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Abstract
Background: The Sulston score is a well-established, though approximate metric for
probabilistically evaluating postulated clone overlaps in DNA fingerprint mapping. It is known to
systematically over-predict match probabilities by various orders of magnitude, depending upon
project-specific parameters. Although the exact probability distribution is also available for the
comparison problem, it is rather difficult to compute and cannot be used directly in most cases. A
methodology providing both improved accuracy and computational economy is required.

Results: We propose a straightforward algebraic correction procedure, which takes the Sulston
score as a provisional value and applies a power-law equation to obtain an improved result.
Numerical comparisons indicate dramatically increased accuracy over the range of parameters
typical of traditional agarose fingerprint mapping. Issues with extrapolating the method into
parameter ranges characteristic of newer capillary electrophoresis-based projects are also
discussed.

Conclusion: Although only marginally more expensive to compute than the raw Sulston score,
the correction provides a vastly improved probabilistic description of hypothesized clone overlaps.
This will clearly be important in overlap assessment and perhaps for other tasks as well, for
example in using the ranking of overlap probabilities to assist in clone ordering.

Background
Fingerprint mapping continues to play an important role
in large-scale DNA sequencing efforts [1-5]. The proce-
dure is challenging in terms of both its laboratory and
computational demands. Indeed, most of the computa-
tional steps involve non-trivial algorithmic aspects. While
reasonable solutions have been found for many of these,
one task that remains particularly problematic is assessing
postulated clone overlaps based on their fingerprint simi-
larity.

The "overlap problem", as this is often referred to, basi-
cally involves examining all pairwise clone comparisons
in order to identify overlaps. For a map consisting of λ
clones, there are Cλ, 2 = λ (λ - 1)/2 such comparisons. In
each one, the number of matching fragment lengths
between the two associated fragment lists is established. A
case having μ > 0 matches indicates a possible overlap
because the mutual length(s) may represent the same
DNA. Lengths are not unique, so such matches are not
conclusive indicators of overlap. Instead, the problem is
largely one of probabilistic classification. One or more
quantitative metrics are used to evaluate the authenticity
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of each such case. For example, an apparent overlap might
be judged against its likelihood α of arising by chance.
Methodologies of varying degrees of rigor have been pro-
posed for this task [6-11]. However, the so-called Sulston
score, or Sulston probability PS has emerged as a de facto
standard [12], in part because of its integration in the
widely-used FPC program [13,14]. A liability of a number
of these methodologies, including PS, is they assume frag-
ment length comparisons are independent when, in fact,
they are not [10,15].

Recently, the exact distribution characterizing the overlap
problem was determined [16,17]. Comparisons reveal
that the assumption of independence is usually a poor
one and that the Sulston score systematically over-predicts
actual overlap probabilities, often by orders of magnitude.
Consequently, a bias arises in projects that utilize PS
(Table 1). One chooses the significance threshold α to
minimize erroneous decisions according to what is pre-
sumed to be the actual probabilistic description of the
problem, PE. The alternative result using the Sulston score
is an overall increase of false-negatives (Case 1). Clones
having significant overlap will still be correctly detected
(Case 3). Moreover, false-positives would not be
increased because PS errs on the conservative side with
respect to non-overlapping clones (Case 6). Miscalls can
obviously be expected when poor values of α are chosen
(Cases 4 and 5). However, if α is set too high, there will
still be circumstantial cases where the correct decision is
made (Case 2). These will presumably be more than offset
by a higher rate of false-positives (Case 4). In summary, PS
is not an especially good discriminant for the overlap
assessment problem.

The drawback of PE is that it is rather difficult to compute
and cannot be used directly in most cases. For example,
current resources are not sufficient to evaluate it for most
BAC comparisons or for capillary-based fingerprinting
[18]. A suitable method of approximating PE is therefore
required. Here, we propose a straightforward correlation-
based approach that derives correction factors for the Sul-
ston score. This procedure dramatically increases accuracy
without incurring much additional computational effort.

