detected by Western blotting and 
RT-qPCR, respectively. The results in Figure 2 show that a high-
glucose condition increased TXNIP expressions at both pro-
tein and mRNA levels, but its effect on GS was the opposite.

Azaserine is responsible for TXNIP and GS expression in 
Muller cell

The expression of TXNIP is reduce by using azaserine to identi-
fy the expression of GS for further defining the possible mech-
anism of TXNIP in DR. To ascertain whether azaserine is in-
volved in TXNIP and GS expression, we examined TXNIP and 
GS expression in Muller cells treated with or without azaser-
ine. There was almost no TXNIP expressed in cells cultured 
without glucose, regardless of whether azaserine was added. 
However, when azaserine inhibited TXNIP expression in the 
high-glucose condition, the expression level was decreased 
by approximately 36±4% (P<0.01) (Figure 3A). Azaserine in-
creased mRNA expression levels of GS cultured in high-glucose 
conditions (1.77±0.01-fold) or not (1.15±0.1-fold) (Figure 3B). 
Western blot analysis showed similar expression trends of 
TXNIP and GS protein when Muller cells were treated with 
azaserine (Figure 3C, 3D).

The role of IL-1b in retinal Muller cells

To confirm the reported results that IL-1b is associated with 
GS in retinal Muller cells at high glucose levels [11], we ex-
amined the mRNA and protein expression levels of IL-1b in 
Muller cells by using RT-PCR and Western blot. As shown in 
Figure 4, when cells were in normal conditions, azaserine has 
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Figure 2. �High glucose increased expression of TXNIP but showed inhibition effects on GS both at mRNA and protein levels. Relative 
mRNA expression levels of TXNIP (A) and GS (B) were analyzed by RT-qPCR and each measurement was performed in 
triplicate. (C) Expression levels of TXNIP and GS detected by Western blot. (D) Gray comparison of results in (C). * P<0.05.
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Figure 3. �Azaserine affects TXNIP and GS expression in Muller cells. RT-qPCR analysis for TXNIP and GS mRNAs showed increased 
TXNIP expression (A) and decreased GS expression (B) induced by azaserine. (C) Western blot was used to detect protein 
expression levels of TXNIP and GS. (D) Gray comparison was carried out on the results in (C).
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Figure 4. �mRNA and protein expression levels of IL-1b in Muller cells cultured with or without 25 mM glucose. (A) Muller cells in 
different groups were cultured with or without 25 mM glucose medium for 24 h and mRNA expression levels of IL-1b were 
detected by RT-qPCR. After being treated with azaserine, Western blot analysis was done to detect protein expression of 
IL-1b (C) and gray comparison was carried out (B). Each measurement was performed in triplicate.
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no effect on mRNA and protein expression of IL-1b. However, 
when cells were cultured under high-glucose conditions, the 
expression of IL-1b at the protein level and mRNA level were 
decreased when azaserine was added.

Discussion

TXNIP works by binding protein to thioredoxin (TRX) protein. 
TRX, a small protein approximately 12 kD with oxidation-reduc-
tion activity, is widely distributed in prokaryotic and eukaryot-
ic organisms. The TRX system consists of TRX, TRX reductase 
(TRXR or TR), and reduced nicotinamide adenine dinucleo-
tide phosphate (NADPH). The main biological function of TRX 
is to regulate the intracellular redox state, combat oxidative 
stress, and protect tissues or cells from damage. TXNIP [12], 
also known as vitamin D 3-regulated protein 1 (VDUP1) or TRX-
binding protein 2 (TBP-2), weighs about 50 kD and has homol-
ogy with inhibiting protein. TXNIP was initially found in leu-
kemia cells (HL-60) treated with 1, 25-dihydroxyvitamin D3, 
and then it was separated by a yeast 2-hybrid system. TXNIP 
is considered a TRX-binding protein, which negatively regu-
lates expression and function of TRX. Inhibiting the function 
of the TRX system plays a mediating role in oxidative stress, 
and has multiple roles in oxidation reduction, cell proliferation, 
apoptosis, and lipid and glucose metabolism.

A high-glucose environment was found to cause TXNIP over-
expression and lead to excessive ROS production in the is-
let cells through activation of carbohydrate reaction element-
binding protein (ChREBP) on the promoter of TXNIP [13]. Other 
studies suggested that high-glucose conditions increased ex-
pression of TXNIP via p38 mitogen-activated protein kinase 
(MAPK) and forkhead box transcription factor O subfamily 1 
(FOX01) kinase pathways. It also leads to excessive ROS pro-
duction in islet cells, and p38 MAPK can activate ROS, there-
by creating a vicious cycle [14]. Hamada et al. [15] construct-
ed an STZ-induced diabetic rat model and used enzyme-linked 
immunosorbent assay (ELISA) to detect the level of oxidative 
stress markers 8-OHdG and acrolein adduct in rat kidneys. 
They reported that both oxidative stress markers were signif-
icantly increased in the experimental group compared with 
the control group. The results of RT-qPCR demonstrated that 
mRNA level of TXNIP in rat kidneys in the experimental group 
were higher than in the control group, suggesting that a high 
level of TXNIP is a potential mechanism for maintaining high 
levels of oxidative stress in a diabetic internal environment.

In the field of ophthalmology, Takhellambam et al. [10] found 
that high concentrations of glutamate can upregulate the ex-
pression of TXNIP, indicating that TXNIP is also related to glu-
tamate. However, the study did not further explore the relation-
ships between TXNIP and glutamate and glutamine synthase, so 
it could not discover the exact pathological mechanism. In ad-
dition, Perrone et al. [16] found that azaserine inhibits the hex-
osamine biosynthesis pathway (HBP). HBP pathway activation 
increases the expression of TXNIP, which in turn increases the 
expression of Cox-2 and FN downstream. As a nervous system 
excitatory neurotransmitter, excessive glutamate can cause gan-
glion cell damage and death. Glutamate maintains its balance 
by glutamate transporters and GS in Muller cells, and dysfunc-
tion of either of them will lead to glutamate metabolic disorder.

Our previous studies [17–21] found that in the retina of diabet-
ic rats, GS was generated from a few continuous filaments in 
the inner nuclear layer, and was predominantly expressed on 
the retinal ganglion cell layer and inner nuclear layer. GS ex-
pression was significantly decreased compared with the con-
trol group at 3 days to 1 month, although no significant differ-
ence was found in the first 2 months. In the condition of high 
glucose, accumulation of GS in Muller cells was decreased, re-
sulting in the dysfunction of Muller cells, and further induced 
the apoptosis of ganglion cells. It was also reported that in 
high-glucose conditions, IL-1b remarkably up-regulated the lev-
el of c-Jun and reduced the level of GS, suggesting that IL-1b 
may play a role in the development of DR (11). The results of 
our study are consistent with previous research results, sug-
gesting that in the early stage of DR, TXNIP suppresses the 
expression of GS by IL-1b.

Conclusions

The present study demonstrates that diabetes induces TXNIP 
expressions in mRNA levels, but showed the opposite effect 
on GS. IL-1b plays an important role in this pathway. Moreover, 
azaserine can effectively increase the expression of GS via at-
tenuating the expression of TXNIP, which provides a possi-
ble treatment for DR and lays a new theoretical foundation 
for the clinical treatment of DR and other diabetic microvas-
cular changes.
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