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Genetic and neuronal mechanisms governing the
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Animals execute one particular behavior among many others in a context-dependent manner,

yet the mechanisms underlying such behavioral choice remain poorly understood. Here we

studied how two fundamental behaviors, sex and sleep, interact at genetic and neuronal

levels in Drosophila. We show that an increased need for sleep inhibits male sexual

behavior by decreasing the activity of the male-specific P1 neurons that coexpress the sex

determination genes fruM and dsx, but does not affect female sexual behavior. Further, we

delineate a sex-specific neuronal circuit wherein the P1 neurons encoding increased courtship

drive suppressed male sleep by forming mutually excitatory connections with the

fruM-positive sleep-controlling DN1 neurons. In addition, we find that FRUM regulates male

courtship and sleep through distinct neural substrates. These studies reveal the genetic and

neuronal basis underlying the sex-specific interaction between sleep and sexual behaviors in

Drosophila, and provide insights into how competing behaviors are co-regulated.
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A fundamental tenant of biology is that organisms sense
their environment, and, in response to sensory inputs,
alter their physiology and behavior in ways that may be

beneficial to the organism1. When an organism is faced with
more than one stimulus in the context of distinct behavioral
states, multiple decision-making processes are involved in making
appropriate behavioral choice1, 2. Behavioral choice in the context
of internal state and external stimuli has been studied in both
invertebrates and vertebrates3, 4, but how competing behaviors
interact at the genetic and neuronal levels to ensure appropriate
decision-making is still poorly understood.

Drosophila melanogaster, like other animals, engages in
adaptive innate behaviors such as reproduction and sleep, and the
molecular and neuronal mechanisms underlying these behaviors
have been intensively studied for decades (see reviews on
courtship5–7 and sleep8–11). In males, the courtship behavior is
largely controlled by the fruitless (fru) and doublesex (dsx) genes.
The male-specific proteins (FRUM) derived from the P1 promoter
of the fru gene (fruM) are necessary for innate courtship, and are
sufficient for some aspects of courtship12–14. The sex-specific
products of the dsx gene (DSXM in males and DSXF in females)
are involved in experience-dependent courtship in the absence of
FRUM 15, and courtship intensity and sine song production in the
presence of FRUM 16–18. FRUM and DSXM are expressed in a
dispersed subset of ca. 2000 and 700 neurons, respectively, which
partially overlap13, 14, 19–22.

In the last two decades Drosophila has emerged as a promising
model to study the molecular and circuit basis of sleep regulation.
Many efforts have been made to identify the neuronal substrates
controlling sleep behavior in flies, e.g., the mushroom bodies23, 24,
mushroom body output neurons25, the Fan-shaped body26, and
the DN1 circadian clock neurons27. Although sleep is a sexually
dimorphic behavior28, 29, the sex-specific mechanisms of sleep
regulation remain unknown.

Using the amenability of Drosophila as a model system for
genetic, behavioral, and physiological approaches, we sought to
explore the interaction, at various levels, between sexual and sleep
behaviors, in order to understand how these competing behaviors
are co-regulated to ensure appropriate behavioral choice.

In this study, we show that sleep and sexual behaviors interact
in a sex-specific manner. Sleep-deprived male flies display reduced
courtship to females, but sleep-deprived female flies are equally
receptive to courting males. Furthermore, sexually aroused males
have poor sleep, but aroused females sleep more. We further
identify the neural substrates involving the male-specific fruM-
expressing P1 neurons and dsx-expressing P1 neurons30 and fruM-
expressing DN1 neurons31, 32 that control such sex-specific
interaction between sex and sleep. Specifically, we find that the
male-specific P1 courtship command neurons are inhibited by
sleep deprivation (SD), and they control sleep in male flies by
forming mutually excitatory synaptic connections with sleep-
regulating DN1 neurons. Our studies also identify the key genes
that control sexually dimorphic sleep behavior in male and female
flies paving way for future studies. Together, our results provide a
novel framework for investigating genetic and neuronal mechan-
isms governing the interaction between sleep and sexual behaviors.

Results
SD inhibits male courtship. To determine whether sleep and
sexual behavior in flies influence one another, we first asked
whether SD alters the display of sexual behaviors. Wild-type
Canton-S male and female flies were sleep-deprived by
intermittent mechanical perturbation33, and then assayed for
male courtship (Fig. 1a) and female receptivity (Supplementary
Fig. 1), respectively. As reported in a recent study34, we found

that wild-type male flies that were sleep-deprived by mechanical
perturbation for 12 h during nighttime (ZT12 to ZT0 of the
subsequent day, ZT0 is lights-on, and ZT12 is lights-off in 12
h:12 h light:dark condition) do not show obvious courtship
deficits (Fig. 1a). However, we found that courtship by male flies
that were sleep-deprived for the same amount of time (12 h), but
from ZT16 to ZT4, was significantly reduced (Fig. 1a). Further-
more, SD of males for 16 h, either from ZT8 to ZT0 or from ZT12
to ZT4, severely impaired male courtship (Fig. 1a). Males that
were sleep-deprived for 16 h have reduced walking speed
indicative of increased sleep need, but they do move around
during the 10-min test (Supplementary Fig. 2). These results
indicate that both duration and time-of-day when male flies
are sleep-deprived play a critical role in sleep-loss-induced
courtship deficits.