Results
The overlap problem is formally cast in terms of two
clones having m and n "bands", respectively, where m ≥ n.
Each band represents an individual clone fragment, with
its position on a gel image providing an estimate of the
fragment's length. Multiple bands of roughly the same
length often appear. Finite measurement resolution ± R
allows an image of length L to be subdivided into t = 0.5
L/R discrete bins. The Sulston score PS = PS (μ, m, n, t) is
taken as a provisional estimate of the probability that at
least μ fragment matches between the two clones arise by
chance. Note here that the variables (μ, m, n) correspond
to (M, nH, nL), respectively, in notations used by the FPC
program [14]. The corresponding exact probability is PE =
PE (μ, m, n, t), as given in refs. [16,17]. We formulate a cor-
rected value, PC, that can be both efficiently calculated and
that gives substantially better estimates of PE than the Sul-
ston score, i.e. |PE - PC| << |PE - PS|.

The simple log-log plot in Fig. 1 shows good correlation
(Pearson's coefficient of ρ ≈ 0.9938), suggesting that
standard regression might be a reasonable basis for correc-
tion. Note the characteristic over-prediction of PS. (Points
representing the exact probability consistently fall below
the hypothetical line of agreement between PS and PE.)
These particular data are computed for t = 236, which
describes traditional settings for fragment length measure-
ments and comparisons, i.e. ± 7 pixels over a 3300 pixel
gel image [13,19]. Considerations of coverage usually dic-
tate a large number of clones in a map [2], so that values
substantially above 10-7 are not usually of interest [20].
The data range over 0 ≤ μ ≤ n for a number of different fin-
gerprint comparison sizes: 2 ≤ n ≤ m for 5 ≤ m ≤ 12, 2 ≤ n
≤ 10 for m of 13 and 14, 2 ≤ n ≤ 9 for m of 15 and 16, 2 ≤
n ≤ 8 for m of 17 and 18, and finally 2 ≤ n ≤ 7 for 19 ≤ m
≤ 25. The exact solution becomes difficult to evaluate
beyond these ranges using readily-available resources.
Specifically, the computational effort increases according
to a factor that exceeds m!/(m - n)! [17].

Correlation in Fig. 1 is clearly not perfect. Specifically, the
points show some amount of lateral scatter. Accuracy of
the correction can be further enhanced to the degree that

Table 1: Types of decisions for the biased Sulston score

Case Scores Overlap Tuning of α Decision Based on PS

1 PE <α <PS Yes Correct Wrong (False-Negative)
2 PE <α <PS No Too High Circumstantially Correct
3 PE <PS <α Yes Correct Correct
4 PE <PS <α No Too High Wrong
5 α <PE <PS Yes Too Low Wrong
6 α <PE <PS No Correct Correct
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dispersion within the window can be minimized. Here,
we can apply a simple power-law data reduction model to
obtain a transformed Sulston score

The four power values can be chosen empirically such that
the data locally collapse into a more highly correlated set.
For example, selecting (v, ξ, η, ζ) = (1.2,4,0.8,-3.4) in Eq.
1 leads to the curve-fit

and the associated Pearson's coefficient ρ ≈ 0.9980.

Discussion
We propose Eqs. 1 and 2 as a correction to the standard
Sulston score for typical fingerprint mapping conditions
[13,19]. Although shown as two separate equations so as
to clarify the concept, these can clearly be combined into
a single equation for actual computations. Pearson's coef-
ficient is not especially sensitive to the parameters in Eq.
1 and there are many combinations of (v, ξ, η, ζ) that ele-
vate ρ into the ~0.998 range. Other methods for reducing
the data do not perform as well as the model in Eq. 1. For
example, standard dimensional analysis [21], which
involves correlating variables such as PE/PS, m/n, and μ/n,
cannot adequately resolve the fact that values of the indi-
vidual variables relative to one another remain important.

Accuracy assessment
Eqs. 1 and 2 are obviously straightforward to compute,
leaving the question of just how much error reduction is

actually realized over the un-adjusted Sulston score. This
can be quantified with a simple metric. For the Sulston
score, the error is taken as ES = |PE - PS|/PE. Error for the
corrected result, EC, is calculated similarly.

