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Introduction
Pan-genome was a term coined by Tettelin et al1 to describe the 
gene content of several strains of Streptococcus agalactiae. The 
pan-genome is divided into core genome, dispensable or acces-
sory genome, and singleton genes (ie, species-specific genes). 
Fifteen years after the publication of Tettelin’s article, the num-
ber of genomes sequenced and available in databases have grown 
exponentially surpassing 30 000 complete and draft genomes in 
2020 (https://gold.jgi.doe.gov/statistics). The evolution of 
sequencing technologies from classic chain termination method 
to fourth-generation sequencing, based on a massively parallel 
analysis, has been facilitating cost reduction over the years.2 
However, in many countries, the sequencing value still exceeds 
the prediction of USD 1000 per genome.3 Despite criticisms 
about the use of draft genomes in pan-genome analysis, several 
new software have been developed to improve the assembly of 
these draft genomes.4 For example, Escherichia coli has 15 275 
genomes in scaffold or contigs available in GenBank (https://
www.ncbi.nlm.nih.gov/genome/genomes/167) and their use for 
pan-genome studies is considered limited.

A search in PubMed database using the words “pan genome” 
or “pan-genome” returns a total of 494 works published in the 
last 5 years (2015 to date). This number tends to increase because 
the results of pan-genome analyses are becoming more accurate. 
Zeng et al5 used a new pan-genome reverse vaccinology approach 
and found 121 cell surface-exposed proteins belonging to the 
core genome of Leptospira interrogans. These proteins proved to 

be highly antigenic and widely distributed in the species. Thus, 
these proteins are potential candidates for vaccine development. 
Pan-genome analysis was also applied to the discovery of 
antiphage defense systems,6 in RNAseq analysis,7 and evolu-
tionary studies of adaptation to different hosts.8

In this review, we present the main concepts and software 
used for the analysis of prokaryotic pan-genomes. First, intro-
duction to basic concepts is presented followed by an up-to-date 
description of the most recent software for pan-genome analysis. 
We also present a pan-genome analysis of the 9 bacterial species 
with the highest number of genomes deposited in GenBank.

Basic Concepts
Pan-genome structure

The sequence of a single genome does not reflect the entire 
genetic variability of a bacterial species. Complex analysis 
such as evolutionary genomics and molecular pathogenesis 
require a large number of sequenced genomes.1,9 Fortunately, 
the constant evolution of sequencing technologies has been 
allowing the reduction of sequencing time and cost. 
Consequently, an exponential increase in the number of 
genomes available in the databases has been observed. New 
research fields have emerged such as comparative genomics, 
whose principle is to compare the genetic content of several 
taxonomically related microorganisms.10 For example, in the 
pre-genomic era, 2 strains were classified in the same species 
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if they presented 70% DNA-DNA reassociation.11 In the 
post-genomic era, several other methods can be applied to 
evaluate taxonomic relationships such as average nucleotide 
identity (ANI).12 A broader discussion about the concept of 
bacterial species will be accomplished later. Recently, the tree 
of life was updated based on the comparative analysis of a 
large number of bacterial genomes.13

A pan-genome is determined through comparative 
genomic analyses. A pan-genome consists in the set of non-
redundant gene families belonging to a taxonomically related 
group of organisms. The pan-genome is divided into 3 sub-
groups as demonstrated in Figure 1. Core genome is the set of 
genes shared by all analyzed microorganisms. Most of these 
genes are involved in vital roles for bacterial survival.1,14,15 
However, genes of the core genome may also be involved in 
pathogenicity and virulence in some bacterial species.16,17 
Accessory or dispensable genome is composed by the set of 
genes that are present in 2 or more genomes but not all.18 
Singleton genes such as species- or strain-specific genes are 
those present in only one genome. Usually, accessory and sin-
gleton genes are acquired by horizontal gene transfer (HGT) 
or evolved due to mutations in pre-existing genes. They  
are commonly related to a specific metabolism, virulence, 
antibiotic resistance mechanism, or other environmental 
adaptation.19 A pan-genome is classified as open or closed 
depending on the probability of detecting new gene families 
as new genomes are added into the analysis. In an open pan-
genome, the number of gene families will continuously 
increase with the addition of new genomes to the analysis. In 
contrast, in a closed pan-genome, the number of gene families 
will not increase considerably.