To investigate whether SD-induced courtship deficit in male
flies is a general effect of mechanical perturbation, we deprived
males of sleep for 8 h from ZT20 to ZT4, using the same amount
of mechanical perturbation with the above 16-h SD (30 s/min
shaking for 8 h vs. 15 s/min shaking for 16 h). The 16-h SD
severely reduced male sleep and induced sleep rebound after
SD (Fig. 1b, c); in contrast, the 8-h SD reduced sleep but did not
induced sleep rebound (Fig. 1d, e). Consistent with this, the 8-h
SD male flies court much more than the 16-h SD male flies
(Fig. 1f). These data suggest that it is the prolonged sleep loss,
rather than other possible effects of mechanical perturbation, that
impairs male courtship.

Unlike males, pre-mating behaviors in females are less
demanding and include slowing down and stopping to allow
copulation. In contrast to the above results in males, wild-type
females that were sleep-deprived for 12 (ZT16 to ZT4), 16 (ZT12
to ZT4), or 20 (ZT8 to ZT4) hours did not significantly reduce
their receptivity to courting males (Supplementary Fig. 1). Taken
together, these results indicate that SD suppresses sexual behavior
in male flies, but not in female flies.

Sex-promoting neurons regulate sleep. To further address the
relationship between sleep and sex, we asked whether
manipulating neurons that involved in sexual behaviors would
affect sleep in either sex. It has been shown that a subset of
fruM- and dsx-expressing neurons, termed P1 neurons, promotes
male sexual behavior by integrating chemosensory
information35–40. More recently, P1 neurons have also been
implicated in aggression41, 42. Thus, we tested whether activating
or inhibiting P1 neurons directly influences sleep. We first used
an intersectional strategy (Fig. 2a) to specifically express the
temperature-sensitive cation channel dTRPA1 in P1 neurons as
previously described (LexAop2-FlpL/R71G01-LexA;UAS>stop>
dTrpA1/dsxGAL4)37. Male flies sleep less at 28.5 °C (when P1
neurons are activated) than at 21.5 °C, while control males lack-
ing R71G01-LexA(LexAop2-FlpL/+; UAS>stop>dTrpA1/dsxGAL4)
sleep the same amount at 28.5 and 21.5 °C (Fig. 2b, c). The sleep
reduction in P1-activated male flies is not due to changes in
general locomotor activity, as the experimental and control
genotypes are equally active while awake (Supplementary Fig. 3).
Detailed analysis revealed that P1-activated male flies sleep less
during both daytime and night, and they have increased
number of sleep bouts and decreased sleep bout duration,
indicative of sleep fragmentation (Supplementary Fig. 3). A
second intersectional genetic strategy to target P1 neurons using a
split-GAL4 line (R15A01-AD; R71G01-DBD; Fig. 2e)41 similarly
results in decrease in sleep when P1 neurons are conditionally
activated (Fig. 2f).

Since activation of P1 neurons decreases sleep and increased
arousal in male flies, we wanted to determine whether P1 activity
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also has a role in the maintenance of baseline sleep. To assess this,
we used the same intersectional strategy to express tetanus toxin
light chain (TNT) to block synaptic transmission from P1 neurons
(LexAop2-FlpL/R71G01-LexA; UAS>stop>TNT/dsxGAL4). Male
flies expressing active TNT sleep significantly more as compared
to control males expressing an inactive version of TNT
(TNTin; Fig. 2b). To induce inhibition of P1 neurons condition-
ally, we also measured sleep in male flies expressing Shibirets1

(temperature-sensitive mutation of the Drosophila gene encoding
a Dynaminorthologue)43 driven by the P1-splitGAL4 at 29.5 and
21.5 °C. Control flies showed a decrease in sleep at 29.5 °C, which
was suppressed in flies expressing Shibirets1 in P1 neurons
(Fig. 2g). These results show that inhibition of P1 neurons
promotes sleep. Together, these results clearly indicate
that activation of sex-promoting P1 neurons suppresses
sleep in male flies, while inhibition of P1 neurons increases sleep
in males.

It was recently reported that two subsets of dsx-expressing
neurons (pC1 and pCd, Fig. 2a) promote female receptivity44. To
determine whether, like in males, sex-promoting neurons
influence sleep in females, we assayed sleep in female flies with
altered activity of pC1 and/or pCd neurons. We found that
females sleep modestly more when pC1 neurons, but not pCd,
were activated (Fig. 2d). Activating pC1 and pCd neurons
together also increased female sleep by a small amount. However,
blocking synaptic transmission from pC1 or pCd neurons did not
affect female sleep. These results suggest that, unlike males,
increase in female receptivity induced by pC1 and pCd activation
does not suppress sleep.

