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Abstract

Statistical modelling, in combination with genome-wide expression profiling techniques, has demonstrated that the
molecular state of the tumour is sufficient to infer its pathological state. These studies have been extremely important in
diagnostics and have contributed to improving our understanding of tumour biology. However, their importance in in-
depth understanding of cancer patho-physiology may be limited since they do not explicitly take into consideration the
fundamental role of the tissue microenvironment in specifying tumour physiology. Because of the importance of normal
cells in shaping the tissue microenvironment we formulate the hypothesis that molecular components of the profile of
normal epithelial cells adjacent the tumour are predictive of tumour physiology. We addressed this hypothesis by
developing statistical models that link gene expression profiles representing the molecular state of adjacent normal
epithelial cells to tumour features in prostate cancer. Furthermore, network analysis showed that predictive genes are linked
to the activity of important secreted factors, which have the potential to influence tumor biology, such as IL1, IGF1, PDGF
BB, AGT, and TGFb.
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Introduction

The application of functional genomics technologies, particu-

larly gene expression profiling, has provided the scientific

community with the tools to characterize the molecular state of

cells and tissues at a genome level. These technologies coupled

with the ability to dissect specific cell types from a complex tissue

have created an unprecedented opportunity to characterise the

molecular identity of specific cell types in the context of a complex

tissue [1]. Following this approach, gene expression profiling have

been applied to generate the transcriptional profile of tumour cells

that are predictive of both tumour features and clinical outcome in

a variety of human cancers [2]. Many genome-wide studies

however are often analyzed not taking explicitly into consideration

that components of the extra-cellular matrix (ECM) (matrix

proteins, soluble grow factors and chemokines) secreted by normal

cells, adjacent to the tumour site, heavily influence the biology of

the tumour. Recently, stromal cells have emerged as primary

candidates for playing a role into normal-tumour cell interaction

[3]. These cells secrete most of the enzymes involved in ECM

breakdown, for example they produce growth factors that have a

role in controlling tumour cell proliferation, apoptosis, and

migration. They also secrete pro-inflammatory cytokines involved

in chemoattraction and activation of specific leucocytes and

therefore play a role in determining inflammatory responses [4].

Growth factors and cytokines are also involved in the neoplastic

transformation of cells, angiogenesis, tumour clonal expansion and

growth, passage through the ECM, intravasation into blood or

lymphatic vessels and the non-random homing of tumor metastasis

to specific sites. Many of these factors are also secreted by normal

epithelial cells, immune cells and endothelial cells in proximity of

the tumour mass. It has also been shown that the stroma may

impact on the response to anti-tumour therapy. Indeed, the

presence of CD11b+ leucocytes confers resistance to anti-

angiogenesis therapy [5].

Furthermore, pre-treatment of the stroma with anti-angiogen-

esis molecules prior to tumour implantation in mouse tumour

models may paradoxically increase tumour development [6,7].
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This illustrates that the quality of the tumour stroma may

significantly influence tumour development.

The importance of the micro-environment in determining the

onset and progression of cancer arises the question whether it may

be possible to predict the patho-physiology and clinical outcome of

the tumour from specific components of the molecular state of

normal cells. If possible, we would expect these molecular

signatures to represent important components of cell-cell cross-

talk involved in specifying the development of cancer.

We addressed this question by developing statistical models

based on a genome wide profiling of normal tissue adjacent the

tumour and identifying aspects that are predictive of cancer

features.

We have analyzed two different prostate cancer microarray

datasets available in the public domain [8,9]. We show that in

both datasets the molecular state of cells adjacent to the tumour is

predictive of clinically relevant cancer features. These pathways

are informative molecular signatures and represent pathways

involved in the production and response to secreted factors.

These findings support the potential relevance of normal tissue

biopsies in the diagnosis and prognosis of prostate cancer. This

approach also provides a generally applicable analysis strategy to

identify key pathways involved in cell to cell communication.

Results

Statistical modeling establishes a link between the
molecular state of normal cells and tumor histo-
pathological features

The initial objective of our analysis was to test whether the

molecular profile of normal cells is predictive of cancer features.

We initially considered two important aspects of prostate tumour

physiology: the degree of organization of tumour cells defined by a

histo-pathological scoring system called Gleason score, and the

ability of tumour cells to penetrate the organ capsule summarized

by a binary histo-pathological score called capsular penetration.

The level of differentiation of tumour cells measures the tendency

of cells to aggregate in glandular-like structures that are

reminiscent of the organization of the normal tissue. The Gleason

score can be used to define two main classes. The first is

characterized by low-grade tumours that display a highly

organised structure (correspondent to a score below or equal to

6) whereas a second class is characterized by high-grade tumours

cells that are dispersed in the matrix and do not show a tendency

to form glandular-like structures (correspondent to a score above

or equal to 7). By contrast capsular penetration describe the extent

to which cells have evaded the capsule that surrounds the prostate.

Our analysis aimed to link the molecular profile of normal cells

to differentiation level (low versus high differentiation) and

capsular penetration (positive versus negative). This was achieved

through the development of statistical models that were based on

the molecular profile of normal cells and predictive of the sample

classes, specifically Gleason score and capsular penetration.

For this purpose we applied two different multivariate modelling

approaches (GA-MLHD and BVS methods) to two independent

datasets developed by Singh et al. [9] and by Lapointe et al. [8].

The two statistical modelling approaches are designed to search

for multi-gene markers that maximise the distinction between

sample classes. Using these methods, we have developed represen-

tative models that were predictive of tumour features by means of

the gene expression profile of normal cells. Classification accuracy

and size of these models were comparable to the ones developed

using the molecular state of tumour cells (Table 1). Representa-

tive models developed with the BVS and GA-MLHD methods

represent optimal predictive subsets that are based on a very

similar number of genes and have a high degree of overlap at the

gene level, suggesting that our results are independent of the

methodology used (Figure 1 and Figures S1, S2, and S3).

Consistent with the relatively small degree of overlap between the

microarray platforms (, = 8%, see the Data Processing section in

the Text S1 for details), the representative models developed from

the two independent datasets have no genes in common.