Genomic plasticity and the accessory genome

The flexible portion of the pan-genome (accessory and strain-
specific genes) is the main genetic component responsible for 

the adaptation of a bacterial population to different environ-
mental stresses. In this context, it is important to distinguish 
the terms genomic plasticity and accessory genome. Genomic 
plasticity is used to describe the mobile genetic elements 
(MGEs) and hypervariable regions that transform the 
genome into a dynamic molecule. Therefore, it is a concept 
used to discuss the genetic variability of a single or multiple 
genome without necessarily making use of a pan-genomic 
approach. Accessory genome is the set of genes that, after a 
pan-genomic analysis, are present in 2 or more genomes but 
not all. Thus, it comprises the variable portion of a pan-
genome. In some cases, MGEs and hypervariable regions 
comprise most of the accessory genome.20 In strains of Bacillus 
amyloliquefaciens, most gene clusters for the production of 
secondary metabolites are present in the accessory genome of 
the species.21

Orthologous and paralogous genes

Most comparative genomic analyses begin by identifying the 
homologous characteristics between 2 or more prokaryotic 
genomes. These homologies range from large chromosomal 
segments to genes or even point mutations. In a pan-genome 
analysis, the genes are the main characteristics evaluated. From 
an evolutionary perspective, a gene is classified as homologous 
or analogous. Homologous genes are those originated from a 
common ancestor, whereas the analogous genes evolved inde-
pendently through convergent evolution. In both cases, they 
will present the same function but in different organisms. 
About 15% of the genes of a bacterium are acquired through 
HGT.22 Thus, it is difficult to apply the concept of analogous 
genes in the Bacteria domain.

A pan-genomic analysis searches for homologous genes 
within the set of analyzed genomes. These homologous genes 
are divided into orthologous and paralogous genes.23 
Orthologous genes diverged via evolutionary speciation. 

Figure 1. Venn diagram representing the subgroups of a pan-genome. Each set represents the gene families detected in a genome. The intersection of 

these sets represents the core genome. The number of gene families in the core genome corresponds to the size of the intersection. The fraction of 

genes corresponding to the core genome in an open pan-genome (A) is smaller than in a closed pan-genome (B). In contrast, the fraction of genes 

corresponding to the accessory genome in an open pan-genome (A) is higher than in a closed pan-genome (B).
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Paralogous genes diverged via gene duplication. Thus, orthol-
ogous genes are those shared by 2 or more bacteria and have 
equivalent biological function. It is worth noting that orthol-
ogous genes tend to be more conserved than paralogous 
genes.24 In contrast, paralogous genes commonly undergo 
several mutations after their duplication leading to a change 
in their biological function.25

As pan-genomic analysis is based on sequence homology, 
some parameters such as coverage and identity must be care-
fully chosen. These parameters will strongly influence in the 
detection of orthologous genes. To demonstrate this issue, we 
calculated the pan-genome of E coli using different coverage 
and identity values. Thirty genomes were randomly down-
loaded from GenBank. Five analyses were performed starting 
from 50% coverage and 50% identity up to 90% coverage and 
90% identity (Figure 2). The size of the pan-genome and core 
genome as well as the alpha value of the Heap’s law changed 
significantly (Figure 2). The pan-genome increased from 
13 000 to about 18 000 gene families. The alpha value decreased 
from 0.68 to 0.58.

High values of coverage and identity lead to overestimation 
of the pan-genome size and may separate groups of ortholo-
gous genes. The opposite is also true. Low values of coverage 
and identity lead to the clustering of non-orthologous genes. 
One way to determine the best values for these parameters is 
checking the clustering of known orthologous genes in such a 
way that they will serve as an internal control during the analy-
sis. Other characteristics that should be taken into considera-
tion include the genomic plasticity and the taxonomic level of 
the microorganisms being compared.

