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ABSTRACT
Industrial effluent containing textile dyes is regarded as a major environmental
concern in the present world. Crystal Violet is one of the vital textile dyes of the
triphenylmethane group; it is widely used in textile industry and known for its
mutagenic and mitotic poisoning nature. Bioremediation, especially through bacteria,
is becoming an emerging and important sector in effluent treatment. This study aimed
to isolate and identify Crystal Violet degrading bacteria from industrial effluents
with potential use in bioremediation. The decolorizing activity of the bacteria was
measured using a photo electric colorimeter after aerobic incubation in different time
intervals of the isolates. Environmental parameters such as pH, temperature, initial dye
concentration and inoculum size were optimized usingmineral salt medium containing
different concentration of Crystal Violet dye. Complete decolorizing efficiency was
observed in a mineral salt medium containing up to 150 mg/l of Crystal Violet dye
by 10% (v/v) inoculums of Enterobacter sp. CV–S1 tested under 72 h of shaking
incubation at temperature 35 ◦C and pH 6.5. Newly identified bacteria Enterobacter
sp. CV–S1, confirmed by 16S ribosomal RNA sequencing, was found as a potential
bioremediation biocatalyst in the aerobic degradation/de-colorization of Crystal Violet
dye. The efficiency of degrading triphenylmethane dye by this isolate, minus the supply
of extra carbon or nitrogen sources in the media, highlights the significance of larger-
scale treatment of textile effluent.
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INTRODUCTION
The textile industry plays a vital role in the global economy as well as in our daily life,
and is concurrently becoming one of the main sources of environmental pollution in the
world in terms of quality and quantity (Mondal, Baksi & Bose, 2017). The textile industry
consumes a larger volume of water, in which almost ninety percent appears as wastewater
(Verma, Dash & Bhunia, 2012). Textile wastewater contains the different type of dyes as the
major pollutant which is not only recalcitrant but also imparts intense color to the waste
effluent (Mondal, Baksi & Bose, 2017). Inappropriate disposal of textile wastewater causes
serious environmental problems that affect the aquatic organism adversely (Subhathra et
al., 2013; Mondal, Baksi & Bose, 2017). Improper effluent disposal in aqueous ecosystems
leads to reduction of sunlight penetration which in turn diminishes photosynthetic
activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen
concentration (Muhd Julkapli, Bagheri & Hamid, 2014).

The wastewater produced from the textile, dye and dyestuff industries is a complex
combination of various inorganic and organic materials (Fulekar, Wadgaonkar & Singh,
2013). Dyes commonly have a synthetic origin and complex aromatic molecular structures
which make them more stable and more difficult to biodegrade. The textile industries
consume the largest amount of dyestuffs, at nearly 60–70% (Bhattacharya et al., 2018;
Mudhoo & Beekaroo, 2011; Rawat, Mishra & Sharma, 2016) which play a vital role in
preparing raw materials to pretreatment materials together with dyeing and finishing
of textile materials (Jana, Roy & Mondal, 2015; Sriram, Reetha & Saranraj, 2013). Due to
the wide range of dyes, fibers, process auxiliaries and final products during the dyeing
processes, an ample amount (about 10–90%) of dye-stuffs that do not bind to the fibers
were released into the sewage treatment system or the environmental water (Abadulla
et al., 2000; Zollinger, 2003). Dye wastes represent one of the most awkward groups of
pollutants because they easily may recognize by naked eyes and are non-biodegradable
(Mojsov et al., 2016).

Triphenylmethane dyes are synthetic compounds widely used in various industries and
their removal from effluents are tough, due to their higher degree of structural complexity
(Morales-Álvarez et al., 2018). The presence of complex mixture in textile effluent directly
indicates the water has been polluted, and this highly colored effluent is forthrightly
responsible for polluting the receiving water (Rajamohan & Rajasimman, 2012).