Further analysis of the relative contribution of the individual

genes to the sample separation was performed using a principal

component analysis (Figure 2). This approach has revealed that

genes involved in cell communication pathways are predictive of

capsular penetration. Within the gene set selected by the GA in the

normal tissue dataset, a combination of higher expression of the

gene PRELP and a lower expression of the genes UBE4A, ZNF146

in the normal cells was predictive of tumour capsular penetration.

In the gene set developed by applying the BVS procedure on the

normal tissue dataset, a high expression of PPP2R4, PRELP,

CALLA, ISG20L2 was predictive of tumour capsular penetration.

The models developed from the Lapointe dataset revealed that

lower expression of OAT and higher expression of PCGF5 and

MYCN in the GA model and lower expression of IGF1 and PRAC

and higher expression of PCGF5 and CPSF7 are predictive of

capsular penetration.

The link between normal and tumour shown in this analysis is

also supported by a univariate analysis which we have performed

using a broad spectrum of available methodologies (Figure S4).

Specificity of gene signatures predictive of cancer histo-
pathological features

Adjacent normal and tumour tissues are morphologically

distinct. However, they show a degree of molecularly similarity

which is in part a consequence of sharing the same micro-

environment [10]. We therefore wondered whether the predictive

models we have developed from normal epithelial cells represent a

molecular signature that is specific to normal tissue or whether the

expression of the predictive genes in tumour cells may also be

predictive of tumour features. In order to address this hypothesis,

we took genes selected by our modelling strategies developed from

the normal tissue datasets and tested whether their expression in

the tumour issue was predictive of cancer features.

We also challenged the prediction accuracy of models deve-

loped from the tumour data by performing the corresponding

comparison in the normal dataset. In both cases, the prediction

accuracy of the models is close to 50% (which correspond to the

expected accuracy of a random guess) (Figure 3). This analysis

therefore shows that the molecular signatures we have identified

are specific for the tissues (normal or tumour) they have been

selected to represent.

Functional networks linked to predictive signatures
representing normal epithelial cells expression profiles
include important cytokine and growth factor signals

In order to facilitate the biological interpretation of the genes

represented in our statistical models we used the IPA analysis

software to perform an in depth analysis at the network level. To

ensure our analysis covered the full spectrum of possible solutions,

we used as input to the IPA software the list of genes represented

in the collection of predictive models identified from the normal

tissue by the GA procedure. These covers a wider spectrum of the

solution space respect to the representative models described

above (Figure 1 and 2) and represent 239 and 259 genes for

Singh and Lapointe datasets respectively. In this analysis we

Normal-Tumour Cell Interaction in Prostate Cancer
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focused on Capsular penetration because of its clinical and

prognostic relevance. The network analysis was performed

independently in the two datasets and the most significant

networks (statistically significant and with .50% target genes

represented in the network) were selected for further analysis.

In both datasets, predictive genes were part of networks linking

extracellular molecules such as the pro-inflammatory cytokine

IL1b, the pro-metastatic chemokines CX3CL1 and CCL20 and

the growth factors IGF1, TGFb and PDGF BB with the activity

of the nuclear transcription factors NFKb, HF4A, TP53, and

MYC.

Figure 4 describes the most significant networks identified by

the IPA application representative of the models based on the

molecular state of normal cells and predictive of capsular

penetration in the Lapointe et al. dataset (see Table S2 for the

full list of significant networks identified by IPA). Figure 4A shows

a network represented by the interaction between the pro-

inflammatory cytokine IL1b and the transcription factor NFkB.

Figure 4B–D represent three interconnected sub-networks which

involve the interaction between several growth factors genes and

the transcription factors P53 (TP53) and C-MYC (MYC). More

specifically, Figure 4C represent a network including the growth

factors IGF1, its receptor IGF1R and PDGF BB. Figure 4B
represents the interaction between the extracellular factors

Angiotensin (AGT), the growth factor TGFb and the Notch

receptor ligand Jagged (JAG). Figure 4D on the other hand

represents genes that are either directly or indirectly connected to

the transcription factor c-myc (MYC).

The top four most significant networks identified from the

Singh dataset (Figure S5) represent genes connected to the

same cytokines and growth factors identified in the Lapointe

dataset. This interesting observation suggests that, despite the

limited amount of overlap at the gene level, models derived from

the two dataset may represent functionally similar molecular

networks.

Expression of predictive cytokines, growth factors and
their receptors in Prostate Cancer progression

In order to improve understanding of the biological significance

of the IPA networks we analysed the expression of genes in

different stages of prostate cancer progression. We focused the

investigation on a small subset of 20 genes representing the

secreted factors included in the IPA networks and their receptors

(Table S3).

With the purpose of limiting the interference of stromal cell

contaminants, we selected a dataset representing a microarray

analysis of seven types of normal and tumour epithelial cells

populations, purified by laser-capture micro-dissection (LCM)

reported by Tomlins et al. [11]. These included, normal prostate

cells purified from healthy prostates (Nor), normal cells from

benign prostate hyperplasia (BPH), normal cells adjacent the

tumour (adj), tumour cells from prostatic intraepithelial neoplasia

(PIN), tumour cells from low grade prostate carcinoma (L-PCA),

tumour cells from high grade prostate carcinoma (H-PCA) and

tumour cells from prostate cancer metastases (Meta).

We hypothesize that since the 20 genes we selected were

included in models highly predictive of tumour capsular

penetration, they may also be differentially expressed during

prostate cancer progression. We tested this hypothesis by

comparing the seven LCM cell populations. We discovered that

a surprising large proportion of these genes were differentially

expressed (75% at p,0.001 and 95% at p,0.05) (Table S3,

Figure 5, S7 and S8). Further support to the relevance of the

gene expression signature we had identified came from the

observation that the two dimensional cluster analyses performed

using the matrix of differential gene expression profiles (average

expression for each group), recapitulated the expected relationship

between the different stages in the development of prostate cancer

(Figure 5A). More precisely, normal cell populations clustered

together followed by PIN and a cluster of L- PCA and H-PCA.