Some software allows the user to modify other parameters 
that also strongly influence the results of the analysis. For 
example, GET_HOMOLOGUES26 offers the possibility to 
use DIAMOND algorithm instead of BLAST to perform the 
alignment. This software also allows user to choose the 

algorithm used for bidirectional search of best hits, between 
COGtriangle and orthoMCL. A broader discussion about the 
types of orthology analysis used by each software will be fur-
ther presented.

Pan-genomic concept of bacterial species

In 1942, Ernst Mayr proposed a species concept that is widely 
used for eukaryotes: “species are groups of interbreeding natu-
ral populations that are reproductively isolated from the other 
such groups.” The microbial world, basically composed by 
microorganisms that reproduce asexually, is therefore one of 
the great bottlenecks of the species concept proposed by Mayr. 
Bacteria are able to exchange genetic material through HGT.

Nevertheless, taxonomy and systematics are extremely 
important for basic analysis in microbiology. Species is the fun-
damental taxonomic unit and in the absence of a concept that 
encompasses all living beings, new ideas were presented or re-
discussed.27 The Bergey’s Manual of Systematics of Archaea 
and Bacteria has a broader concept of species: “a distinct group 
of strains that have certain distinguishing features and that 
generally bear a close resemblance to one another in the more 
essential features of organization.” Due to the emergence of 
modern (or molecular) microbiology that is based on the 
genetic analysis of cultivable or uncultivable strains, the con-
cept of bacterial species is becoming increasingly divergent 
from the concept of Mayr and clearer than the concept pro-
vided by the Bergey’s manual. Currently, bacteria with >70% 
DNA-DNA hybridization and >97% 16S rRNA sequence 
identity are classified in the same species.28 Even so, taxonomic 
classification of environmental bacteria is a bottleneck. The 
overwhelming majority of free-living microorganisms are 
uncultivable, which makes the hybridization analysis of com-
plete DNA molecules unfeasible. To circumvent this bias, envi-
ronmental microbiologists began to use the Operational 

Figure 2. Pan-genome, core genome, and alpha value for each one of the five analyses performed using 30 genomes of E coli randomly downloaded 

from GenBank. In a more stringent analysis (high values of coverage and identity), the trend is the increase of the pan-genome size and the decrease of 

the alpha value. C indicates coverage; I, identity.
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Taxonomic Unit (OTU) definition to replace the biological 
species concept in microbial ecology analyses.29

One of the most recent concepts of bacterial species was 
proposed by Bobay and Ochman.30 They proposed that bacte-
rial strains should be classified in the same species if they pre-
sent an intra-group rate of gene flow higher than the rate 
between that group and any other strains. HGT is the main 
mechanism responsible for the spread of these genes within the 
bacterial population. HGT also allows exchange of genetic 
material between taxonomically distinct bacterial populations 
but on a smaller scale.30 A hypothesis presented by Baumdicker 
et al31 supports the concept proposed by Bobay and Ochman.30 
Baumdicker et al31 argue that in the microbial world, individual 
bacterial cells maintain compact genomes whereas a higher 
number of genes exists at the population level. This idea was 
called the distributed genome hypothesis. The distributed 
genome of a group of bacteria can be accessed by calculating its 
pan-genome. The most recent methods used to characterize a 
pan-genome will be described in a later section.

Moldovan and Gelfand32 proposed a new method for defin-
ing bacterial species using pan-genome data. The pan-genome 
can be represented by a gene frequency spectrum G(k) that cor-
relates the number of orthologous genes groups (OGGs) con-
taining genes from exactly k genomes. When the chart of the 
G(k) function presents a U-like shape, it is said that this set of 
genomes is homogeneous (Figure 3).32 Moldovan and Gelfand 
then proposed that a population of isolates should be classified 
in the same species if they obey 3 criteria:

(a) Must be monophyletic in a sequence-based tree;
(b) Should be composed of a homogeneous set of genomes;
(c) Should be the maximal set of strains satisfying condi-

tions a and b.