As a result, inappropriate textile dye effluent disposal in aqueous ecosystems leads
adverse impact on chemical oxygen demand (COD) and high biological oxygen demand
(BOD). Their metabolites lead to toxic, carcinogenic and mutagenic effect to flora and
fauna which eventually cause severe environmental problems worldwide (Mittal, Kurup &
Gupta, 2005; Sharma et al., 2009).

Due to their toxic, mutagenic and carcinogenic properties as well as their contribution
to the de-coloration of natural waters, the release of dyes and their metabolites into the
environment is a source of concern (Khadijah, Lee & Faiz, 2009). Thus, precise attention
should be taken into consideration on the utilization of dyes industrially. Inadequate
methods have been reported for decolorizing textile effluents economically. For the
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removal of synthetic dyes from the water bodies, a number of physicochemical methods,
such as filtration, specific coagulation, use of activated carbon and chemical flocculation,
have been used (Olukanni, Osuntoki & Gbenle, 2006; Verma, Dash & Bhunia, 2012). Using
these expensive physiochemical methods, vast amounts of sludge are produced, which
result in a secondary level of land pollution (Shah, 2013). For this reason, there is an urgent
need for inexpensive and eco-friendly removal techniques of the polluting dyes. As a
potential alternative, biological processes including several taxonomic groups of microbes
such as bacteria, fungi, yeast together with algae have been received growing interest due
to their cost-effectiveness, their production of less sludge, and their eco-friendly nature
(Kalyani et al., 2009). Bacteria from different trophic groups can achieve a higher degree
of dye-degradation and can process a complete mineralization of dyes under optimal
conditions (Asad et al., 2007). Recently, microbial degradation of textile effluent has been
reported as more economical and eco-friendly than physiochemical methods (Shah, 2013).

The present study aimed to isolate and characterize Crystal Violet degrading bacteria
from textile industry effluents for potential use in the industrial bioremediation process.

MATERIALS AND METHODS
Sample collection
The untreated water and sludge samples of textile effluent were collected from two
local thread dyeing plants namely Rana Textile and Bulbul Textile Industries Ltd from
Kumarkhali, Kushtia, Bangladesh. Four samples, named as water-1, water-2, sludge-1 and
sludge-2, were collected from stagnant textile effluents from drainage canal. The color, pH
and temperature of the samples were measured and recorded. The samples were collected
in sterile plastic bottles, brought to the laboratory and kept at 4 ◦C in refrigerator for
preservation within 24 h of sampling.

Bacterial isolation
All four samples (untreated textile effluents) were used to isolate dye decolorizing bacteria
by modified enrichment culture techniques as stated by Shah (2013). Steps involved
enrichment, isolation and screening of dye decolorizing bacteria were: (i) 1 ml of each
sample was first diluted with 9 ml of sterilized water and the stock was kept in static
condition for few minutes for precipitation; (ii) 1 ml supernatant from each diluted sample
was transferred into 9 ml enrichment medium and a required amount of crystal violet dye
solution was added into the stock to adjust the concentration; (iii) the species showing
remarkable decolorization within 24 to 72 h were streaked on 2% enrichment agar medium
containing 100 mg/l of crystal violet dye; (iv) Colonies of bacteria those exhibited a clear
decolorization zone around them on enrichment agar medium were picked and cultured;
(v) an individual colony was then reintroduced into 9 ml enrichment medium containing
Crystal Violet dye andwas incubated overnight; (vi) 10%of overnight cultured isolates were
inoculated into 10 ml MS medium supplemented with 1ml/l TE solution and 100 mg/l
crystal violet dye and incubated overnight; (vii) 2 ml of the sample was then removed
aseptically and centrifuged for 10 min at 10,000 rpm; (viii) this supernatant was used to
determine the decolorization percentage of the added dye; (ix) isolates exhibited most
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decolorizing efficiency were selected and preserved (in nutrient agar up to one month and
in 50% glycerol up to six months) for further studies.