The Metastatic cell group clustered aside.

Table 1. Accuracy, size, and gene content of representative models developed from normal and tumour data.

Class+Tissue
Dataset GA-MLHD Acc BVS Acc

CP+N
Singh et al.

WDR18, ZNF146, MBD3, UBE4A, PRELP*, MXRA7*,
MME/CALLA*

86.1 (7) RPS2, CCL13, VCP, PRELP*, PPP2R4, ISG20L2,
MXRA7*, ARAF, MME/CALLA*

78.0
(9)

CP+T
Singh et al.

LUZP1, SORL1, TMSL8*, HYOU1, ST14, TALDO1*,
DGCR6L

97.4 (7) TMSL8*, RPL35, HIST1H2BK, KRT8, RAB1A, TSPAN1,
TALDO1*, PDLIM5, GADD45G, GDF15

92.0
(10)

GS+N
Singh et al.

BZRPL1, TEGT*, IDH3B, MID1, D83779, PTGDS*,
PFDN5, PTGDS*

89.7 (8) HBA1/2, PABPC1/3, TEGT*, PRSS22, DNAJC4,
PTGDS*, PNPLA2, USP9X, PTGDS*

92.5
(9)

GS+T
Singh et al.

TMSB4X/L3, SLC6A7, AA524802, ABCC10, INHBB,
SULT2B1, PHYHIP, SLC1A5, ACPP*, C7, ACPP*,
NR4A1*

91.6 (12) VIM, R42599, ARF1, RBM3, EIF4G2, ACPP*, VEGF,
SPARCL1, COL4A2, HLA-DPB1, DSTN, UBB, ACPP*,
NR4A1*

90.0
(14)

CP+N
Lapointe et al.

H27617*, PCGF5*, IGF1*, OAT, EPHB3, BEX1,
C12orf56, H08136*, IDH3G, CYR61, TNRC6B*,
CX3CL1*, MYCN

89.2 (13) H27617*, FLJ12529, PCGF5*, PRAC, IGF1*,
H08136*, TNRC6B*, CX3CL1*

97.4
(8)

CP+T
Lapointe et al.

MT1X*, R20199*, NEBL, ACSL3, CXCL14*,
AI018472

96.5 (6) AA420602, H19, MT1X*, CIP29, R20199*, PLGLB2,
ZNF533, CXCL14*, NAT1

100.0
(9)

GS+N
Lapointe et al.

FOLR1, APOD, NALP2*, CLSPN, N39101, ISL1*,
KITLG, N46872, APOD, KBTBD10*, ZNF185*,
AA699363, FUT8, KLK2*

93.8 (14) NALP2*, ISL1*, KIAA1244, KBTBD10*, ZNF185*,
AI018026, KLK2*, RERG

97.1
(8)

GS+T
Lapointe et al.

MOCOS, ITGBL1*, PLEKHH2, WDR72*, DUSP8*,
RBM12B, MCOLN3

94.4 (7) ITGBL1*, S100A1, KBTBD10, AA699944, WDR72*,
MTMR9, DUSP8*, PUNC

97.1
(8)

Accuracy (Acc) are expressed in percentage and model size are shown in brackets. Marked genes in bold and asterisk appear in both methods (GA-MLHD and BVS).
Dataset is indicated. CP+N – Capsular Penetration class from Normal data, CP+T – Capsular Penetration Tumour, GS+N – Gleason Score Normal, GS+T – Gleason Score
Tumour.
doi:10.1371/journal.pone.0016492.t001
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Of relevance for understanding the biological basis of the

predictive power of normal cells signature is the observation that

normal cells adjacent the tumour showed significant differences in

respect to Normal cells and BPH (Figure 5B). Five genes (IL1R,

LOX and TGFBR, CX3CL1 and CYR61) were differentially expressed

between the three populations of normal cells. More specifically,

normal cells adjacent to the tumour (Norm) were characterized by a

lower expression of the tumour suppressor gene LOX, the receptors

for interleukin 1 (IL1R) and TGFb (TGFBR) and by a higher

expression of the pro-tumour genes CYR61 and CX3CL1.

We then examined the expression of individual genes across the

different stages of tumour progression in relation to the networks

identified by the IPA software (Figure 4).

The cytokine IL1b, identified by the IPA analysis as linked to

the activation of the pro-metastatic chemokines CX3CL1 and

CCL20 (Figure 4A), was up-regulated in the tumour cell

populations PIN and H-PCA (Figure 5A, and 5C), whereas

the expression of IL1R1, which mediated the activity of IL1b,

follows an opposite trend (Figure 5A, B and C). The pro-

metastatic chemokine CX3CL1 was expressed at higher levels in

adjacent cell population respect to PIN, L-PCA and H-PCA but

not in Meta cells (Figure 5E). The expression of the LOX gene

was found higher in all tumour cell populations relative to adjacent

and normal cells (Figure 5F) consistent with the fact that higher

expression of LOX has been associated to hypoxia-induced

metastasis in breast, head, neck cancers [12,13].

The expression of AGT, TGFB and JAG1 were linked in a

different IPA network (Figure 4B). The expression of Angioten-

sinogen (AGT) is higher in adjacent cells compared to PIN, L-PCA

and H-PCA whereas JAG1 follows an opposite trend (down

regulated in adjacent cells respect to L-PCA, H-PCA and Meta). If

angiotensinogen is produced at higher levels in adjacent cells one

of the activating enzymes which convert the product of the AGT

gene in angiotensin II (ACE) is instead higher in PIN and L-PCA,

suggesting the potential for utilization in tumour cells at lower

stages of prostate cancer development. The finding that AGT and

JAG1 have opposite trends supports the hypothesis that AGT may

repress the expression of JAG1 (Figure S8 panels E and F). This

connection was reported by the IPA software (Figure 4B) but was

supported by an endothelial cell culture experimental model [14].

These results are consistent with the hypothesis that this

mechanism may also be relevant in prostate cancer.