A size-selection step is part of most library-construction
protocols, meaning that the variance of clone sizes will be
limited to some degree. Consequently, many clone-clone
comparisons will involve similar, though not necessarily
equal numbers of fragments. Fig. 2 shows a comparison of
error rates for the raw Sulston score and the corrected
score in Eq. 2 for m/n ≤ 1.3. That is, we compare clones
whose numbers of fragments in their respective finger-
prints are within 30% of one another. The figure also
shows the error rate for the un-reduced data, i.e. for a
regression equation that does not use the preliminary
processing given by Eq. 1.

The Sulston score shows an increasing error as the accept-
ance threshold is tightened (lowered). Maximum values
for the threshold are typically in the neighborhood of 10-

7 [20], for which PS over-predicts by about one order of
magnitude. For threshold parameters around 10-19, Sul-
ston over-prediction is about 4 orders of magnitude.
While Eq. 2 shows significant local variation, the overall
trend is much more constant and its error is appreciably
smaller. Correction on un-reduced data also shows better
accuracy than the raw Sulston score, being roughly as
good as Eq. 2 up to about 10-12. It diverges beyond this
point and eventually shows about the same level of error
as the raw Sulston score. The combined correction proce-
dure of Eqs. 1 and 2 appears to provide the best fidelity
over the widest range.

P P m nT S= ν ξ η ζμ . (1)

P PC T≈ 9 855 1 171. . (2)

Error characterization for clones with similar numbers of fin-gerprint bandsFigure 2
Error characterization for clones with similar numbers of fin-
gerprint bands.
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Sampling of exact probability versus Sulston score for t = 236Figure 1
Sampling of exact probability versus Sulston score for t = 
236.
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Comments on uncertainty
A simple correction of the type we propose here obviously
cannot capture all the complexities inherent in the exact
distribution. This results in a scatter of the data that can-
not be completely eliminated, for example as illustrated
in Fig. 1. This scatter is a primarily function of m/n, rather
than individual values of m and n. For instance, log-log
regression of data restricted exclusively to m = n returns a
Pearson's coefficient of ρ ≈ 0.9998 without any sort of pre-
liminary data reduction. Of course, such a correlation
would not be generally applicable to realistic clone librar-
ies and maps.

Eq. 2 is based on the limited set of data described above.
Applying it outside this set necessarily involves a degree of
extrapolation, which raises two types of uncertainty. First,
large m/n ratios contribute to scatter, but such extrema
only emerge for cases involving sufficiently large differ-
ences between m and n. Eq. 2 accounts for data up to m =
25 with a maximum ratio of m/n of about 4. In the context
of averages, this implies a comparison of two clones
whose sizes differ by a factor of four. While there is the
possibility of even greater disparities, such cases will be
comparatively rare in general because of size-selection
steps executed during the library-construction phase. For
example, in the Human Genome Project RPCI-11 library,
about two-thirds of the BAC clones were concentrated
between 150 and 200 kb [22], for which the maximum m/
n would be roughly 1.3. Most comparisons would be
somewhat closer to one. Only about 2.5% of the library
resided in each of the < 100 kb and > 250 kb ranges. This
means that fewer than 0.1% of the comparisons will
involve uncharacteristically large m/n ratios. Conse-
quently, we do not view this type of uncertainty as being
particularly significant.

The larger issue in our opinion arises for comparisons that
extend beyond (lower than) the 10-19 threshold tolerance.
While minor extrapolation of a few orders of magnitude is
probably not worrisome, some projects utilize substan-
tially lower tolerances. For example, Luo et al. [18] and
Nelson et al. [23] report values on the order of 10-30 and
10-45, respectively, when using capillary electrophoresis.
Other techniques, such as the traditional double-digest,

can also generate higher numbers of fragments, which
may require reduced thresholds. The fidelity of Eq. 2 for
such cases is not clear. For example, in the data set shown
in Fig. 1, larger m/n values are under-represented at the
lowest scores. Because loci for larger m/n values do not
slope as steeply as those for smaller ones, the trend shown
in the figure may not continue in the exact same manner
for values well below 10-19. We can only observe that the
corrected score will still be the significantly more accurate
choice as compared to the raw Sulston score because the
assumption of independent fragment comparisons is
increasingly untenable. Characterizing the exact solution
in this range requires computations considerably larger
than what can readily be made at present.

