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Simulation of Quantum Dynamics 
of Excitonic Systems at Finite 
Temperature: an efficient method 
based on Thermo Field Dynamics
Raffaele Borrelli   1 & Maxim F. Gelin2

Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using 
an approach based on Thermo Field Dynamics theory. This formulation treats temperature effects in the 
Hilbert space without introducing the Liouville space. The solution of Thermo Field Dynamics equations 
with a novel technique for the propagation of Tensor Trains (Matrix Product States) is implemented and 
discussed. The methodology is applied to the study of the exciton dynamics in the Fenna-Mathews-
Olsen complex using a realistic structured spectral density to model the electron-phonon interaction. 
The results of the simulations highlight the effect of specific vibrational modes on the exciton dynamics 
and energy transfer process, as well as call for careful modeling of electron-phonon couplings.

Unraveling the role of quantum effects in the time evolution of various molecular systems and assemblies under 
realistic conditions at ambient temperatures is a key problem of modern physical and biological chemistry1. Long 
range energy and charge transfer in natural as well as in artificial systems are among the most important processes 
in which quantum coherent motion can be of relevance2–5. However, a proper understanding of these processes 
is often hampered by the impossibility to properly simulate the evolution of quantum systems with many degrees 
of freedom.

The quasi-adiabatic path integral (QUAPI)6 and the hierarchical equations of motion (HEOM)7–9 are among 
the most successful numerically exact methods for density matrix propagation. However, both methods become 
numerically demanding at low temperature10 and when the Hilbert space of the system is very large8, 10–15. A 
number of approximate methods based on density matrix formalism is also available, but their range of validity 
can be very limited and system dependent16–25. Numerically accurate evolution of large systems has also been 
described by the density matrix renormalization group (DMRG) methodology, and the associated time-evolution 
algorithms26, 27.

Wave function propagation methods employing a basis set representation, such as the multiconfiguration 
time-dependent Hartree (MCTDH) method and its multilayer extension (ML-MCTDH)28, 29, Gaussian based 
MCTDH and other basis set methods30–33, are powerful tools at very low temperature34, but become unhandy 
in high temperature cases, as their application requires a statistical sampling of the initial conditions and faces 
both theoretical and computational difficulties35–37. On the other hand, basis set methods are very versatile, and 
capable of handling a large variety of Hamiltonian operators38, 39.

The development of alternative approaches to the simulation of many body quantum dynamics at ambient 
conditions is therefore indispensable for better understanding and proper exploitation of quantum effects in 
nanosystems. In this work we discuss a novel theoretical methodology based on Thermo Field Dynamics the-
ory40, 41 that combines an accurate Hamiltonian description of quantum dynamics at finite temperature with the 
flexibility of a basis set representation42. We then apply this methodology to the study of exciton dynamics in 
the Fenna-Matthews-Olsen (FMO) complex, which has nowadays become a “guinea pig” of exciton dynamics 
theory and quantum biology1, 2, 43, 44. The exciton dynamics at FMO has been simulated by all major numerically 
exact quantum methods, e.g. QUAPI45, HEOM46, 47, ML-MCTDH48. Several explicit parameterizations of the bath 
spectral density accounting for the impact of intra- and inter-molecular modes on the FMO dynamics have been 
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developed49, 50. In the present work, we simulate exciton dynamics in FMO at ambient temperature modeling the 
electron-phonon interaction with a realistic spectral density obtained from experimental data51.

Results
Quantum Dynamics at Finite Temperature.  Problems formulated in the quantum mechanics language 
require the calculation of the expectation value of some dynamical variable, A

ρ=⟨ ⟩A t A t( ) Tr{ ( ) (0)}

where ρ(0) is the initial density matrix of the system, and A(t) = eiHtAe−iHt is the Heisenberg representation of the 
operator A, H being the system Hamiltonian ( = 1). The trace operation implies a weighted sum over all the 
thermally accessible states. In most molecular systems the energies of the electronic degrees of freedom are usu-
ally much higher than the vibrational energies. The effect of a finite temperature is then to create a thermal popu-
lation of excited vibrational states, while only one electronic state of the entire system, |e〉, is tangibly populated. 
Within the validity of this condition we can safely employ the approximation

ρ ρ= ≈ .β− −Z e e e(0) (1)
H1

vib

Here Z is the proper partition function and ρvib is the equilibrium Boltzmann distribution of the vibrational 
degrees of freedom, which, in the present work, is described using harmonic approximation, and β = 1/kBT, 
where T is the temperature of system and kB the Boltzmann constant. Consequently, the trace operation involves 
only a summation over a thermal distribution of vibrational states, …n n1 2
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where †a a, ( )k k  are the creation (destruction) operators of the k-th bosonic degree of freedom with frequency ωk, 
and the cyclic invariance of the trace operation has been used for the symmetrization. Following the Thermo Field 
Dynamics approach40 the above trace can be evaluated by introducing a set of auxiliary boson operators  

