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Cancer stem cell (CSCs) are deemed as one of the main reasons of tumor relapse due to
their resistance to standard therapies. Numerous intracellular signaling pathways along
with extracellular features are crucial in regulating CSCs properties, such as heterogeneity,
plasticity and differentiation. Aberrant glycosylation of these cellular signaling pathways
and markers of CSCs have been directly correlated with maintaining survival, self-renewal
and extravasation properties. In this review, we highlight the importance of glycosylation in
promoting stemness character of CSCs, and present strategies for targeting abnormal
glycosylation to eliminate the resistant CSC population.

Keywords: sialic acid (N-acetyl neuraminic acid), phenylboronic acid chemistry, sialyltransferase (ST),
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INTRODUCTION

The emergence of drug resistance and relapse of tumors have maintained the rate of cancer
related deaths despite the advances in cancer treatment. Recent studies have associated the
formation of metastasis, resistance to therapy, and eventual tumor relapse with the presence of a
tumorigenic subpopulation of cancer cells showing stem-like features within the cellular
heterogeneity of tumors (1). These cancer stem-like cells (CSCs) are deemed as one of the main
reasons of tumor relapse (2). The presence of CSCs has been reported in different type of cancers,
e.g. head and neck cancer (3), liver cancer (4), breast cancer (5), brain cancer (6) and melanoma (7).
While the origin of CSCs is still not clear, the source may be a result of epithelial to mesenchymal
transition (EMT), which allows differentiated and non-stem cells to develop characters like CSCs
(8), or the alteration of non-malignant stem cells to CSCs due to oncogenic somatic mutation (9). In
recent years several upregulated markers of CSCs have been identified, such as epithelial cell-
adhesion molecule (EpCAM), CD44, CD133, CD24 and aldehyde dehydrogenase (ALDH) (1).
These markers are being used alone or in combination in different tumors for isolating CSCs with
drug resistance and self-renewal ability (10). Moreover, several cellular signaling pathways, such as
Notch, hedgehog, Wnt/b-catenin, Akt, NF-KB, JAK-STAT and PPAR, which are also present in
healthy stem cells, are being studied extensively due to their effect in self-renewal, metastasis and
immune evasion (11). However, it is important to note that CSCs are highly heterogeneous, showing
variability between tumors and even within the same tumor tissue (12). Thus, dealing with common
targets shared by CSCs could allow developing far reaching therapies capable of treating a wide
range of tumors.

Altered glycosylation ensuing modifications in proteins during or after translation (13) is a
trademark of almost all type of cancers regardless of the origin and stage (14), and it is a common
feature of CSC population markers and signaling pathways (15). The glycan chains on cancer cells
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regulate a range of pathological processes, including cell-cell
interaction, cell adhesion, receptor activation and signal
transduction (14). The main terminal sugar of the cell surface
glycan chain is neuraminic acid (sialic acid; SA), which is being
studied extensively in tumor biology (16). The overexpression of
terminal glycan SA has also been linked to cancer malignancy
and metastasis (16, 17). Moreover, hypersialylation in cancer
cells promotes cell migration (18) and apoptosis resistance (19),
which lead to tumor growth and poor prognosis (16). CSCs may
be further distinguished from differentiated cancer cells by the
expression of carbohydrate antigens (20, 21), and the N-
glycosylation of glycoproteins of CSCs has been related to drug
resistance mechanisms (22). Besides, abnormal glycosylation has
been shown to regulate signaling pathways and markers involved
in conservation of CSCs, such as EpCAM glycosylation on cell
adhesion (23) and EMT in breast cancer, or N-glycosylation on
MAPK and PI3/Akt pathway (24). As the carbohydrate antigens
of glycan chains are primarily located on the plasma membrane
of cells, they are regarded as outstanding biomarkers for
detecting altered phases of cellular differentiation (21) and
could provide opportunities for generating targeted therapies.