Activity-dependent regulation of courtship and sleep by P1. To
further study how P1 neurons regulate courtship and sleep in
males, we used different temperatures (25.5, 27, 28.5, and 30 °C)
to obtain differential activation of P1 neurons, and assay male
courtship (wing extension in solitary males) and sleep.
Interestingly, we found that P1 activation driven by the splitGAL4
at 27, 28.5, and 30 °C inhibits male sleep at similar levels
(Fig. 3a–d), while activation at 28.5 and 30 °C, but not 27 °C,
induces wing extension (Fig. 3i–k). We used the other P1
intersectional driver (LexAop2-FlpL/R71G01-LexA; UAS>stop>
dTrpA1/dsxGAL4) and found the same phenotype, except that P1
activation at 27, 28.5, and 30 °C inhibits male sleep at different
levels (Fig. 3a–d), which may be due to different populations
and/or numbers of P1 neurons targeted by these two methods.
These results clearly demonstrate that a lower level of P1
activation is sufficient to inhibit sleep, but a higher level of
P1 activation is required for courtship promotion.

As the locomotor activity measured in the beam assays used for
sleep analysis is not very sensitive to changes in velocity, we
analyzed the locomotor activity of single flies during P1 activation
using video recordings over 24 h. We found that P1 activation
using the above two drivers at 27 °C slightly increases velocity by
~50% (Fig. 3m), indicative of sleep inhibition, while P1 activation
at 28.5 and 30 °C dramatically increases velocity by over five
times (Fig. 3m), indicative of increased courtship drive.

ACh release by P1 neurons is required for sleep regulation. The
above results indicate that P1 neurons inhibit male sleep, but we
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still do not know the neurotransmitter that P1 neurons
release to regulate sleep. Thus, we selectively knocked down
neurotransmitters using RNA interference (RNAi) in P1 neurons
while activating these neurons via dTRPA1. Activating P1 neu-
rons alone (UAS-dTrpA1/+; P1-splitGAL4/+) severely reduced

male sleep, but independently knocking down three genes (Nsf2,
Syx8, and unc-13), which are known to be required for neural
transmission, in P1 neurons fully restores male sleep (Fig. 4a).
Furthermore, knocking down acetylcholine (VAChT and Ace),
but not serotonin (Trh), dopamine (DAT and Ddc), octopamine
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(Tdc2), glutamate (VGlut), or GABA (Gad1, Gat, and VGAT),
fully restores sleep in P1-activated male flies (Fig. 4a, b). We tested
the efficacy of the RNAi reagents targeting the cholinergic system
by measuring relative mRNA levels in flies expressing Ace- and
VAChT-RNAi using ubiquitous promoter Act5C-Gal4 (Supple-
mentary Fig. 4). Intersectional labeling of fruLexA and neuro-
transmitter GAL4 lines (cha-GAL4 for acetylcholine, Trh-GAL4
for serotonin, ple-GAL4 for dopamine, Tdc2-GAL4 for octopa-
mine, and dVGAT-GAL4 for GABA, Supplementary Fig. 5) indi-
cates that the male-specific P1 neurons are indeed acetylcholine-
positive (Fig. 4c, d), consistent with a previous study using anti-
body (anti-Cha) staining of dsx-expressing neurons44. Thus, we
conclude that acetylcholine release from P1 neurons is required
for sleep regulation in males, although the direct synaptic target of
P1 neurons that mediates sleep in males is still unknown.

P1 neurons regulate sleep through fruM-positive DN1 neurons.
We hypothesized that the activation of P1 neurons might
function through known sleep circuitry to suppress sleep. To test

this hypothesis, we performed “neuronal epistasis” experiments in
which we simultaneously activated P1 neurons with dTRPA1and
blocked synaptic outputs of candidate downstream sleep-
regulating neurons with Shibirets1 (Fig. 5a, b). We selected a set
of LexA driver lines (Supplementary Fig. 6) targeting candidate
neurons that have been shown to be involved in sleep: mushroom
body Kenyon cells (R14H06-LexA, R35B12-LexA, and R44E04-
LexA), mushroom body output neurons (R12C11-LexA, R14C08-
LexA, R24H08-LexA, R25D01-LexA, and R71D08-LexA), PAM
dopaminergic neurons (R58E02-LexA), fan-shaped body neurons
(R23E10-LexA and R84C10-LexA), and DN1 circadian clock
neurons (R18H11-LexA). Blocking synaptic outputs of any of
these neurons with Shibirets1 does not significantly affect sleep
(Fig. 5b), although activating many of these neurons affects
sleep26, 27. This could be a result of basal activity of these neurons
already being relatively low, as has been observed for other sleep-
regulating neurons33, or differences in strength of expression of
driver lines.