†a a,k k 
and their corresponding occupation number states … n n1 2 , and rewriting the summation as52
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The dummy tilde variables do not affect the expectation value since A(t) is independent of them, and the states 
n  

form a complete orthonormal set. We notice that in the above summation the numerical values of {nk} and n{ }k  are 
identical. Defining the so called thermal vacuum state
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where = 0 0, 0  represent the vacuum state of the ensemble of physical and tilde bosons, and

∑θ θ= − − = βω−
 

† †G i a a a a e( ), arctanh( ),
(5)k
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/2k

the expectation value 3 becomes53

β β= = .−A t e A t e e e A t e e( ) 0( ) ( ) 0( ) 0 ( ) 0 (6)iG iG

The above equation is an extension of the fundamental result of Thermo Field Dynamics40, 54, 55 and the transfor-
mation e−iG is often referred to as Bogoliubov thermal transformation56. Equation 6 can be equivalently written 
as (see Methods section, and ref. 42)

ϕ ϕ= θA t t A t( ) ( ) ( ) (7)

where the wavefunction |ϕ(t)〉 satisfies the Schrödinger equation

ϕ ϕ ϕ∂
∂

= =θi
t

t H t e( ) ( ) , (0) 0 (8)

with the thermal operators

= = .θ θ
− −H e He A e Ae (9)iG iG iG iG
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The modified Hamiltonian operator H  is defined as

= −
∼H H H (10)vib

where ∼Hvib is any operator acting in the vibrational tilde space. Equations 7, 8, 9 and 10 are the main theoretical 
result of the work. In the methodology described above the evaluation of the thermal average 〈A(t)〉 can be 
reduced to the solution of the thermal Schrödinger equation 8 with the Hamiltonian θH  specified by Eq. 9, fol-
lowed by the computation of the desired expectation value.

Since the coupling with the tilde space doubles the number of nuclear degrees of freedom, and since a thermal 
environment can be realistically mimicked only using hundreds or thousands degrees of freedom, the solution 
of the time-dependent Schrödinger equation 8 requires efficient numerical methods, suitable to treat a large 
number of dynamical variables38. Here we follow our recently proposed methodology42 and represent the full 
vibronic wavefunction using the so-called Tensor-Train (TT) format (Matrix Product States, MPS, in the physics 
literature)57–59. Equation 8 is then solved using a methodology based on the time-dependent variational princi-
ple (TDVP) recently developed by Lubich, Oseledets and Vandereycken59. The reader is referred to the original 
papers58, 60 for a detailed analysis of the TT decomposition, and to the Methods section (see also ref. 42).

Exciton Dynamics in the FMO complex.  In order to apply the above methodology to the study of exciton 
dynamics at finite temperature in the FMO complex we consider a widely employed model Hamiltonian in which 
a set {|n〉}, of coupled electronic states interacts linearly with a phonon bath
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Here |n〉 describes an electronic state with the excitation localized on the n-th pigment, εn is the electronic energy 
of state |n〉, Jnm are electronic couplings, ωk are the frequencies of the bath of harmonic oscillators, and the param-
eters gnk determine the strength of the electron-phonon coupling. In the above notation the index k labels all the 
vibrations of the system.

The modified thermal Hamiltonian θH  which controls the finite temperature dynamics is readily obtained 
applying the Bogoliubov thermal transformation to the Hamiltonian operator 1142
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Here we have used ω= ∑
∼

 

†H a ak k k kvib  to exploit the invariance properties of the thermal Bogoliubov transforma-
tion56. At T → 0 the mixing parameters θk become zero, sinh (θk) → 0, the coupling to the tilde space disappears, 
and the standard Schrödinger equation is recovered as expected. For high-frequency modes, θ  1k , sinh (θk) ≈ 0 
and cosh (θk) ≈ 1 even at room temperature. As a rule of thumb high-frequency modes need not be incorporated 
into the tilde Hamiltonian. This leads to additional reduction of the active space and computational savings.