Bacterial growth determination
In order to determine the effect of pH on bacterial growth, the isolated bacteria CV-S1 was
cultured in nutrient broth. A twenty four hours observation was done at 35 ◦C temperate
using 10 mlMSmedium containing 10% (v/v) inoculums and 50 mg/l Crystal Violet dye of
varying pH (6.00, 6.50, 7.00, 7.50, 8.00 and 8.50) . To determine the optimum temperature,
degradation assay was performed from 30 to 40 ◦C temperature using same stock condition
at pH 6.50 (Shah, 2013; Prasad & Rao, 2013).

DNA extraction and quality analysis
The genomic DNA extraction was performed using modified CTAB method as described
by Winnepenninckx, Backeljau & Dewachter (1993) and the quality of DNA was analyzed
through Gel electrophoresis in 1% agarose gel.

16S ribosomal RNA sequencing for bacterial identification
Partial sequence of 16S ribosomal RNA was carried by using Applied Biosystem 3130.
The bacteria-specific forward primer F27 (AGAGTTTGATCCTGGCTCAG) and reverse
primer R1391 (GACGGGCGGTGTGTRCA) were used to amplify DNA fragments in PCR.
The recipe of a total of 25 µl of reaction mixture was ddH2O 14.75 µl, MgCl2 (25 mM) 2 µl,
buffer (10×) 2.5 µl, dNTPs (10 mM) 0.5 µl, Taq DNA Polymerase (5u/µl) 0.25 µl, DNA
template 1 µl, forward primer (10 µM) 2 µl and reverse primer (10 µM) 2 µl. The PCR
amplificationwas performed by SwiftTMMiniproThermal Cycler (Model: SWT-MIP-0.2-2,
Singapore) using the following program: Denaturation for 5 min at 95 ◦C, followed by
40 cycles of 40 s of denaturation at the same temperature, annealing for 60 s at 65 ◦C
and elongation at 72 ◦C for the first 2 min and followed by a final extension for 10 min.
The sequence generated from the automated sequencing of PCR amplified 16S ribosomal
RNA was analyzed through the NCBI BLAST (http://www.ncbi.nlm.nih.gov) program to
ascertain the possibility of a similar organism through alignment of homologous sequences
and the required corresponding sequences that were downloaded. The evolutionary history
was inferred using the Neighbor-joining method which was performed on the Phylogeny.fr
platform through online software: Muscle (v3.7), Gblocks (v0.91b), PhyML (v3.0 aLRT)
and TreeDyn (v198.3) (Dereeper et al., 2010; Edgar, 2004).

Environmental parameters optimization
Optimization of various environmental parameters (pH, temperature, initial dye
concentration and inoculum size) for decolorization of Crystal Violet dye were done with
some modifications of Shah (2013) and Prasad & Rao (2013). The mixture was inoculated
with the 24 h incubated bacterial culture and uninoculated crystal violet dye solutions
were kept as control. Each experiment was performed in triplicate and the mean values
were recorded. To detect the effect of initial dye concentration, media of different dye
concentrations 50 mg/l to 200 mg/l were used while 8, 9 and 10% (v/v) of 24 h incubated
inoculums were inoculated for dye decolorization.
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Assay of dye degradation/decolorization
The rate of decolorization expressed as a percentage was determined by observing the
reduction of absorbance at absorption maxima (λ max). The uninoculated MS medium
supplementedwith respective dye was used as a reference. A total of 2ml of reactionmixture
was kept at different time intervals, and the samples were centrifuged at 10,000 rpm for
10 min to separate biomass. The concentration of dye was determined by absorbance at
660 nm. The measurement of absorbance was done by the a photo-electric colorimeter
(AE-11M; Hangzhou Chincan Trading Co., Ltd, Hangzhou, China). The color removal
efficiency was stated as the percentage ratio based on the following equation (Chen et al.,
2003):

Dye Degradation(%)=
Initial OD−Final OD

Initial OD
×100.