On the basis of this screen of putative downstream effectors of
P1 neurons, we find that silencing specifically the synaptic
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outputs of a subset of dorsal clock neurons: DN1 neurons
partially reverses the sleep deficit induced by activating P1
neurons (Fig. 5d), suggesting that P1 neurons suppress sleep at
least in part by activating DN1 sleep-regulating circadian clock
neurons. These sleep changes are not due to differences of general
locomotor activity between the permissive (21.5 °C) and restric-
tive (29.5 °C) temperatures (Supplementary Fig. 7).

DN1 neurons express FRUM and regulate courtship activity
rhythms31. Furthermore, DN1 neurons are known to suppress
sleep through secretion of the wake-promoting neuropeptide
diuretic hormone 31 (Dh31)27. Functional imaging of DN1
neurons using genetically encoded fluorescent voltage indicator
reveals that the Dh31-expressing DN1s are electrically active
before dawn (ZT 22) as compared to late in the day (ZT10),
supporting the hypothesis that DN1 activity awakens the fly27.
We also tested whether the P1-DN1 circuit mediates courtship by
activating P1 neurons and inhibiting DN1 neurons as described
above and found that, unlike sleep, P1 activation-induced
courtship behaviors were not suppressed by DN1 inhibition
(Supplementary Fig. 8).

Following up on the neuronal epistasis experimental results
and a role for P1-DN1 circuit in sleep suppression, we sought to

determine whether the DN1 clock neurons are synaptically
downstream of P1 neurons. Double-labeling (data not shown)
and brain registration (Fig. 5e and Supplementary Movie 1) of
DN1 and P1 neurons suggest that DN1 neurons are not directly
connected with P1 neurons. Indeed, there is no GRASP
(GFP reconstitution across synaptic partners)45 signal between
DN1 and P1 neurons (Fig. 5f), suggesting indirect polysynaptic
connection or no connection between P1 and DN1 neurons. To
test the possibility of indirect poly-synaptic connectivity, we
transiently activated P1 neurons and recorded Ca2+signals from
DN1 neurons. We found that activation of P1 neurons expressing
ATP-dependent depolarizing ion channel P2X2

46 with a puff of
10 mM ATP induced robust calcium responses in the cell
bodies and projections of DN1 neurons (R18H11-LexA/
LexAop2-GCamp6m; R15A01-GAL4/UAS-P2X2; Fig. 6a–c
and Supplementary Movie 2). DN1 calcium responses were
not observed in brains that lack P2X2 expression in P1
neurons (R18H11-LexA/LexAop2-GCamp6m; R15A01-GAL4/+,
Supplementary Movie 3). These results demonstrate that
DN1 neurons are indeed synaptically downstream of P1 neurons
and, based on the above anatomical evidence, this synaptic
connectivity is indirect.

We tested whether the DN1 neurons feedback into the P1
neuronal cluster and found that activating the DN1 neurons
activates the P1 neurons measured by an increase in Ca2+

response (Fig. 6d–f and Supplementary Movie 4), which may
be a mechanism for rhythmic control of courtship by DN1
neurons reported previously31, although we found that activating
DN1 neurons via dTRPA1 does not significantly change
courtship (Supplementary Fig. 8). These data provide direct
evidence for mutually excitatory interactions between DN1 and
P1 neurons that support a positive feedback circuit model
that likely underlies persistence of arousal states associated with
sleep-suppression and courtship. Thus, the reciprocal
interactions between P1 and DN1 neurons link the sleep and
courtship drive and are critical to the behavioral choice.
On the basis of the above results we propose that activity of P1
neurons is directly influenced by the sleep-controlling DN1
neurons and that P1 activity is central to the sleep–sex behavioral
switch.

P1 activity is suppressed by SD. To test whether the activity of
P1 neurons is directly modulated by sleep need, we directly
measured spontaneous neural activity of these neurons in
sleep-deprived and sleep-replete flies as described33. We
expressed the genetically encoded fluorescent voltage indicator
ArcLight47 using the above P1-splitGAL4 driver, and imaged
spontaneous activity of the lateral junction region of P1 neurons
in males (Fig. 7a). We found that P1 activity is significantly
reduced in SD males as compared to sleep-replete controls that
were imaged in parallel (Fig. 7b, c). We also analyzed these results
using comparisons between peak or maximal ΔF/F0 and found
significant differences (Supplementary Fig. 9). Furthermore, wing
extension by P1-activated males is significantly reduced by SD
(Supplementary Fig. 10). These data strongly support the
observation that SD males have reduced courtship possibly
resulting from diminished activity of the P1 courtship command
neurons. Furthermore, activating P1 neurons with dTRPA1 in SD
males restores male courtship (Fig. 7d). These data further
support the hypothesis that reduced activity of DN1 neurons27 in
sleepy males reduces excitatory input into P1 neurons, thereby
preventing the flies from engaging in wake-associated social
behaviors. As P1 neurons receive inputs from multiple sensory
inputs, it is likely that sleep deprivation also modulates activity of
non-DN1 inputs into the P1 neurons. Thus, P1 neurons regulate
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male courtship by integrating external courtship stimuli and
internal sleep needs.