Ecological perspective and the pan-selectome 
hypothesis

Theoretically, a bacterial species whose population is highly 
clonal (closed pan-genome) is more successful in colonizing 
stable environments such as the human or animal tissues. In 

contrast, free-living microorganisms have a greater gene varia-
bility to adapt to different environmental conditions. The 
coagulase-negative staphylococci Staphylococcus lugdunensis is 
an example of commensal bacteria with closed pan-genome.33 
However, several other analyses demonstrated that this theory 
is not a rule.34,35 The genome of the oncogenic Helicobacter 
pylori appears to be quite different depending on the geograph-
ical location of the isolate.34 It is worth noting that Lapierre 
and Gogarten18 demonstrated that the whole bacteria domain 
appears to have an open pan-genome. Therefore, it is difficult 
to define whether closed pan-genomes are true evidence of 
species with limited gene frequency or if they are only artifacts 
from analysis with a limited number of genomes.

The maintenance of gene frequency in a pan-genome has 
been subject of several studies. Rodriguez-Valera et al36 raised 
the hypothesis that the pan-genome of a bacterial population 
is maintained and equalized by phage predation. Phages are 
more abundant than bacteria in several environments.37 Many 
works analyze the relationship between microbial communi-
ties and abiotic factors. However, bacteria also need to adapt to 
biotic factors such as phage predation. A bacterial population 
under constant phage predation is also under constant modu-
lation of its gene content. This process is called pan-selectome, 
and the pan-genome is a snapshot of the gene frequency in a 
given population under constant phage predation.36 
Subsequently, Rodriguez-Valera et  al36 postulated that this 
pan-selectome is the evolutionary unit of selection in the 
microbial world (therefore, at the genomic level the unit of 
selection is the pan-genome).

Bioinformatic Tools
The first step in a pan-genomic analysis is the homogenization 
of the genome annotation followed by gene clustering based in 
gene orthology and, finally, the curve fitting (Figure 4). In addi-
tion, some software performs phylogeny analyses based on core 
genome and single-nucleotide polymorphism (SNP) calling. 
The homogenization of the annotation avoids the wrong clas-
sification of core genes into the shared subset and shared genes 
assigned to singletons. It should be performed using genome 
annotation software like RAST38 and Prokka.39 Alternatively, 

Figure 3. G(k) function for 2 sets of genomes. (A) A U-like shape chart indicates that the genomes analyzed belong to strains of the same species. (B) 

Internal peaks (highlighted in dark blue) suggest that the genomes belong to different species.
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the researcher may use refseq-annotated genomes from 
NCBI40 or gene prediction using software such as FGENES41 
and GeneMark,42 as long as the methodology is the same for 
all genomes being analyzed.

The clustering analysis is normally achieved by first per-
forming an all-vs-all bidirectional BLAST analysis followed by 
the use of an orthology identification software, such as 
OrthoMCL43 and Orthofinder.44 Orthofinder is capable of 
eliminating gene length bias in orthogroup detection. Emms 
and Kelly44 showed that Orthofinder performed 25% better 
than OrthoMCL. Another strategy is to use the results from 
BLAST to define the orthology directly from the size of the 
alignment and the identity of the sequence alignment, by set-
ting a threshold for both. Also, a strategy described by Lerat 
performs the orthology identification by means of the score 
rate value (SRV), a normalization of the bit score from blast 
analyses. Afterward, as previously described, genes that are pre-
sent in all strains are assigned to core genome, whereas genes 
that are shared by more than 2 but not all strains are assigned 
to shared genome and unique genes, that are only present in 
one strain, are assigned to singletons.45