The exciton part of the FMO Hamiltonian, the site energies εn and electronic couplings Jnm, have been retrieved 
from ref. 61. Vibronic coherences are essentially determined by the distribution of the bath vibrational frequen-
cies and their coupling constants gnk. Here we consider the general case in which the excited states of each BChl 
are independently coupled to a bath of N phonons (uncorrelated baths). Consequently, in the seven site FMO 
model, we have 7N vibrations, characterized by the coupling parameters gnk. Since a single pigment is excited in 
each electronic state, only N components of gnk with = + − …k n N nN1 ( 1) , ,  are nonzero for a given n. These 
parameters are assumed to be the same for all BChls and are conveniently specified by the so called bath spectral 
density49, 50

∑ω δ ω ω= − .J g( ) ( )
(13)k

k k
2

We also point out that in our methodology the values of the parameters gnk can be determined using any method 
of choice, and no particular benefit is derived from the above specific assumption. Often the Drude-Lorentz 
spectral density is used, J(ω) = 2γλω/(γ2 + ω2), which however deviates substantially from the measured spectral 
density at 4 K51. Recent theoretical analyses suggest that the use of a structured spectral density can lead to quite 
relevant changes in the vibronic dynamics of the system47, 48, 62, 63.

Following the very recent work by Schulze et al.48, we model the electron-phonon interaction by discretizing 
the experimental spectral density of ref. 51 with N = 74 vibrations uniformly distributed in the range [2,300 cm−1]. 
This way the times corresponding to the frequency ωmin = 2 cm−1 and the line spacing Δω = (ωmax − ωmin)/N are 
safely beyond the observed time evolution of the system. Accordingly, our model consists of 74 vibrations per 
molecular site, thus 518 overall vibrational degrees of freedom which are doubled to 1036 due to TFD methodol-
ogy. The numerical approach to the solution of this problem is described in the Methods section.

The parameters gkn cosh (θk) and gkn sinh (θk) entering the thermal Hamiltonian θH  govern the coupling of the 
electronic subsystem with physical and tilde bosonic degrees of freedom. Hence, it is tempting to introduce the 
spectral densities
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which describe the electron-vibrational couplings in the physical (subscript p) and tilde (subscript t) subspace. 
As temperature goes to zero, Jp(ω) → J(ω) and Jt(ω) → 0. The two spectral densities are reported in Figure 1 at 
77 K and 300 K. The comparison of lower and upper panels in Figure 1 reveals how effective electron-vibrational 
coupling increases with temperature, notably for lower-frequency modes.

Figure 2 shows the total time-dependent populations pn(t) of seven (n = 1–7) BChla molecules of the FMO 
complex (standard numbering of the FMO cofactors is used). The populations are evaluated by Eqs 7 and 8 for 
A = Aθ = |n〉 〈n| so that pn(t) = 〈A(t)〉. The initial excitation is assumed to be initially localized on site 1. In all 
panels, p1(t) and p2(t) exhibit pronounced oscillations, as expected45, 46.

At T = 0 K (upper panel) the populations are in perfect agreement with the results obtained by Schulze and 
coworkers using ML-MCTDH48.

At T = 77 K (middle panel) p3(t) drops to about 0.6 at t = 1 ps. On the other hand, no pronounced difference 
in the behaviors of p1(t) and p2(t) at T = 0 and 77 K is observed. In the language of spectral densities defined in  
Eq. 14, it means that the contributions of the lower-frequencies vibrational modes (which are strongly temper-
ature dependent) are quite significant in the dynamics of p3(t) already at 77 K, while are less pronounced in the 
dynamics of p1(t) and p2(t).

If temperature increases up to 300 K (lower panel) p3(t) further decreases to 0.3 at t = 1 ps, and the oscil-
latory components of p1(t) and p2(t) are significantly reduced but still visible. As can be seen from Figure 3, 
which shows an enlargement of the lower panel of Figure 2 at longer times, small amplitude beatings of p1(t) 

Figure 1.  Effective site spectral densities Jp(ω) and Jt(ω) describing the coupling of the physical and tilde 
bosonic degrees of freedom with the electronic subsystem at different temperatures. (a,b) 77 K, (c,d) 300 K.

Figure 2.  The time evolution of the electronic populations pn(t) of seven (n = 1–7) BChla molecules of the FMO 
complex at different temperatures indicated in the panels. The initial excitation is localized on site 1.
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and p2(t) are clearly observable even after 700 fs. Such long-lived beatings at ambient temperature have not been 
reported in models employing an approximate spectral density in the Drude-Lorentz form46, Ohmic form45 
or Adolphs-Regner (single peak) form45. The beatings revealed in the present work at T = 300 K are due to the 
strongly structured spectral density and frequency-dependent coupling between the electronic subsystem and the 
vibrational degrees of freedom.