Sex-specific control of sleep by fruitless and doublesex. The
above results indicate that selection of sleep and sexual behaviors
is sexually dimorphic, but we also note that the sleep or sexual
behaviors per se are sexually dimorphic. Further, P1 and DN1
neurons identified in regulation of the behavioral choice between
sleep and courtship express sex-specific genes fruM and/or dsx. To
elaborate the role of these genes in behavioral choice, we sought
to understand the role of sexually dimorphic genes in individual
behaviors. Although it has been well studied how fruM and dsx
control sex-specific sexual behaviors, whether they also control
sex-specific sleep is unclear.

Male flies sleep more than females28, 29. We investigated
whether such sexually dimorphic sleep amounts of male and
female flies are controlled by the sex determination master gene
transformer (tra), and its two downstream target genes fruM and
dsx48, 49 (Fig. 8a). Knockdown of tra in the nervous system using
pan-neuronal c155-GAL4 to drive expression of RNAi from UAS-
traIR increases female sleep to match that of male flies, while
parental control females (c155/+and UAS-traIR/+) sleep sig-
nificantly less than males of the same genotype (Fig. 8b, c). This
indicates that sexually dimorphic sleep quantity is indeed
controlled by the sex determination pathway.

We then tested the role of the dsx and fruM branches in sleep
regulation. We found that females expressing RNAi targeting dsx
pan-neuronally (c155>UAS-dsxIR) sleep even slightly more than
males of the same genotype, while parental control females sleep
less than males (Fig. 8b, c). We also found that females pan-
neuronally expressing microRNAs targeting fruM50 (c155>UAS-
fruMi) sleep as much as males of the same genotype, while
control females expressing a scrambled version (UAS-fruMiScr)
sleep less than males (Fig. 8b, c). These results further support the
role of sex determination genes in regulating sleep.

To further investigate how dsx and fruM regulate sexually
dimorphic sleep, we tested multiple combinations of dsx and fruM

alleles. We found that for two dsx null genotypes (dsx683–7058/
dsx1649–9625 and dsx683–7058/dsxM+R15), and a masculinized line
(dsx683–7058/dsxM) that expresses dsxM regardless of sex, the
amounts of male sleep are similar to parental control males
(Fig. 8d); but the amounts of female sleep are significantly greater
than in parental control females (Fig. 8e). Furthermore, the
increment of sleep in dsx null females is specific to daytime sleep,
which contributes to the majority of sexual dimorphic sleep
(Supplementary Fig. 11). In contrast, for all five fruM null
genotypes we tested, the amounts of male sleep are significantly
lower than that in parental control males (Fig. 8f), while the
amounts of female sleep are similar to what is observed in
parental control females (Fig. 8g). The decrement of sleep in fruM

null males is not specific to daytime or nighttime (Supplementary
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Fig. 12). Taken together, we conclude that DSXF in females
inhibits specifically daytime sleep, while FRUM in males promote
sleep during both daytime and nighttime. However, FRUM is not
sufficient to affect sleep in the presence of DSXF, as females
expressing ectopic FRUM (and have DSXF) sleep similarly to
control females.

FRUM differentially regulates courtship and sleep. It has been
proposed that FRUM specifies a neuronal circuitry that is dedi-
cated for male courtship behavior13, 14. As we found that FRUM

also regulates male sleep, we set out to identify the neuronal
substrates where FRUM functions to mediate sleep. We used the
microRNA, as mentioned above, to target fruM in subsets of fruM

neurons, and a scrambled version as control. Knockdown of
FRUM in all fruM neurons (fruGAL4) significantly decreases male
sleep, but driving the microRNA in glia cells (repo-GAL4), or a
subset of P1 neurons (R71G01 and R15A01), that are crucial for
male courtship, did not affect male sleep (Fig. 9a, b). Knockdown
of FRUM in all dsx neurons (dsxGAL4) only slightly altered male
sleep (reduced by ~6%, Fig. 9a, c). However, we observed sig-
nificant decrement of male sleep when knocking down FRUM in
MB Kenyon cells (R13F02, R19F03, and R76D11, Fig. 9a, d, e), or
DN1 neurons (R18H11, Fig. 9a, f), all of which express FRUM

(Supplementary Fig. 13). These sleep changes are not due to
general locomotor activity differences as indicated by activity
during the wake phase (Supplementary Fig. 14).