The complete table with all the orthologous genes may then 
be used for pan-genome, core genome, and singletons develop-
ment analyses, which will fit the specific curve generated from 
permutations of all genomes in all positions. Normally, the 
software performs curve fitting of the pan-genome using 
Heaps law or Power Law, whereas the curve fitting of shared 
genome and singletons are performed by means of exponential 
regression decay. The formula for the Heaps Law is

n kN= −α

where n is the number of genes, N is the number of genomes, 
and k and α are constants defined to fit the formula, whereas 
the formula for least square fit of the exponential regression 
decay is represented by

n ke tgx= +− /τ θ

where n is the number of genes, x is the number of genomes, e 
is Euler number, and k, τ, and tgθ are constants defined to fit 
the formula.46

Interestingly, the α value is representative of the openness or 
closeness of the pan-genome, where an α lower than 1 is repre-
sentative of an open pan-genome and an α higher than 1 is 
representative of a closed pan-genome. Also, tgθ represents the 
number of genes that will be found in the core genome after 
genome stabilization, whereas in singleton analysis, it repre-
sents the number of genes that will be added to the analysis for 
each newly added genome.47

BPGA48 software uses USEARCH,49 CD-HIT,50 and 
OrthoMCL43 software for the orthology analyses and power-
law regression and exponential curve fit for the pan-genome 
and core genome developments (Table 1), respectively. It also 
implements other relevant analyses such as core/pan/MLST 
(Multi Locus Sequence Typing) phylogeny, subset analysis, and 
KEGG51 & COG52 mapping. EDGAR,53 on the other hand, 
uses SRV analyses for the orthology identification followed by 
Heaps law and exponential curve fitting of pan-genome and 
core genome development analyses, respectively. The website 
also plots venn diagrams, allows the analyses of subgroups of 
genomes, and exports multiple sequence alignments for phy-
logeny analyses.

GET_HOMOLOGUES26 uses bidirectional best-hit, 
COGtriangles26 or OrthoMCL43 for orthology analyses and 
performs pan-genome and core development analyses using 
the script plot_pancore_matrix.pl. The software also generates 
high-quality graphics, computes pan-genome trees, and per-
forms syntenic cluster analyses. Pandelos54 uses a dictionary-
based method for orthology analyses and introduces a measure 
based on K-mer multiplicity and computation of Jaccard simi-
larity. Panseq55 uses MUMmer56 and BLASTn57 for the 
orthology analyses and it exports the accessory genome and 
binary presence/absence data, and core genome and SNPs for 
phylogeny analyses. PanX58 uses Diamond59 and MCL60 for 
the Orthology analysis and it displays an alignment, a phyloge-
netic tree for each gene cluster, besides mapping mutation and 
inferring gain and loss of genes on the core genome phylogeny. 
It also has introduced a divide-and-conquer strategy for large 
datasets, by clustering small batches of genomes and combin-
ing different batches.

PGAP61 uses Inparanoid, MultiParanoid, and Gene Family 
for the orthology assignment and Heap law and power law for 
the pan-genome and core genome developments. PGAP61 is 
based in 5 modules: cluster, pan-genome, genetic variation, 
species evolution, and function enrichment analyses. 
PANWeb62 and PGAWeb63 are graphical interfaces for the use 
of PGAP.

PGAT64 uses BLASTp for Orthology analysis with a 
sequence alignment of >80% and sequence identity >91% to 

Figure 4. Flow diagram representing the main steps in a pan-genomic 

analysis. Each process (represented by blocks) can be performed by 

different methods. Table 1 details the methods used by different software. 

COG indicates Clusters of Orthologous Groups of proteins; KEGG, Kyoto 

Encyclopedia of Genes and Genomes.
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92%. PGAT47 also allows comparison of sequence polymor-
phisms, multigenome display of regions surrounding a query 
gene, comparisons of metabolic pathways, and manual com-
munity annotation. Roary65 uses CD-HIT,49 BLAST,57 and 
MCL60 for the orthology analyses. Roary65 runs in thousands 
of genomes in pan-genome analyses in standard desktops. Also, 
it uses the context provided by conserved gene neighborhood 
information for orthology analyses. Piggy66 emulates Roary,65 
but for intergenic regions (Table 1).