RESULTS AND DISCUSSION
Physical characterization of textile effluent
The observation of physical characters of the collected textile effluent samples had revealed
a high load of pollution indicators. The effluent colors of three samples were black due to a
mixture of different chemicals and dyes and the rest was turquoise blue due to the fact that
only turquoise dye was used in the dyeing process. The pH of the tested samples was slightly
acidic to neutral. Temperature of the collected sample were around 18 ◦C due to winter
season. Physical characters of textile effluent may vary due to the mixing of different types
of organic and inorganic compounds derived from different environmental conditions.
Chikkara and Rana had observed the colour and smell of textile effluent sample which was
black and pungent respectively at pH 9.4 (Chhikara & Rana, 2013) whereas Verma and
Sarma tested textile waste-water which was brownish-black in color with unpleasant odor
at pH 8.3 (Varma & Sharma, 2011).

Isolation, screening and identification of dye degrading bacteria
On the basis of the decolorizing capacity and colony characters 3 isolates were selected from
sludge-2 and the isolates were named as CV–S1, CV–S2 and CV–S3 after 72 h of incubation
CV–S1 yielded up to 81.25% Crystal Violet dye degradation while the rest two CV–S2 and
CV–S3, exhibited up to 64.58% and 25% dye degradation respectively (Table 1). Thus
CV–S1 isolate was selected for identification.

The best sequenced portion of 580 bp of 16S rDNA of amplified 1,500 bp exhibited
the highest identity (99%) with Enterobacter sp. HSL69 according to isolation source.
The downloaded corresponding aligned sequences, shown in Table 2, revealed that the
phylogenetic relationship between the isolated bacterial strains with other related bacterial
strains. During phylogenetic tree construction, strain CV–S1 had formed a new branch and
the homology indicated that the strain CV–S1 is under the genus Enterobacter. Therefore,
the isolate was identified and named as Enterobacter sp. CV–S1. The newly formed branch
confirms that the identified Enterobacter sp. CV–S1 is a novel species of Enterobacter genus
(Fig. 1). Numerous potential dye decolorizing bacteria have been reported by scientists
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Figure 1 Highlighted bacterial strains are the isolated bacteria. The phylogenetic tree was reconstructed
using the maximum likelihood method implemented in the PhyML program (v3.0 aLRT) (Dereeper et al.,
2010; Edgar, 2004).

Full-size DOI: 10.7717/peerj.5015/fig-1

Table 1 Screening of the best dye decolorizing isolates based on degradation rate.

Isolates Initial OD Final OD Degradation
rate (%)

Average
degradation
rate (%)

Duration of
observation

0.08 0.015 81.25
0.08 0.015 81.25 81.25 72 hCV–S1
0.08 0.015 81.25
0.08 0.03 62.50
0.08 0.03 62.50 64.58 72 hCV–S2
0.08 0.025 68.75
0.08 0.06 25.00
0.08 0.06 25.00 25.00 72 hCV–S3
0.08 0.06 25.00

Table 2 Similarity between the isolated bacterial strain CV–S1 and other related bacteria found in the
GenBank database.

Isolated strain Closed bacteria Accession no. Identity (%)

Enterobacter cloacae RU14 KJ607595.1 99
Enterobacter cloacae RJ04 KC990807.1 99
Enterobacter cloacae BM8 JX514423.1 99
Enterobacter sp. HSL69 HM461195.1 99

CV–S1

Enterobacter sacchari SP1 NR_118333.1 98

from the textile dye effluents, contaminated soil with dyes, dying waste disposal sites, and
wastewater treatment plant (Khadijah, Lee & Faiz, 2009; Pokharia & Ahluwalia, 2013).

Growth characteristics
The maximum growth of CV–S1 was observed at temperature 35 ◦C and pH 6.50 while
the growth started decreasing within 60–72 h of incubation (Table 3). Bacterial growth is a
complex process associated with various anabolic and catabolic reactions. Eventually, these
biosynthetic reactions result in cell division (Raina & Charles, 2009). As the growth-rate
hypothesis (GRH) predicts positive correlations among RNA content, phosphorus (P)
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Figure 2 The effect of pH on crystal violet dye degradation by Enterobacter sp. CV–S1.
Full-size DOI: 10.7717/peerj.5015/fig-2

Table 3 Absorption spectra of Crystal Violet at different time intervals.