On the basis of our neuronal epistasis and functional imaging
experiments, the DN1 neurons seem critical to the male-specific
sex–sleep selection mechanism. We investigated the precise
mechanism by which FRUM regulates sleep in the DN1 neurons.
We recently found that the neuropeptide Dh31 functions in
DN1 neurons to regulate fly sleep27, thus we asked whether

FRUM might regulate sleep through Dh31 in DN1 neurons. We
tested sleep in males with FRUM knocked down in DN1 neurons
(R18H11/UAS-fruMi) in the background of Dh31 mutants.
We found that FRUM-mediated sleep loss is dependent on
Dh31, as a single copy of a Dh31 allele (Dh31KG09001) already
attenuates the sleep loss, and a combination of Dh31 alleles
(Dh31KG09001/Df(Dh31)) almost abolishes the sleep loss
(Fig. 9a, g). Thus, FRUM promotes male sleep in DN1 neurons
by regulating Dh31 levels and/or secretion.

To investigate how FRUM regulates both male courtship and
sleep, we then tested courtship behavior of the above FRUM

knocked down males, and found that knocking down FRUM in
dsx-expressing neurons severely impairs male courtship, but
knocking down FRUM in MB neurons or Dh31-expressing DN1
neurons does not affect male courtship (Fig. 9h). Thus, FRUM

functions in distinct neural substrates to regulate male courtship
(e.g., fruM and dsx overlapping P1 neurons) and male sleep (e.g.,
MB and DN1 neurons).

Discussion
Neural networks integrate external sensory cues, past experience,
and internal states to control key behavioral decision-making.
How these neural networks support behavioral choice critical for
reproduction and survival at both the individual and species level
is poorly understood. Here we focused our attention on
identifying and characterizing the molecular and neural basis of
reciprocal control of sleep and reproductive behaviors. The
neuronal mechanism we have uncovered involves the P1 neurons
implicated in courtship decision-making and the DN1 neurons, a
part of the core clock and sleep circuit in suppressing sleep.
Recently, the activity of P1 neurons was shown to be modulated
by excitatory and inhibitory inputs from gustatory and olfactory
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systems and thus processing multisensory information control-
ling behavioral output relevant to male courtship39, 40. In addi-
tion to the gustatory and olfactory input into the P1 neurons, a
subset of dopaminergic neurons in the anterior superior medial
protocerebrum has also been implicated in modulating P1
activity51. Interestingly, the dopamine activity and its influence
on P1 neurons are dependent on mating history. P1 activity is
also modulated by housing conditions (e.g., single-housed vs.
group-housed)38.

The male-specific P1 neurons function as the key courtship
command neurons that trigger a spatial and temporal pattern of
motor neuron activity specific to courtship behaviors35–37.
We find that this higher-order processing within the P1
neurons is altered as a result of sleep and wake states as
evidenced by decreases in spontaneous activity of the P1 neurons
after SD. We also found that P1 neurons could be activated
by sleep-controlling DN1 neurons. Additionally, activating P1
neurons (gain of function) decreases sleep while inhibiting
P1 neurons (loss of function) increases sleep. These data show that
P1 neurons represent an important sleep-regulating locus in the
male fly brain.

While the neural circuitry downstream of P1 neurons impor-
tant in producing courtship behaviors is well understood, the
circuit mechanisms by which P1 neurons produce wake behavior
are intriguing. Using P2X2 to activate P1 neurons and GCamp6m

to visualize DN1 activity, we found that DN1 neurons are
functionally downstream of P1 neurons, although they do not
have such a direct synaptic connection. To ensure that this
specific connection underlies the wake-promoting phenotype of
P1 neuron activation, we simultaneously activated the P1 neurons
while inhibiting the DN1 clock neurons and observed a strong
decline in the wake-promoting phenotype of P1 activation. This
effect was not phenocopied by silencing other key sleep-
regulating centers of the fly brain including mushroom body
and central complex neurons.

Our results demonstrate that P1 and DN1 neurons
form a positive feedback loop and support persistent neural
activity to sustain extended phases of arousal necessary for
social behaviors like courtship. The role of P1-DN1 mutual
excitatory circuit as the mechanistic basis of interaction
between sleep and courtship drive is further supported by the
finding that P1 activity is low in sleepy flies as compared to
sleep-replete controls. The P1 neural node activity is highly
dynamic and is influenced by sensory inputs and social
experiences, which could further underlie the reduced neural
activity of P1 neurons in sleep-deprived flies. It is also interesting
to note that our induced activation studies of P1 neurons using
dTRPA1 show that low levels of activation are sufficient to
suppress sleep, but a higher level of activation is required for
courtship promotion.
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At the molecular level, we find that acetylcholine release from
the P1 neurons is critical to sleep regulation such that inhibiting
synthesis or release of Ach from the P1 neurons suppresses the
wake behavior induced by P1 activation.

Interestingly, the reciprocal regulation of sleep and sexual
behaviors is different in male and female flies, leading to sex-
specific interaction of these behaviors. Note that P1 neurons
express FRUM and DSXM, and are male-specific, while DN1
neurons also express FRUM. Recent studies have also shown that
the DN1 neurons are more active in males as compared to
females, further supporting our key findings of male-specific
courtship–sleep circuitry involving P1-DN1 neuronal
connections52.