Pan-Genome Assessment of 9 Bacterial Species
Pan-genomic analyses become more accurate the greater the 
number of genomes used. Thus, the 9 bacterial species with 
the higher number of complete sequenced genomes were 
selected in GenBank and their pan-genomes were calculated 
using PGAP v.1.2.0.61 Fifty genomes of each species were 
used, totaling 450 genomes analyzed (Table 2). The gene 
annotation was normalized submitting all fasta files of each 
genome to the RAST38 server. The PGAP61 parameters were 
50% identity, 60% coverage, and an e-value of 0.00001. E coli 
is a bacterium found in the microbiome of warm-blooded ani-
mals and in environmental habitat. In our analysis, this species 
presented only 19% of its genes in the core genome 
(2290/11 714 gene families) (Table 2). Rasko et  al (2008)67 
have previously performed an analysis with 17 genomes and 

found a pan-genome composed by 13 000 gene families. A 
large accessory genome is expected in E coli because this spe-
cies is adapted to different habitat and this adaptation is 
directly related to the genome content. MGEs are the portions 
of a genome that significantly contributes to the diversity of 
gene families. Mobilome is the set of MGEs present in a 
genome. Plasmids and prophages are the main components of 
the mobilome in prokaryotes. The Shiga Toxin-producing E 
coli (STEC) has mobilome that comprises 19.8% of its 
genome.68 This mobilome carries genes involved in virulence 
and resistance to antibiotics.69

Staphylococcus aureus, Listeria monocytogenes, and 
Streptococcus pneumoniae presented a pan-genome size of 
5197, 5075, and 4404, respectively (Table 2). A total of 32% 
(1672), 41% (2114), and 26% (1152) of the gene families were 
present in the core genome of S aureus, L monocytogenes, and S 
pneumoniae, respectively. All 3 species are considered human 
pathogens. They presented an open pan-genome (Table 2). 
Bosi et al70 analyzed 64 strains of S aureus and found a pan- 
and core-genome composed of 7457 and 1441 gene families, 
respectively.

Mycobacterium tuberculosis is a human pathogen and one 
of the biggest global threats to public health. A previous 
study analyzed 36 genomes of M tuberculosis and found a 
pan-genome composed by 5765 gene families being 3679 

Table 1. Main software used for pan-genomic analysis and their respective algorithms.

SOFTwARE ORThOLOGy AnALySIS PAn-GEnOME 
dEVELOPMEnT

CORE GEnOME 
dEVELOPMEnT

REFEREnCES

BPGA USEARCh, Cd-hIT and 
OrthoMCL

Power-law regression Exponential curve fit Chaudhari et al48

EdGAR and 
EdGAR 2.0

Score ratio values heaps’ law Exponential curve fit Blom et al53

GET_
hOMOLOGUES

Bidirectional best-hit, 
COGtriangles, or OrthoMCL

plot_pancore_matrix.pl plot_pancore_matrix.pl Contreras-Moreira 
and Vinuesa26

Pandelos dictionary-based method —a —a Bonnici et al54

Panseq MUMmer and BLASTn —a —a Laing et al55

Panweb PGAP PGAP PGAP Pantoja et al62

PanX diamond and MCL —a —a ding et al58

PGAP Inparanoid, MultiParanoid and 
Gene Family

heaps’ law Exponential curve fit Zhao et al61

PGAT BLASTp (sequence alignment 
of >80% and sequence 
identity >91%-92%)