Conc. of CV dye Measurements Elapsed time (in hours)

0 2 12 24 30 36 48 60 72

150 mg/L OD 0.12 0.12 0.11 0.08 0.06 0.04 0.02 0.01 0
Degradation rate (%) 0 0 8.33 33.33 50.00 66.67 83.33 91.67 100

content and biomass, such relationships have been used to assume patterns of microbial
activity, resource availability, and nutrient recycling in ecosystems (Franklin et al., 2011).
Hence, the degradation study required considerable of 72 h of cultivation time.

Influence of environmental parameters on crystal violet dye
degradation
The results of degradation experiment of crystal violet dye by Enterobacter sp. CV–S1 was
involved with the effect of pH, temperature, initial dye concentration and inoculum size
under aerobic shaking condition at 120 rpm.

Effect of pH on dye degradation
This experiment revealed that the percentage of Crystal Violet dye degradation had
improved with the change of pH in the medium. The higher degradation was observed
at pH 6.50 to 7.00 while the highest decolorization rate (100%) was observed at pH 6.50
and lowest (12.5%) was at pH 6.00. However, organism showed very low decolorization
above pH 7.50 (Fig. 2). According to the growth curve study, it was observed that the
growth rate of the bacteria was higher at pH 6.5 which probably played a vital role for
higher degradation at this pH level. These observations indicated that the organism could
treat efficiently neutral to weakly acidic dyeing waste. Several researches had proved that
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Figure 3 The effect of temperature on crystal violet dye degradation by Enterobacter sp. CV–S1.
Full-size DOI: 10.7717/peerj.5015/fig-3

the biosorption processes using microbes were highly pH dependent (Aksu & Tezer, 2005;
Kumar, Ramamurthi & Sivanesan, 2006). In another research done by Wang et al. (2009),
Citrobacter sp. CK3 had achieved the best decolorization of reactive red 180 (96%) at pH
6.0–7.0. In the case of red azo dye decoloration by Aspergillus niger, it was observed that the
removal percent increased with the rise of pH and the maximum removal efficiency was
reached (99.69%) at pH 9.0. Thereafter, whenever the pH value increases, the decolorization
process appeared to decrease (Mahmoud et al., 2017).

Effect of temperature on dye degradation
Themaximum(100%) degradationwas observed at temperature 35 ◦Cwhile at temperature
30 ◦C and 40 ◦C, the much adverse effect on the degradation was found and it was 37.5% in
both cases (Fig. 3). This might have occurred due to an adverse effect of lower and higher
temperature other than 35 ◦C on the enzymatic activities and the rate of chemical reaction
directly related to temperature change. In addition, bacteria needs optimum temperature
for growth. Since dye decolorization is ametabolic process, the change in temperature causes
change from optimum results into a decline dye decolorization. The higher temperature
causes thermal inactivation of proteins and probably affects cell structures such as the
membrane (Shah, 2013). Similar effect of temperature was observed by Bacillus subtilis
in crystal violet dye degradation (Kochher & Kumar, 2011). Holey (2015) reported that
bacterial consortium showed 98% decolorization at 100 mg/L concentration of Congo Red
dye at temperature 37 ◦C. Lalnunhlimi & Krishnaswamy (2016) reported that the microbial
community exhibits the optimal degradation efficiency with a temperature ranges from 30
to 35 ◦C. Wanyonyi et al. (2017) observed the optimal temperature for decolorization of
Malachite Green by using novel enzyme from Bacillus cereus strain KM201428 at 40 ◦C.
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Figure 4 Degradation of different concentration of crystal violet dye by Enterobacter sp. CV–S1.
Full-size DOI: 10.7717/peerj.5015/fig-4