The male-specific courtship–sleep interaction mediated by the
P1-DN1 circuit is not surprising as both sexual and sleep beha-
viors per se are sexually dimorphic. Although it has been well
documented that male and female flies have different sleep
patterns and that female flies sleep less during the daytime as
compared to males, the molecular and neural basis of this sexual
dimorphism in sleep patterns is unclear. Sex differences in
nervous system structure and behaviors are all attributed to sex
determination genes tra, fruM, and dsx48, 49. We found that these
genes also control sexually dimorphic sleep patterns. In
particular, FRUM and DSXF differentially regulate male and
female sleep, respectively, where FRUM promotes male sleep
during both daytime and nighttime, and DSXF inhibits female
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sleep during daytime but not nighttime. Furthermore, we found
that knockdown of FRUM in MB or DN1 neurons decreases male
sleep amount, but leaves male courtship intact; in contrast,
knockdown of FRUM in all dsx-expressing neurons severely
impairs male courtship, but only slightly alters sleep, suggesting
that FRUM functions in distinct neural substrates to regulate male
courtship and sleep.

In order to understand the complex relationship between the
male-specific P1-DN1 feedback and sexually dimorphic sleep
patterns, we probed how FRUM acts on the DN1 neurons in
regulating male sleep. DN1 neurons have been previously
implicated in sleep regulation and release a wake-inducing
neuropeptide Dh31. Here we find evidence that FRUM

modulates the production or secretion of Dh31 specifically from
the DN1 neurons to regulate sleep. The neural circuit
mechanism by which Dh31 released from DN1 neurons regulates
wake is unknown, but there is evidence of synaptic commu-
nication between the DN1 and Pars intercerebralis neurons,
another sleep-regulating loci53. Further, the pars intercerebralis
neurons regulate circadian output by release of another neuro-
peptide Dh4453, 54.

Previous studies have looked at more generalized decision-
making neurons, but here we have identified a novel sex-specific
neuronal circuitry for sex–sleep interaction, which depends on
sex determination genes that directly influence the neuronal
output of key decision-making neurons (Fig. 10). Thus, our
findings on genetic and neural circuit mechanisms underlying
sex–sleep interaction will have broad implications for studies on
decision-making and behavioral choice in higher-order
organisms.

Methods
Fly stocks. Flies were maintained at 22 or 25 °C in a 12 h:12 h light:dark cycle.
fruM alleles used in this study include fruLexA, fru4–40,fruAJ96u3, frusat15, and fruΔtra.
dsx alleles are dsxGAL4(Δ2), dsx683–7058, dsx1649–9625, dsxM+R15, and dsxM.Dh31
alleles are Dh31KG09001 and Df(Dh31). RNAi lines are from Tsinghua Fly Center
(THFC) at the Tsinghua University55, 56. Neurotransmitter GAL4 lines are from
Bloomington Stock Center. R12C11, R14C08, R14H06, R15A01, R18H11, R23E10,
R24H08, R25D01, R35B12, R41A01, R44E04, R58E02, R71D08, R71G01, and
R84C10 are enhancers for Janelia GAL4 (or GAL4-AD, GAL4-DBD) or LexA
drivers57–59. LexAop-FlpL, LexAop-shits1, and pBDPGAL458, UAS-dTrpA160,
LexAop-GCamp6m, UAS-GCamp6m61, UAS-P2X2

46, UAS-fruMi, and UAS-
fruMiScr50, UAS-ArcLight47, UAS-CD4::spGFP1-10 and LexAop-CD4::spGFP1145,
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UAS>stop>dTrpA162, UAS>stop>TNT and UAS>stop>TNTin14 have been
described previously.

Male courtship assay. Four to eight-day-old wild-type virgin females were
decapitated and loaded individually into round two-layer chambers (diameter: 1
cm; height: 2.5 mm per layer) as courtship targets, and 4–6-day-old tester males
were then gently aspirated into the chambers and separated from target females by
a plastic transparent barrier until courtship test for 10 min. Courtship tests start
roughly 30 min after the end of SD. Courtship index, which is the percentage of
observation time a male fly performs courtship, was used to measure courtship to
female targets, and measured manually using the LifeSongX software.

Female receptivity assay. Wild-type virgin females (4–6 days old) were
sleep-deprived and aspirated into round two-layer chambers (diameter: 1 cm;
height: 2.5 mm per layer), and separated from 4- to 6-day-old wild-type virgin
males until courtship test for 15 min. Courtship tests start roughly 30 min after the
end of SD.