Herein, we review the altered glycosylation of cellular
pathways and markers involved in CSCs maintenance and
resistance mechanisms. The possibilities to use the
glycosylation of both cancer cells and CSCs as targets for
Frontiers in Oncology | www.frontiersin.org 2
tumor treatment are also presented. Finally, we discuss the
future perspectives in this bourgeoning field.
CSC AND ALTERED GLYCOSYLATION

The importance of altered glycosylation of tumor in disease
progression has been well documented (14). In the following
sections, we focused on the aberrant glycosylation in CSC
markers, such as CD44, CD133 and CD24, along with different
cellular signaling and pathways, like Notch (25), hedgehog (26),
Wnt/b-catenin (27) and Akt (28), in maintaining CSC properties
(11, 15) (Figure 1). A summary of the role of signaling pathways
and markers in normal cells and CSCs, along with their altered
glycosylation reported so far, is presented in Table 1.

Glycosylation of Signaling Pathways
The involvement of glycosylation in dysregulation of signaling
pathways is gaining much attention due to its key roles in ligand
binding, signaling of receptors, and transport control inside the
cells. Besides, glycosylation affects receptor turnover on cell
membrane receptors as glycans binds to galectins to form a
lattice. In addition, the binding of glycosylated proteins with
gangliosides can modulate the intracellular communication
of receptors.
FIGURE 1 | Abnormal glycosylation in signaling pathways and markers inducing stemness properties of CSCs.
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For Notch signaling, which supports the renewal ability of
CSCs and plays significant roles in the immune escape of and
invasion and extravasation of cancer cells, the response are
mediated by 4 Notch transmembrane receptor and 5 ligands (3
Delta-like and 2 Jagged) (25). The affinity of these Notch
receptors to ligands is regulated by the glycosylation of
receptors (31). Specially, through insertion of fucose-N-
acetylglucosamine by fucosyltransferase and Fringe family N-
ace ty l - g l u co samin idy l - t r an s f e r a s e s (31 ) . Va r iou s
glycosyltransferases take part in the glycosylation of Notch in
various tumor types (70). Regulation of Notch signaling is
associated with tumor stemness and metastasis progression
(25, 33).

Hedgehog (Hh) signaling is crucial for maintaining and
regenerating CSCs (26, 33). The Hh signaling is a complex
pathway regulated by different receptors, such as the
transmembrane protein receptor PTCH and various
extracellular Hh ligands and sonic Hh ligand (SHH) and the
transmembrane protein SMO (71). GALNT1 a glycotransferase
have been identified by researchers to play a pivotal role in SHH
instigation in CSC of bladder cancer (34). GALNT1 regulated O-
linked glycosylation foster activation of SHH signaling, which is
vital for self-regeneration of CSCs (34).

Glycosylation also maintains tumor epithelial plasticity,
including EMT driven by hexosamine biosynthetic pathway
(HBP) and O-GlcNAcylation leading to chemoresistance of
cancer cells (72). Increased expression of GALNT3 or
GALNT6 correlates with the O-glycosylation-mediated EMT in
epithelial cells of human prostate (36). Moreover, GALNT14
increase EMT genes, migration and invasion of breast cancer
cells (37). EMT in breast cancer is also affected by the N-
glycosylation of EpCAM via multiple cell signaling pathways
Frontiers in Oncology | www.frontiersin.org 3
(24). N-glycosylation promoted EMT also stabilizes and
upregulates programmed death-ligand 1 (PD-L1), contributing
to the immune escape of CSCs (73, 74).