Figure 1. Multivariate Models for Capsular Penetration using Normal data. The figure shows the heat maps representing the expression
profile of genes selected by the GA and BVS models in both Lapointe and Singh datasets from the normal tissue data. Each quadrant in the figure
represents a combination of a modelling approach and a specific dataset. Genes present in GA-MLHD and BVS for the same dataset are highlighted in
red. Accuracy is reported below each heatmap. GeneBank accession number and gene symbol are shown on the left side of the heatmap. Brighter
green or red colours in heatmaps represent lower or higher relative expression respectively. t-test p-value is shown for comparison with the
differential expression criteria commonly used in univariate variable selection approaches.
doi:10.1371/journal.pone.0016492.g001

Normal-Tumour Cell Interaction in Prostate Cancer
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A third IPA network represents the interaction between the

tumour-promoting factors IGF1, PDGF BB and CYR61 (Figure 4C).

Although the expression of PDGF is constant in all cell populations,

its receptor (PDGFR) is higher in H-PCA and Meta cell populations

compared to adjacent cells. The expression of CYR61 is higher in

adjacent cells respect to PIN and Meta cell populations (Figure S8).

Discussion

We have demonstrated that normal epithelial cell signatures are

predictive of important features of prostate cancer. This finding has

potential clinical implications as it may suggests that the molecular

state of normal cells has prognostic value. At the molecular level,

network analysis has revealed that our approach has the potential to

identify genes involved in the disease pathogenesis. These include key

genes encoding cytokines and growth factors expressed by normal

epithelial cells and known to influence the biology of the tumour.

Cytokine induced production of pro-metastatic
chemokines

The network shown in Figure 4A and Figure S5 represents

signalling of the pro-inflammatory cytokine interleukin 1 (IL1b)

through the activation of the NFkB complex. The IPA software

linked IL1b to the expression of the known pro-metastatic

chemokines CX3CL1 [15] and CCL20 [16] in an endothelial cell

culture model [14].

Although induction of these chemokines by IL1b has not been

demonstrated to date, several pieces of evidence support the

relevance of this mechanism in prostate cancer progression.

Voronov et al. [17] have shown that IL1b is required for tumour

invasiveness and angiogenesis in a mouse breast cancer model and

provided evidence for the same mechanism in prostate cancer.

More recently, an Interleukin-1 receptor antagonist haplotype

have been found to be associated with prostate cancer risk [18]

suggesting that the results of the animal model may be relevant in

a clinical setting.

The analysis of the LCM dataset showed that IL1b is expressed

at higher levels in PIN and H-PCA than in adjacent cell

populations whereas the latter expressed higher levels of the

receptor (ILR1) (Figure 5).

Furthermore, normal epithelial cells express higher levels of

CX3CL1 respect to their tumour counterpart while its receptor

(CX3CR1) is expressed in tumour cells [19]. This chemokine

promotes migration of cancer cells and metastases formation in a

Figure 2. Principal component representation for Capsular Penetration using Normal Data. The figure shows the result of a PCA representing
sample separation on the basis of the expression in normal tissue of genes selected by the modelling procedures. Each quadrant in the figure represents
a combination of a modelling approach and a specific dataset. Each quadrant contains a 2D plot representing the separation of capsular penetration
negative (black close circles) and positive (red close circles) samples (plots B, D, F and H) and a bar chart (plots A, C, E and G) representing the PC loadings
(x axis) for each gene component (y axis). Note that PC loadings represent the contribution of every gene to class separation. Dashed lines delimitated
genes with larger contribution that are discussed in the manuscript. Genes present in GA-MLHD and BVS for the same dataset are highlighted in red.
doi:10.1371/journal.pone.0016492.g002

Normal-Tumour Cell Interaction in Prostate Cancer
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number of cancers [20] including prostate [21]. The production of

this chemokine by epithelial cells adjacent the tumour has

therefore the potential to induce tumour cell migration. Similarly,

prostate normal epithelial cells produce the chemokine CCL20 and

the expression of its receptor (CCR6) in prostate cancer cells has

been recently found to be a predictor of tumour aggressiveness

[22].

The network also includes LOX, which is represented as an

indirect repressor of the NFKb complex [23] [24]. The biological

role of LOX in cancer is complex. LOX has been reported to have

tumour suppressor activity [25] and can inhibit proliferation of the

prostate cancer cell line DU 145 via a mechanism involving

interference with FGF2 binding and signalling cascade [23].

However, LOX has also been reported to have an important

tumour promoting activity by favouring metastasis in breast, head,

and neck cancers [12] [13]. The analysis of the LCM dataset has

shown that the expression of the LOX is higher in all tumour cell

populations (PIN, L-PCA, H-PCA and Meta) respect to adjacent

cells. This may be consistent with the tumour-promoting role of

LOX but it raises the question whether the amount of LOX

produced by epithelial cells would be able to significantly affect

tumour cells.

Figure 3. Accuracy and Tissue specificity of representative models. The predictive accuracy of the models developed using normal tissue
(panel A, filled circles) is comparable to those models developed using tumour tissue (panel B, filled diamonds). When models developed using
normal tissue are trained and tested using data from tumour tissue, the prediction power is decreased considerably (empty circles). Likewise, tumour
models trained and tested with data from normal tissue are also non predictive (empty diamonds).
doi:10.1371/journal.pone.0016492.g003

Normal-Tumour Cell Interaction in Prostate Cancer
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The hypothesis that IL1b may trigger the activation of pro-

metastatic signals in normal epithelial cells is an interesting one.

We have initially tested this hypothesis by treating the normal

prostate cell line RWPE1 with recombinant IL1b and discovered

that both CCL20 and CX3CL1 are significantly up regulated 6

and 24 hours after stimulation. LOX is instead only transiently up-

regulated six hours after IL1b stimulation (Figure S6). This

observation suggests that our hypothesis may be correct.

Role of IGF1 and PDGF BB in Prostate Cancer
development

The IPA software identified a network representing interactions

with the growth factors PDGF BB and IGF1 (Figure 4C and S5B-C).