To elucidate how the spectral densities of Figure 1 affect the fraction of BChlas that are significantly occupied 
during the time evolution of the system, we compute the inverse participation ratio Π(t), defined as64, 65

Π =
∑

.t
p t

( ) 1
( ) (15)n n

2

It is easy to show that Π(t) = 1 for a completely localized exciton wavefunction, while Π(t) = Nsite (7 in the present 
case) for a perfectly uniform state. Therefore, Π(t) can be considered as an effective length, measuring the spatial 
extent of the exciton wave function over the aggregate. Figure 4 shows the computed Π(t) for the FMO complex 
at different temperatures. At T = 0 K Π(t) has a strong quantum behavior showing an oscillatory increase for the 
first 400 fs which is followed by an oscillatory decrease to a value of 2 at t = 1 ps. This is an indication of the exciton 
self-trapping. Therefore, a small number of sites are accessible to the systems during its evolution at T = 0 K, as is 
also evident from the population dynamics in Figure 2. For T = 77 K, the qualitative behavior of Π(t) remains the 
same but the number of accessible sites increases to 3 at t = 1 ps. At room temperature the number of accessible 
sites increases significantly and the effective length of the exciton is about 5.5 at t = 1 ps. The effect of a finite tem-
perature is thus not only to provide a decoherence mechanism but also to increase the number of sites simultane-
ously accessible for the energy transfer process and to destroy the exciton self-trapping (cf. ref. 65).

Summarizing, we have developed a new theoretical and numerical approach for the determination of time 
dependent properties in large molecular aggregates. The methodology is based on Thermo Field Dynamics theory 

Figure 3.  Enlarged section of the lower panel of Fig. 2.

Figure 4.  Inverse participation ratio Π(t) as a function of time; (−) 300 K, (− −) 77 K, (− ·) 0 K.
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and requires doubling of all the thermalised degrees of freedom. The evaluation of an observable 〈A(t)〉 is reduced 
to the calculation of a simpler expectation value 〈ϕ(t)|Aθ|ϕ(t)〉 where |ϕ(t)〉 satisfies the Schrödinger equation 8. 
The methodology has been implemented in the framework of the Tensor Train/Matrix Product State representa-
tion of the wave function, and using a novel technique for the numerical integration of Tensor Trains based 
on the time-dependent variational principle59. We have successfully applied this methodology to the study of 
quantum dynamics of energy transfer in the FMO complex. The present results draw attention to the importance 
of an accurate modeling of the bath spectral density. A highly structured spectral density is required to observe 
long-lasting oscillations in 〈A(t)〉 at room temperature which are absent when a simple Drude-Lorentz model46 
or Ohmic model45 are employed.

The methodology developed in the present work offers new qualitative insights into the dynamics of excitonic 
systems at finite temperatures. The time evolution of these systems is governed by the thermal Hamiltonian θH  of 
Equation 12, which looks like a standard excitonic Hamiltonian H of Equation 11, but contains twice as many vibra-
tional degrees of freedom: the physical ones and the auxiliary (tilde) ones. Hence, all nontrivial dynamic effects are 
governed by three sets of the parameters: the electronic couplings Jnm as well as the temperature-dependent 
electron-vibrational couplings gkn cosh (θk) and gkn sinh (θk). The parameters gkn sinh (θk) determine the coupling of 
the electronic degrees of freedom with the vibrational tilde degrees of freedom, and regulate the effective number of 
vibrational modes of the system. If T = 0 K, gkn sinh (θk) = 0 and the tilde variables are totally decoupled. At higher 
temperature both gkn cosh (θk) and gkn sinh (θk) tend to contribute on an equal footing. Since the system dynamics is 
purely Hamiltonian, the time evolution of any observable 〈A(t)〉 is the result of pure dephasing of the wave packet 
formed by a large number of vibronic eigenstates of the Hamiltonian θH . All oscillatory behaviors in 〈A(t)〉 are there-
fore vibronic by definition, since they are caused by the combined effect of electronic and temperature-dependent 
electron-vibrational couplings. Hence, a proper simulation of the time evolution of excitonic systems at finite tem-
perature requires a careful modeling of electron-phonon interaction.