Effect of initial dye concentration on dye degradation
It was observed that Enterobacter sp. CV–S1 can degrade 150 mg/l Crystal Violet dye
within 72 h. However in higher concentration, dye degradation rate was remarkably
reduced (Fig. 4). This may be due to the decreasing of nucleic acids content ratio, i.e.,
RNA/DNA, which results to lowering the protein synthesis that inhibits cell division. The
decolorization of 500 mg/l crystal violet using Bacillus sp. was complete upon continued
incubation for 2.5 h in mineral salt medium amended with glucose and yeast extract but
it decreased to less than with increasing the initial concentration of crystal violet to 600,
700, 800, 900 and 1,000 mg/l (Ayed et al., 2009). The effect of dye concentration on growth
plays an important role in the choice of microbes to be used in the bioremediation of dye
wastewater, for instance high concentrations can reduce the degradation efficiency due
to the toxic effect of the dyes (Khehra et al., 2006). Furthermore, initial dye concentration
provides an essential driving force to overcome all mass transfer resistance of the dye
between the solid and aqueous phases (Parshetti et al., 2006). Present result indicate that
Enterobacter sp. CV–S1 is quite tolerant to Crystal Violet and can decolorize and degrade
relatively higher concentration of the dye.

Effect of initial inoculums size on dye degradation
It was observed that the dye removal capacity was affected by the inoculums size used. The
degradation rate had decreased with the declining of inoculum sizes. The most significant
result (100%), was obtained when 10% inoculum was used. The absorption spectra of
crystal violet at different time intervals were shown in Table 3 and Fig. 5. After 72 h of
inoculation the solution was streaked on a nutrient agar plate and the growth of bacteria
was observed after overnight incubation. It proved that the dye degradation was absolutely
due to bacteria. After optimizing the environmental parameters, 100% degradation of
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Figure 5 Degradation rate of Crystal Violet by Enterobacter sp. CV–S1 after optimizing the environ-
mental parameters at different time intervals.

Full-size DOI: 10.7717/peerj.5015/fig-5

150 mg/l Crystal Violet was observed within 72 h at 35 ◦C and pH 6.50 under aerobic
shaking condition by 10% (v/v) Enterobacter sp. CV–S1 without supplying extra carbon
and nitrogen source as shown in Fig. 6. A similar pattern was observed and reported byAyed
et al. (2009) that the dye removal capacity had increased significantly with the escalation in
inoculum size. They isolated Bacillus sp. which was able to decolorize 500 ppm crystal violet
within 2.5 h under shaking condition at temperature 30 ◦C and pH 7. In another study,
the Brilliant Green dye (10 mg/l) removal by the Klebsiella strain Bz4 in static conditions
was observed 81.14% after 24 h of incubation and 100% dye removal was observed after
96 h of incubation (Zabłocka-Godlewska, Przystaś & Grabińska-Sota, 2015).

CONCLUSION
In this study, the newly isolated bacteria Enterobacter sp. CV–S1 has demonstrated
potentiality for its Crystal Violet dye degradation. The optimum decolorizing parameters
of the study were concentration of dye (150 mg/l), inoculums size (10% v/v) temperature
(35 ◦C), pH (6.50), with a rotation of 120 rpm. It can be concluded from the overall findings
that the isolated bacteria Enterobacter sp. CVS1 could effectively be used as an alternative
to the physical and chemical processes of textile effluents as they have a high potential for
being able to decolorize or degrade Crystal Violet dye.
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Figure 6 10% (v/v) of Enterobacter. sp. CV–S1 showed 150 mg/l Crystal violet dye degradation at pH
6.50 and temperature 35 ◦C under shaking condition at different time intervals. (A) 0 h; (B) 24 h; (C)
48 h and (D) 72 h (c, control; R1, R2 and R3, replication 1, 2 and 3 respectively).

Full-size DOI: 10.7717/peerj.5015/fig-6
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