The role of IGF1R in malignant transformation is well

documented [26]. IGF1R is over-expressed by many tumour cell

lines and targeted disruption of the IGF1R gene can abolish cell

transformation.

PDGF BB has a dual role on prostate cancer development. It

directly promotes tumour cell proliferation and invasion [27].

Platelet-derived growth factor induces proliferation of hyperplastic

human prostatic stromal cells [27].

In addition, PDGF BB has been described as a potent inductor

of angiogenesis and promotes pericyte recruitment [28]. Its activity

is synergistic to IGF1 in promoting migration of human arterial

smooth muscle cells [29].

The IPA network shows that PDGF BB and IGF1 can

transcriptionally activate CYR61 [30] [31]. CYR61 is an extracel-

lular matrix-associated protein that promotes adhesion, migration,

proliferation, and angiogenesis. CYR61 is required for breast

tumorigenesis and cancer progression [32] [33] and promote

prostatic cell adhesion and proliferation [34] [35]. CYR61 also

promotes invasion when tumor stroma is irradiated before tumor

implantation in a model of skin cancer [36]. Relative to LCM

normal (norm) cells, CYR61 is up regulated in LCM BPH, normal

Figure 4. Functional networks representing known interaction between genes expressed in normal tissue and selected in the
models predictive of capsular penetration. The figure represents the four most significant networks selected by the IPA software. Genes
represented by blue shapes are present in the collection of models collected by the GA-MLHD procedure. Genes represented with red shapes
represent genes in the collection of models but also included in the representative most predictive models. Genes in the networks are arranged by
cellular localization (extracellular, membrane, cytoplasm and nucleus). Note that the IPA software search for statistically significant sub-networks of a
given maximum size to simplify their visualization. Nevertheless, in this case these are linked as indicated by red dashed arrows connecting specific
network components.
doi:10.1371/journal.pone.0016492.g004

Normal-Tumour Cell Interaction in Prostate Cancer
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cells adjacent to the tumor and both low and high-grade prostate

carcinoma (Figure 5B and S8). The receptor of PDGF BB,

PDGFBR, has a similar trend, which is consistent with its potential

activator role.

Although protein measurements may be necessary to support

this analysis, it is not unreasonable to hypothesize that adjacent

normal epithelial cells may produce sufficient CYR61 to influence

tumor cells.

The expression of targets of TGFb in the normal tissue
predict tumour capsular penetration

The networks represented in Figure S5D and 4B represent the

connection between genes including models predictive of tumour

capsular penetrations and TGF.

TGFb has a complex role in tumour development. It can either

promote or inhibit tumour development in a context dependent

manner [37]. In normal epithelia and early stages of tumour

development, TGFb has role in regulating tissue homeostasis and

is considered an anti-tumour factor preventing incipient tumours

from progressing towards malignancy [5]. Furthermore, TGFbin-

hibits recruitment of pericytes to the vasculature, thus decreasing

vessel maturation and flow which may also negatively impact on

tumour development [38].

At later stages of tumour development, TGFb has been shown

to promote tumour development and metastases formation. Of

particular relevance, TGFb1 reverses inhibition of COX-2 with

NS398 and increases invasion in prostate cancer cells [39]. The

development of a pro-tumour activity of TGFb in tumour

progression is often associated to mutations, which eliminate the

tumour suppressor activities of TGFb and promote growth and

invasion. Another pro-tumour effect of TGFb is linked to induce

immune system tumour tolerance [37]. Consistent with these

findings, recent reports suggest that in prostate cancer TGFb may

be relevant therapeutic target [40] [39].

We found that in the LCM cell populations TGFb is expressed

at high levels in normal cells adjacent the tumour (Figure 5 and

S7). The predictive power of TGFb response signatures in normal

epithelial cells may therefore be the reflection of the amount of

active TGFB present in the microenvironment that, at least in part

may be produced by normal epithelial cells adjacent to the

tumour.

Angiotensinogen and Notch in Prostate Cancer
The network shown in Figure 4B involve the interaction

between the Angiotensin precursor Angiotensinogen (AGT) and

the Notch ligand JAG1. A functional Renin-Angiotensin system

has been demonstrated in prostate cancer [41] [42]. In addition its

canonical role in regulating blood pressure it is now recognized

that Angiotensin can influence several growth factor pathways

[41], including oncogene activation [43]. It has been recently

shown to be a clinically relevant factor in the progression of

prostate cancer and a potential avenue for treatment [41] [44]

[45]. AGT is up regulated in normal epithelial cells adjacent the

tumour compared to PIN and PCA (Figure S8E). This

Figure 5. Analysis of LCM cell populations representative of prostate cancer progression. The figure represents the results of the analysis
performed on the dataset developed by Tomlins et al. [11]. Different cell populations are labelled as follows. Normal cells (norm), normal cells
adjacent the tumour (adj), benign prostate hyperplasia (MPH), low grade prostate carcinoma (L-PCA), high-grade prostate carcinoma (H-PCA) and
metastatic cells (meta). Panel A shows a two-dimensional cluster analysis performed on the genes differentially expressed (p,0.01) across the seven
LCM purified normal and tumour epithelial cell populations. Panel B represents the expression level (y axis) of genes differentially expressed
between norm, adjacent and BPH (represented on the y axis). Levels of individual genes across all stages are presented in panels C-F and in Figure
S8.
doi:10.1371/journal.pone.0016492.g005
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observation is consistent with a biological role of AGT production

by normal epithelial cells.

The IPA network (Figure 4B) links AGT to the transcription of

JAG, another factor known to have context-dependent effects on

tumour development. In vascular cells, inhibition of Jagged

promotes angiogenesis [46] favouring tumour growth. On the

other hand Jagged 1 favours proliferation and expansion of

prostate tumours [47].

In LMC cell populations tumour cells express higher levels of

JAG1 than adjacent normal epithelial cells (Figure 5 and S7).

Hence, the effective contribution of normal cell expressed JAG1

on tumour development is unclear.