Methods
Derivation of TFD Schrödinger equation.  Equation 6 can be transformed into a convenient Schrödinger 
representation by first rewriting it as

= | 〉| 〉

= 〈 |〈 | | 〉| 〉

− −

− − − −
∼ ∼

A t e e e Ae e e

e e e Ae e e

( ) 0 0

0 0 (16)

iG iHt iHt iG

iG i H H t i H H t iG( ) ( )vib vib

where ∼Hvib is any operator acting in the tilde vibrational space. The choice of the gauge ∼Hvib is dictated exclusively 
by computational convenience and does not affect the expectation value 〈A(t)〉. Hence

〈 〉 = 〈 |〈 | | 〉| 〉 = |〈 | | 〉| 〉.θ
− − − − −

∼ ∼
θ θA t e e e Ae e e e e A e e( ) 0 0 0 0 (17)iG i H H t i H H t iG iH iH t( ) ( )vib vib

where

= =θ θ
− −H e He A e Ae , (18)iG iG iG iG

and the modified Hamiltonian operator H  is defined as

= − .
∼H H H (19)vib

Equation 17 is clearly equivalent to

ϕ ϕ= θA t t A t( ) ( ) ( ) (20)

where the wavefunction |ϕ(t)〉 satisfies the equation

ϕ ϕ ϕ∂
∂

= = .θi
t

t H t e( ) ( ) , (0) 0 (21)

We point out that in order to obtain a numerical solution of the Schrödinger equation 21 the Hamiltonian θH  
must have an analytical representation or a form which is suitable for numerical treatment. This can be accom-
plished by expanding H  in power series of creation-annihilation operators (or position and momentum opera-
tors) and using the fundamental relations40

θ θ= +−


†e a e a acosh ( ) sinh( ) (22)iG
k

iG
k k k k

θ θ= + .− †~ ~e a e a acosh ( ) sinh ( ) (23)iG
k

iG
k k k k

The transformed Hamiltonian θH  depends on temperature through the parameters θk.

Quantum Dynamics with Tensor-Trains.  Let us consider a generic expression of a state of a d dimen-
sional quantum system in the form
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∑Ψ = … ⊗ .
…

C i i i i i( , , )
(24)i i i

d d
, , ,

1 1 2
d1 2

where |ik〉 labels the basis states of the k-th dynamical variable, and the elements …C i i( , , )d1  are complex num-
bers labeled by d indices. If we truncate the summation of each index ik the elements …C i i( , , )d1  represent a 
tensor of rank d. The evaluation of the summation 24 requires the computation (and storage) of nd terms, where 
n is the average size of the one-dimensional basis set, which becomes prohibitive for large d. Using the TT format, 
the tensor C is approximated as

… ≈ C i i G i G i G i( , , ) ( ) ( ) ( ) (25)d d d1 1 1 2 2

where Gk(ik) is a rk−1 × rk complex matrix. In the explicit index notation

∑ α α α α α α… = .
α α α

−



C i i G i G i G i( , , ) ( , , ) ( , , ) ( , , )
(26)

d d d d d1 1 0 1 1 2 1 2 2 1
d0 1

The matrices Gk are three-dimensional arrays, called cores of the TT decomposition. The ranks rk are called com-
pression ranks. Using the TT decomposition 25 it is possible, at least in principle, to overcome most of the dif-
ficulties caused by the dimensions of the problem. Indeed, the wave function is entirely defined by d arrays of 
dimensions rk−1 × nk × rk thus the required storage dimension is of the order dnr2.

In a time-dependent theory the cores Gk(ik) are time dependent complex matrices whose equations of motion 
can be found by applying the time-dependent variational principle (TDVP) to the parametrized form of the wave 
function

∑Ψ = ⊗ . 



G t G i t G i t G i t i i i( ( )) ( , ) ( , ) ( , )
(27)i i

d d d1 1 2 2 1 2
d1

The resulting equations of motion can be written in the form

Ψ = − Ψˆd
dt

G t iP H G t( ( )) ( ( )) , (28)G t( ( ))

and provide an approximate solution of the original equation on the manifold of TT tensors of fixed rank, TT. 
In equation 28, P̂ G t( ( ))  is the orthogonal projection into the tangent space of TT at |Ψ(G(t))〉. We refer the reader 
to refs 59 and 66, where the explicit differential equations are derived and their approximation properties are 
analyzed, and to ref. 67 for a discussion of time-dependent TT/MPS in the theoretical physics literature.

Several techiques exist to compute the time evolution of TT/MPS59, 68–70. Here we adopt a methodology 
recently developed by Lubich, Oseledets and Vandereycken, which combines an explicit expression for the pro-
jector ̂P G t( ( )) and an extremely efficient second order split projector integrator specifically tailored to the TT for-
mat59. The computations presented in this paper have been performed using a code based on the software library 
developed by Oseledets and coworkers.

All results presented in this paper are numerically converged in the sense that the ranks of the TT cores are 
increased until no significant variations are observed in the solution. The dynamics at 300 K required an average 
value rk = 40 to obtain fully converged results.
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