Sleep test and analysis. Individual 2–4-day-old males or females were placed in
locomotor activity monitor tubes (DAM2, TriKinetics Inc.) with fly food, and were
entrained in 21.5 or 25 °C 12 h:12 h light:dark conditions for at least 2 days before
sleep test. For temperature-shifting experiments, 2-day sleep data were recorded at
21.5 °C as baseline, and then flies were shifted to 28.5 °C (dTrpA1) or 29.5 °C
(dTrpA1 and shits1) for 2 days, and returned to 21.5 °C for at least 1 day to measure
sleep recovery. Sleep was analyzed using custom-designed Matlab software63. The
total sleep amounts per day (e.g., Fig. 8b) are the average sleep amounts in multiple
testing days. The sexual difference of sleep (Fig. 8c) is defined as the total sleep of
females subtracted from the total sleep of males of the same genotype, and divided
by the total sleep of males. Change in total sleep (e.g., Fig. 2f) is the percentage of
sleep change in the first day of temperature shift (28.5 or 29.5 °C) compared to
baseline sleep at 21.5 °C.

Sleep deprivation. SD was performed either in food vials or in DAM2 monitors
that are fixed in a multitube vortexer. The vortexer shakes the vials or monitors in
an intermittent way (in total ~15 s/min shaking unless specifically described)
controlled by the TriKineticsDAMSystem software33.

Tissue dissection, staining, and imaging. Brains and ventral nerve cords of 4–6-
day-old males and females were dissected in Schneider’s insect medium (S2) and
fixed in 2% paraformaldehyde in S2 medium for 50–60 min at room temperature.
After 4 × 10-min washing in PAT (0.5% Triton X-100, 0.5% bovine serum albumin
in phosphate-buffered saline), tissues were blocked in 3% normal goat serum
(NGS) for 90 min, then incubated in primary antibodies diluted in 3% NGS for
12–24 h at 4 °C, then washed in PAT, and incubated in secondary antibodies
diluted in 3% NGS for 1–2 days at 4 °C. Tissues were then washed thoroughly in

PAT and mounted for imaging. Antibodies used were rabbit anti-GFP (Invitrogen
A11122) 1:1000, mouse anti-Bruchpilot (Developmental Studies Hybridoma Bank
nc82) 1:30, and secondary Alexa Fluor 488 and 568 antibodies (1:500). Samples
were imaged at ×20 magnification on Zeiss 700 or 710 confocal microscopes and
processed with Fiji software.

Brain image registration. The standard brain used in this study is described
previously44. Confocal images for R18H11-LexA and P1-splitGAL4 were registered
onto this standard brain with a Fiji graphical user interface as described
previously64, 65.

P2X2 activation and GCamp6m imaging. To gain access to the P1 or DN1
neurons for ATP application, whole-brain explants were placed on 8-mm diameter
circular coverslips and placed in a recording chamber containing external solution
(103 mM NaCl, 3 mM KCl, 5 mM N-tris methyl-2-aminoethane-sulfonic acid, 8
mM trehalose, 10 mM glucose, 26 mM NaHCO3, 1 mM NaH2PO4, 2 mM CaCl2,
and 4 mM MgCl2, pH 7.4). For an early experiment (Fig. 6a–c), an ATP ejection
electrode was filled with freshly prepared 10 mM ATP solution and positioned near
P1 neurons using a micromanipulator. The ATP was ejected by applying a 25-ms
pressure pulse at 20 psi using a picospritzer (Parker Hannifin, Precision Fluidics
Division, NH). The picospritizer was triggered by Zeiss image acquisition and
processing software Zen pro 2012. Later, we added ATP simply using a pipette, but
the final ATP concentration is still 10 mM (Fig. 6d–f). Calcium imaging was
performed using Zeiss AxoExaminer Z1 upright microscope with W Plan
Apochromat 40 × water immersion objective. GCamp6m was excited with a
470-nm LED light source (Colibiri, Zeiss) and images were acquired using
ORCA-R2 C10600-10B digital charged-couple device (CCD) camera (Hamamastu,
Japan) at 3 Hz. The average fluorescence of all pixels for each time point in a
defined region of interest (ROI) was subtracted from the average background
fluorescence of the same size ROI within the brain region. The resulting fluores-
cence value for each time point was defined as Ft. % ΔF/F0= (Ft−F0)/F0 × 100,
where F0 corresponds to average of 10 frames of background-subtracted baseline
fluorescence before ATP application. All images were processed and quantified
using Zen and Fiji (Image J).

Arc light imaging. Imaging of freshly dissected brain explants was performed on a
Zeiss Axio Examiner upright microscope using a W Plan Apochromat ×40 N.A. 1.0
water immersion objective (Zeiss, Germany). ArcLight was excited with a 470 nm
LED (Zeiss). The objective C-mount image was projected onto the 80 × 80 pixel
chip of a NeuroCCD-SM camera controlled by NeuroPlex software (Red-
ShirtImaging, Decatur, GA). Images were recorded at a frame rate of 100 Hz, and
depicted optical traces were spatial averages of intensity of all pixels within the
ROI, with signals processed as previously reported47. Statistical analysis and
plotting of the data were performed using R. Sleep-deprived flies and sleep-replete
controls were dissected within a few minutes of sleep-deprivation and recorded at
the same ZT.

Data availability. We declare that all data supporting the findings of this study are
available within the article and its Supplementary Information files or from the
corresponding author upon reasonable request.
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