Conclusions
Ultimately, our approach provides a way to identify molecular

networks whose activity in normal epithelial cells is predictive of

tumour features. Prostate cancer progression rates among so-called

‘‘favourable prognosis’’ localized tumours (e.g. Gleason score ,6)

are not precisely predicted by grade and stage at diagnosis. This

lack of diagnostic accuracy has contributed to the conundrum of

CaP over-screening and possibly over-treatment [48,49]. A similar

lack of prognostic accuracy is apparent when tumours recur

during androgen depravation therapy. Greater diagnostic accura-

cy is thus imperative to distinguish at early stages indolent disease

from aggressive phenotypes that can progress rapidly, and at late

stage disease the lethal phenotypes.

Lessons from breast cancer studies have taught us that

significant strides in diagnosis (and thus treatment) can be made

by applying multiple genetic parameters to define disease with

greater clinical resolution (reviewed in [50]). Such approaches

have progressed less quickly in prostate cancer [51]. The current

study suggests this need and gap in understanding can be met by

utilizing gene expression signatures in the normal prostate tissue

adjacent to the tumour as novel functional molecular biomarkers.

In early stage disease especially identification and sampling of the

tumour within the prostate gland can be highly challenging.

Therefore it is highly advantageous and attractive to utilize gene

expression signatures in the readily sampled normal tissue to make

robust prognostic inferences concerning the tumour.

An important question is whether the statistical relationships we

have discovered with our analysis reflect a key aspect of tumour

microenvironment in which normal epithelial cells influence

tumour biology. Although it is hard to provide a conclusive

answer, the information available in the literature and our

experimental validation in a normal epithelia prostate cell line

(Figure S6) indicates that this may be a plausible hypothesis.

Despite the limited overlap at the gene level, mainly caused by

our stringent pre-processing criteria (see methods section for

details), the analyses we have performed on the two independent

datasets provided similar results at the network level. This finding

reinforces the validity of the overall analysis strategy. From a

methodological standpoint our approach therefore has potential

for formulating hypothesis on genes playing a role in controlling

the development of cancer. The approach is general and likely to

be applicable to other datasets for which tumour and adjacent

normal samples are available.

Materials and Methods

Datasets
Our analysis is based on two independent large prostate cancer

studies performed using different array technologies. In both

studies, cells from tumour and adjacent normal tissues have been

isolated and the extracted RNA has been hybridized on human

microarrays for expression profiling. The first dataset used in our

analysis is derived from a study performed by Singh et al. [9] where

52 samples of prostate tumours and adjacent normal tissues were

collected from patients undergoing radial prostatectomy; then

profiled using Affymetrix Genechip technology. The second

dataset used was collected by Lapointe et al. [52] using cDNA

arrays. In this study 41 paired normal and tumor specimens were

removed from radical prostatectomy. Information about the histo-

pathology of the tumor specimens (Gleason score and Tumor

stage) was available for both datasets. Details of the data

processing for both datasets are available in the supplementary

material. After processing, the two datasets show relatively limited

overlap at the gene level (up to 8%, Table S1). Consequently, we

have opted for the two datasets to be analyzed separately.

Statistical Modeling
Classification methods with univariate variable

selection. Our analysis aims to identify molecular signatures

predictive of two binary variables representing relevant features of

tumor biology. These are the degree of differentiation of the tumor

and the ability of the tumor to penetrate the organ capsule. To

develop such signatures we have initially tested a univariate

variable selection strategy based on an F test in combination with

several classification methods (SVM, DLDA, PAMR, KNN,

SOM) as implemented in the software application Prophet

available in the Web based microarray analysis suite GEPAS

[53]. This application uses a step-wise variable inclusion strategy

to construct increasingly large models from a list of genes ranked

by the value of the F statistics and implement a cross-validation

strategy for error estimation. Results of this analysis are shown in

Figure S4.

Classification methods with multivariate variable

selection. In order to consider the effect of combinations of

genes in the prediction of the histo-pathological variables we have

used a statistical modeling approach in combination with mul-

tivariate variable selection procedures. In order to demon-

strate that our results are independent of a particular method-

ology we developed and compared multivariate classification

models obtained using two independent procedures. These

methods differ for both the variable selection strategy and for

the classification algorithms used. The first approach is a

modification of the Genetic Algorithm –maximum likelihood

discriminant analysis (GA-MLHD) method originally developed

by Ooi and Tan [54]. This method uses a genetic algorithm

approach for variable selection coupled to a MLHD functions

classifier. The GA-MLHD methodology uses an initial random

population of models (called chromosomes) and evolves from them

highly accurate classifiers using a process that mimics natural

selection. Accuracy was estimated as the proportion of guesses in

test samples in a cross-validated manner. In our implementation

[55] we have improved the error estimation strategy by using two-

levels of cross-validations. The first level is used in the evolutionary

step of the GA to evaluate the error in a subset of the dataset using

a k-fold-cross-validation procedure (k = 5). The second level is used

at the end of the evolutionary process, when all chromosomes are

selected, to estimate the classification error as an average of the test

error in 40 random splits (2/3 for training and 1/3 for testing)

using the entire dataset. Model sizes of 5 were used, which showed

a higher accuracy than 10 and 20 in average for 10,000 models. In

addition, we have compared the results with models obtained

using a Bayesian variable selection (BVS) approach that we have

developed [56]. This method uses a multinomial probit model as

classifier and Markov Chain Monte Carlo (MCMC) methods to

search multivariate space for informative subsets of the variables.
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Error estimation and parameters settings have been described in

[56]. Two runs were made for model sizes 10 and 20. The model

with higher average accuracy was then chosen.