—a —a Brittnacher et al64

PGAweb PGAP and PGAP-x modules PGAP and PGAP-x 
modules

PGAP and PGAP-x 
modules

Chen et al63

Piggyb Roary —a —a Thorpe et al66

Roary Cd-hIT, BLAST and MCL —a —a Page et al65

anot mentioned in manuscript.
bPan-genome analysis of intergenic regions.
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belonging to the core genome.71 These values were very dif-
ferent from our results. However, in both cases, the analysis 
indicated an open pan-genome which reinforces the idea 
that there is some exchange of genetic material among M 
tuberculosis strains.71 Pseudomonas aeruginosa is considered a 
metabolically versatile species with the ability to adapt to 
different habitat. Several other studies have assessed the 
pan-genome of this species.17,72,73 Freschi et al73 performed 
an analysis using 1311 genomes and observed that only 1% 
of the gene families were identified in the core genome. To 
the best of our knowledge, this is the smallest bacterial core 
genome described so far. We found a pan-genome contain-
ing 7850 gene families and a core genome corresponding to 
36% of the entire pan-genome (Table 2). Comparing these 
results, the importance of evaluating a large number of 
genomes to achieve more accurate results in pan-genomic 
analysis becomes clear. Campylobacter jejuni presented the 
lowest number of gene families on its core genome (1211). 
This number represents 37% of the entire pan-genome that 
was characterized as open because the alpha value was lower 
than 1 (0.79) (Table 2). Campylobacter jejuni as well as 
Bordetella pertussis have a low number of published pan-
genome analyses. However, they are pathogenic bacteria 
with the highest number of genomes available in databases. 
Tettelin et al15 demonstrated that B pertussis have a closed 
pan-genome. In our analysis, B pertussis presented the high-
est alpha value; however, it was lower than 1. B pertussis also 
presented the highest core genome comprising 59% of  
the pan-genome (Table 2). Due to this low genomic plastic-
ity, antibiotics and vaccines are quite effective against this 
species.74

Today, a basic step in genomics is the prediction and 
annotation of coding sequences (CDS) using bioinformat-
ics. The need for homogenization of genome annotation was 
discussed in a previous section. Several software that  
use different methods for prediction of CDS were devel-
oped such as Glimmer3,75 Prodigal,76 or GeneMarkS-2.42 
Prediction of false-positive genes is common.42 Theoretically, 
in a pan-genome analysis, even a small rate of prediction 
error can change the results significantly due to the high 
number of genomes analyzed. False positives are commonly 
predicted as CDSs encoding uncharacterized proteins. We 
determined the average percentage of uncharacterized pro-
teins in the genomes of the 9 species (Table 2). S aureus and 
L monocytogenes presented the highest number of uncharac-
terized proteins: 26.4% ± 12.9% and 25.4% ± 14.3%, 
respectively. The high value of standard deviation indicates 
that the genomes of some strains are better characterized 
than others (Table 2). We also calculated the pan-genome of 
those species removing the uncharacterized proteins from 
the genbank files. This process slightly altered the alpha 
value; however, all pan-genomes remained open (α > 1) 
(Table 2). Ta
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Applications and Future Perspectives
A pan-genomic analysis presents all the gene variability of a 
group of organisms. The set of genes shared among all organ-
isms as well as species- or strain-specific genes are also 
extremely useful information. All of these data allow an 
improvement of time and technology in different areas of biol-
ogy and bioinformatics.

Comparison of several bacterial genomes is a valuable aid 
for reverse vaccinology analysis. Reverse vaccinology was a pio-
neering method first applied to the serogroup B meningo-
cocci.78 The method has greater advantages over classic 
approaches of vaccine development because it is less laborious, 
less costly, and more accurate in choosing a gene target. Several 
reverse vaccinology studies have now used pan-genome to 
determine the main targets for vaccine development.79,80

The host-pathogen interaction can be evaluated at the 
genomic level through genes that are responsible for processes 
such as adhesion, invasion, and toxin production. Therefore, a 
pan-genome analysis helps to define which virulence genes are 
shared among all pathogenic species, as well as which genes are 
specific to one isolate. This has direct implications for under-
standing the evolution of pathogenic species.

In addition to the examples cited above, pan-genomic anal-
ysis has been increasingly used to assist in the taxonomic clas-
sification of microorganisms,81 to determine a set of molecular 
markers for phylogenomic analysis,82 among other applica-
tions. Therefore, determining the pan-genome of a group of 
organisms is sometimes the initial step of a research. Several 
downstream analyses depend on a good prediction of the pan-
genome. Thus, knowledge about the basic concepts and the 
correct choice of software, algorithms, and parameters are 
extremely important to the success of the research.
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