Conclusion
We have calibrated Eq. 2 according to the traditional
parameters used in the FPC mapping program [13]. Simi-
lar corrections can readily be constructed for different
parameters. For example, protocols and software sizing
methods now allow for band resolutions higher than the
customary value of t = 236. Table 2 shows correction
parameters for several such cases. Similarity of the correla-
tion coefficients suggests that results would be compara-
ble to that shown in Fig. 2. Although the accuracies
derived from this approach are probably acceptable in the
correlation range, they could, in principle, be further
increased by using multiple corrections calibrated for spe-
cific "bins" of the m/n parameter.

Clone overlap assessment is sometimes framed as a statis-
tical testing problem [10]. Here, α is the probability of
erroneously concluding that two clones overlap, when in
fact they do not. (This casually implies that α Cλ, 2 false
positives can be expected for a project containing λ
clones.) Consequently, corrections are most immediately
relevant in the neighborhood surrounding α (Table 1).
The overlaps here are the most valuable to detect in the
sense that they are the smallest, and consequently contrib-
ute most effectively to a minimum tiling path [8]. A large
fraction of the comparisons will be either far above or
below the threshold, so their assessments will not ulti-
mately be affected. However, correction is still important
for these cases. For example, Branscomb et al. [8] have

Table 2: Correction parameters for various gel resolutions (bin numbers)

bins data reduction (Eq. 1) fit (Eq. 3) correlation

t v ξ η ζ β φ ρ

236 1.2 4 0.8 -3.4 9.855 1.171 0.9980
300 1.2 4.2 0.7 -3.2 5.070 1.144 0.9982
350 1.4 4.2 0.8 -3.2 4.908 0.956 0.9982
400 1.4 4.2 0.7 -3.2 5.711 0.944 0.9983
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pointed out that the ability to accurately rank all overlaps
according to their associated probabilities is useful in the
assembly phase of mapping.

Ascertaining the degree to which a particular mapping
project would actually be improved by using Sulston score
correction is difficult. Aside from the usual factors that
complicate comparisons [24], there are special considera-
tions for this kind of evaluation. For example, established
Sulston-based mapping projects may have obtained their
best results using threshold values that would not neces-
sarily be considered "correct" from the standpoint of the
exact probability distribution (Table 1). Biologists have
historically viewed selection of the Sulston threshold to
be a non-trivial, library-dependent problem and often
resort to empirical sampling and iteration [25,26]. Conse-
quently, one probably cannot obtain an objective com-
parison by just replacing PS with PC for these cases.
Another avenue, perhaps more pragmatic, would be to
assess corrections on a simulated project. For example,
digesting finished sequences in silico [27] enables one to
use the resulting simulated fingerprints to see how well a
map could be reconstructed. Several variations on this
method are possible [28,29]. Of course, use of correction
for new projects is certainly recommended.

Other issues remain unresolved. With the exception of the
conditional nature of match trials, the correction in Eq. 2
is based on the same set of assumptions as the Sulston
score. Neither consider, for example, possible non-IID
distribution of fragment lengths or length-dependent
measurement accuracy. Consequently, we feel that the
simple correction procedure proposed here represents a
reasonable, though admittedly provisional advance in
DNA mapping methodology.

Methods
Parameters in Eq. 1 were chosen empirically to minimize
dispersion (maximize Pearson's coefficient) over a scoring
range of roughly 10-7 to 10-19. The former is often the max-
imum value used in a mapping project and is dictated by
the need to limit false-positive overlap declarations for the
associated libraries, which are typically quite large [20].
The latter is set by computational limitations.

Correction of a probability score PT is implemented as a
so-called "power-law" algebraic expression

where φ and β are regression constants. Eq. 3 can be trans-
formed into log-log form as

ln PC = ln β + φ ln PT. (4)

Standard linear regression [30] can be used to determine
φ and β in this equation. Specifically, we analyze the trans-
formed system (x', y') = (ln PT, ln PC) to obtain the slope s
and y-intercept yo of the straight-line equation y' = sx' + yo.
The desired correction in Eq. 3 is then recovered by substi-
tuting φ = s and β = exp(yo).
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