Selecting representative models. Both GA-MLHD and

BVS modeling approaches provide a number of alternative models

with comparable predictive value. These models tend to have a

degree of overlap in their gene composition. It is therefore

meaningful to select a single summary model that represents the

most frequent solutions. In order to do so, for the GA-MLHD

approach, we have used a forward selection procedure applied to

the top 1% most predictive models selected using the GA

procedure. In the case of BVS, we have tested models developed

with the genes that were included in the subsets of variables most

frequently visited by the MCMC search. The final list of models

was generated by the union of the two chains with minimum

average miss-classification error [56]. Interestingly, we have

discovered that representative models developed with the GA-

MLHD procedure largely overlaps with the pooled models from

the BVS approach. We tested the overlap between models selected

by the GA-MLHD procedure in the two datasets at different

processing thresholds. The overlap between the top 50 raking

genes (by frequency of inclusion in the model populations) in

the model populations was always significant (see Tables S4 and
S5).

Tissue specificity of representative models
An important component of our strategy is to demonstrate that

molecular signatures are tissue specific hence they are not

representing a mere reflection of the overall similarity between

normal and tumour tissues. The strategy to demonstrate the

specificity of the gene signatures obtained with the multivariate

variable selection strategy implemented in the GA-MLHD

procedure is described below in two steps.

Step 1: development of representative models. Expression

data from the normal tissue samples are split between training and

test sets (respectively 2/3 and 1/3 of the original dataset). The

training set is used to develop a classification model to predict

cancer features with a cross-validation strategy. Once the represen-

tative models have been developed their classification accuracy is

estimated on the test set.

Step 2: Specificity test. Expression data from the tumour

tissues samples are split between training and test sets (respectively

2/3 and 1/3 of the original dataset). The expression profile of

genes selected in Step 1 (in the samples selected in the training set)

is used to train a classification model to predict Cancer features.

The classification accuracy of the trained model is then estimated

on the test set. The classification accuracy estimated in step 2 is

then compared to the classification accuracy estimated in step 1 to

establish the tissue specificity of the gene signatures (Figure 3). In

order to demonstrate the tissue specificity of models based on the

molecular profile of tumour tissues we have also performed the

reverse test.

The assessment of the tissue specificity of the molecular

signatures obtained with the BVS procedure has been performed

using a cross-validation procedure for the error estimation as

described in [56].

Analyzing the specific contribution of genes in the
predictive models

Our approach, which is based on multivariate predictive models

selects combination of genes to perform predict tumour features.

Therefore, differential expression between sample classes may not

be always indicative of the relative contribution of a gene to

sample separation. Therefore, in order to graphically represent

sample classification and to estimate the contribution of each gene

for class distinction, we used principal component analysis (PCA).

PCA reduce the original variable space in a handful of principal

components (PC). A PC is defined as a weighted sum of variables

(genes). The weight or loading given to a variable is interpreted as

its importance. For discussion, we focused in genes having absolute

loadings values larger than 0.3 (Figure 2, S1, S2 and S3). In all

cases, the chosen PC (first two) show evident class separation

providing further support for the association of the selected genes

and the sample classes.

Interaction networks and functional analysis of
multivariate signatures: The Ingenuity Pathway Analysis
(IPA) software

The gene sets represented in the populations of models selected

using the GA-MLHD procedure have been analyzed using the

Ingenuity Pathway Analysis (IPA) application (Palo Alto, http://

www.ingenuity.com), a web based application that enables

discovery, visualization, and exploration of biologically interaction

networks.

Gene lists represented in the model populations developed

with normal or tumor expression data to predict capsular

penetration or Gleason score were uploaded into in the

application. Each gene identifier was mapped to its correspond-

ing gene object in the Ingenuity Pathways Knowledge Base.

These genes, called focus genes, were overlaid onto a global

molecular network developed from information contained in the

Ingenuity Pathways Knowledge Base. Networks of these focus

genes were then algorithmically generated based on their

connectivity according to the following procedure implemented

in the IPA software application. The specificity of connection for

each focus gene was calculated by the percentage of its

connection to other focus genes. The initiation and the growth

of pathways proceed from the gene with the highest specificity of

connections. Each network had a maximum of 35 genes for

easier interpretation and visual inspection. Pathways of highly

interconnected genes were identified by statistical likelihood

using the following equation:

Score~{log10 1{
Xf {1

i~0

C(G,i)C(N{G,s{i)

C(N,s)

 !

Where N is the number of genes in the genomic network, of

which G are focus genes, for a pathway of s genes, f of which are

focus genes. C(n,k) is the binomial coefficient. Pathways whose Score

were greater than 5 (p,0.0001) were selected for biological

interpretation.

Canonical pathway analysis was performed using the IPA tools

and significance for the enrichment of the genes with a particular

Canonical Pathway was determined by right-tailed Fisher’s exact

test with a= 0.01 and a whole database as a reference set.

Analysis of LCM cell populations
The dataset developed by Tomlins et al. [11] was downloaded

from the GEO database and raw data normalized using print tip

normalization. The expression profiles of a subset of 20 genes

(representative of secreted factors and their receptors from the IPA

networks) across samples representing normal and tumour

epithelial cells were then selected to create a secondary dataset.

Differentially expressed genes were then identified by one factor

ANOVA using the software application TMEV [57].
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Supporting Information

Figure S1 Multivariate Models for Capsular Penetra-
tion using Tumour data. Genes present in GA-MLHD and

BVS for the same dataset are highlighted in red. Accuracy is

estimated as described in the Material and Methods section.

GeneBank accession number and gene symbol is shown. Brighter

green or red colours in heatmaps represent lower or higher relative

expression respectively. t-test p-value is shown for comparison with

the differential expression criteria commonly used in univariate

variable selection approaches. PCA plots and loadings are used to

show the putative contribution of every gene to class separation.

For example, TALDO1 gene in top heatmap seems to contribute

strongly to positive Capsular Penetration whereas ST14 contribute

weakly to negative Capsular Penetration. PCs were selected by

visual inspection.

(EPS)

Figure S2 Multivariate Models for Gleason Score using
Normal data. Genes present in GA-MLHD and BVS for the

same dataset are highlighted in red. Accuracy is estimated as

described in the Material and Methods section. GeneBank

accession number and gene symbol is shown. Brighter green or

red colours in heatmaps represent lower or higher relative

expression respectively. t-test p-value is shown for comparison

with the differential expression criteria commonly used in

univariate variable selection approaches. PCA plots and loadings

are used to show the putative contribution of every gene to class

separation. For example, TEGT gene in top heatmap seems to

contribute strongly to high Gleason grades whereas D89667

contribute to low Gleason Grades. PCs were selected by visual

inspection.

(EPS)

Figure S3 Multivariate Models for Gleason Score using
Tumour data. Genes present in GA-MLHD and BVS for the

same dataset are highlighted in red. Accuracy is estimated as

described in the Material and Methods section. GeneBank

accession number and gene symbol is shown. Brighter green or

red colours in heatmaps represent lower or higher relative

expression respectively. t-test p-value is shown for comparison

with the differential expression criteria commonly used in

univariate variable selection approaches. PCA plots and loadings

are used to show the putative contribution of every gene to class

separation. For example, ACPP gene in top heatmap seems to

contribute strongly to low Gleason grades whereas TM8B4X

contribute to low Gleason Grades. PCs were selected by visual

inspection.

(EPS)

Figure S4 Univariate gene selection models. Models were

generated using a forward selection procedure that includes,

progressively, genes ranked by a univariate statistic (F-ratio,

horizontal axis). The accuracy is assessed by leave-one-out-cross-

validation for a number of classification methods (vertical axis, see

legends, and the Prophet tool within www.gepas.org [3]).

Maximum accuracy is marked by a dotted horizontal line.

Overall, this univariate gene selection generates comparable

predictive models irrespective of the classification method. More

accurate multivariate models generated by GA-MLHD and BVS

used in this chapter are shown for comparison in red and black

dots. Legends: DLDA - Diagonal Linear Discriminant Analysis,

KNN - K-Nearest-Neighbours, PAMR - Shrunken Centroids,

SOM - Self Organized Maps, and SVM - Support Vector

Machines. See GEPAS [3] for details in F-ratio, error estimation,

and classification methods. Dataset, normal or tumour data, and

class is specified in each plot.

(EPS)

Figure S5 Functional networks representing known
interaction between genes expressed in normal tissue
and selected in the models predictive of capsular
penetration. The figure represents the four most significant

networks selected by the IPA software for the Singh et al. dataset

[4]. Genes represented in the predictive models are represented by

blue shapes. Genes in the networks are arranged by cellular

localization (extracellular, membrane, cytoplasm and nucleus).

(TIFF)

Figure S6 Induction of pro-metastatic cytokines in
RWPE1 cells by Interleukin 1b. The transcriptional response

of normal prostate epithelial cells (RWPE1) was measured with

human Agilent microarrays 6 hours and 24 hours after addition of

100 ng/ml of recombinant human Interleukin 1b (eBioscience,

USA). The experiments were performed three times in different

days. Genes represented in Figure 4A were then tested for

differential expression using a t-test. Only the pro-metastatic

chemokines CCL20 (Panel B) and CX3CL1 (Panel C) were

differentially expressed (**, FDR,1%) at both time points. The

gene LOX was only transiently activated by Interleukin 1b six

hours post exposure (Panel D). Panel A shows the portion of the

network in Figure 4A where genes are differentially expressed in

RWPE1 in response to Interleukin 1b exposure. In this experiment

RWPE1 cells were grown in 0.4% gelatin coated plates, complete

KSFM media supplemented with L-Glutamine, p/s, BPE and

EGF.

(TIFF)

Figure S7 Expression of selected secreted factors and
receptors in Tomlins et al. dataset. Nor, Adj, BPH, PIN,

PCA-Low, PCA-High and Meta samples are described in main

paper.

(TIFF)

Figure S8 Comparison of the expression of selected
secreted factors and receptors in Tomlins et al. dataset.
Panels A-L represents the expression profile (y axis) of a selection

of the genes differentially expressed between all LCM cell

populations (shown as a heat map in figure 5 in main paper).

The different cell populations are arranged along the x axis. Red

close circles represent gene expression levels significantly different

(P,0.01) respect to adj cells whereas blue close circles inside red

circles represent gene expression levels significantly different

(p,0.05) respect to adj cells. Nor, Adj, BPH, PIN, PCA-Low,

PCA-High and Meta samples are described in main paper.

(TIFF)

Table S1 Datasets annotation. As stated, we used approx-

imately the 25% of the database (marked in bold). Overlaps were

estimated by Unigene annotation. Similar results are obtained

using entrez id or gene symbol as shown in columns. 50% Top

genes were estimated relaxing the filter range in both datasets to

25 and 50%.

(DOCX)

Table S2 Significant Networks identified by the Inge-
nuity Pathway Analysis (IPA) software associated to
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models developed using the GA-MLHD procedure. The

table lists the networks identified from the Lapointe et al. [2]

dataset associated to models predictive of tumour capsular

penetration from the molecular profile of normal cells. HCG

Column highlights the network highest connected gene(s) or

complex. Genes in bold were part of the multivariate models used

as input for IPA analysis.

(DOCX)

Table S3 Selected secreted factors and receptors. Genes

obtained in IPA networks and present in Tomlins et al. dataset

were selected. P-Values were estimated using f-test comparing

Nor, Adj, BPH, PIN, PCA-Low, PCA-High and Meta samples as

shown in Figure 5 and Supplementary Figure S6. Some genes are

represented by different probes in the microarray platform used.

Only probes with p-Value ,0.001 were included in Figure 5.

(DOCX)

Table S4 Overlap of the top 50 selected genes in models
using larger datasets for Singh et al. dataset. Numbers in

upper triangular matrix correspond to the number of genes

overlapped. Underlined numbers in lower triangular matrix

correspond to the p-value testing the corresponding overlap

number using a hypergeometric test. All comparisons were

significant at the 0.05 level.

(DOCX)

Table S5 Overlap of the top 50 selected genes in models
using larger datasets for Lapointe et al. dataset. Numbers

in upper triangular matrix correspond to the number of genes

overlapped. Underlined numbers in lower triangular matrix

correspond to the p-value testing the corresponding overlap

number using a hypergeometric test. All comparisons were

significant at the 0.05 level.

(DOCX)
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