N-acetylglucosaminyltransferase-V (GnT-V) and ST6 N-
Acetylgalactosaminide alpha-2,6-Sialyl transferase 1
(ST6GALNAC1) facilitated glycosylation have been reported to
control stemness of colon cancer cells through WNT signaling
and Akt pathway respectively (41, 42, 44). GnT-V induces the N-
glycosylation of receptors present on Wnt proteins, which alters
normal Wnt/b-catenin signaling pathway (41). Such alteration
causes distorted development of adenoma through regulation of
CSC in colorectal cancer (41). The role of PI3K-Akt pathway in
supporting proliferation and stemness characteristics of CSC in
breast, brain and colorectal cancer cells have been studied
thoroughly (75–77). ST6GALNAC1 may support conservation
of CSCs through activation Akt pathway by facilitating
recruitment of sialyl-Thomsen-nouveau (STn) antigen, which
interacts with galectin-3 (44). STn is the consequence of
premature sialylation of Tn antigen due to upregulation of
ST6GALNAC1 and disturbance of elongation steps (78).
ST6GALNAC1 facilitates recruitment of STn through addition
of SA on GALNAC and backbone of protein. The STn antigen
inside cells activates galectin-3 mediating phosphorylation of
Akt, which decreases GSK3b and promotes protein transcription
by b-catenin . Phosphorylated Akt a lso fosters S6
phosphorylation by mTORC1 leading to augmented protein
synthesis, which triggers stemness through stimulated
transcription (44). Expression of ST6 beta-galactoside alpha-
2,6-sialyltransferase 1(ST6GAL1), which adds alpha2-6 lined
sialic acid to glycosylated protein, is also upregulated in cancer
malignancies specially in CSCs (79, 80). ST6GAL1 expression
corelated with other CSC markers in colorectal carcinoma
TABLE 1 | Glycan abnormalities in CSC signaling pathways and markers.

Pathways and
markers in CSC

Role in normal cells Role in cancer stem cells Glycan abnormalities

Signaling
pathway

Notch Cell-cell communication, proliferation,
homeostasis and apoptosis (29, 30)

Renewal ability,
Immune escape (29, 30)

Fucosyltransferase,
Fringe family N-acetyl-glucosaminidyl-
transferases,
glycosyltransferase GnT-III (31, 32)

Hedgehog Proliferation, migration and differentiation of
embryonic cells (26, 33)

Maintenance and regeneration (26, 33) GALNT1 (34)

EMT Inhibition of cell-cell adhesion, modulation of
polarity, downregulation of cytokeratin (35)

Increased plasticity, stemness and migration
(9)

GALNT3, GALNT6,
GALNT14 (36, 37)

Wnt/b-
catenin

Cell migration, polarity, neural patterning (38, 39) Renewal, cell proliferation and differentiation
(27, 40)

N-Acetylglucosaminyltransferase-V (GnT-V)
ST6 N-Acetylgalactosaminide Alpha-2,6-
Sialyltransferase 1 (ST6GALNAC1) (41, 42)

PI3/Akt Growth, proliferation, metabolism, motility,
survival, and apoptosis (43)

Survival and proliferation (28) ST6GALNAC1 (44)

Markers CD44 Cellular adhesion, receptor for hyaluronic acid,
release of cytokines (45, 46)

Self-renewal, tumor initiation and metastasis
(3, 47, 48)

Altered N- and O- linked glycosylation,
GALNT3 (49)

CD133 Progenesis, neovascularization and hair follicle
regeneration (50, 51)

Tumor initiation and drug resistance (52, 53) Sialylation of N-glycan terminal via a2,3-site
and STn (54, 55)

CD24 Cell-cell and cell-matrix interactions (56, 57) Cell adhesion and metastasis (58–60) Siglec 10 and sialylLewisx (58, 61)
EpCAM Cell adhesion, signaling, proliferation,

differentiation (62, 63)
Cell migration, upregulation of proto
oncogenic activities and chemoresistance
(64, 65)

Glycosylation at Asn198 (63)

Mucin Protection, repair, transmission of cellular signals
(66)

Resistance to apoptosis and chemotherapy
(67, 68)

GALNT-6,
Mucin-O-glycosylation of a2M (69)
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samples from patient and induced chemoresistance (81). In
ovarian cancer, ST6GAL1 expression is regulated by SOX2, a
well-known stem cell transcription factor (82).

Glycosylation of CSC Markers
Most CSC markers are glycoproteins, such as CD44, CD133 or
CD24, expressing various glycan moieties on cell surface (15).
These glycans are fundamental in many biological processes. For
example, the terminal glycan SA is involved in regulating
pluripotency of embryonic stem cells (20). Indeed, SA-cleaving
promotes differentiation (20). Glycosylation of CSC markers
regulates many functions of CSCs, including cell adhesion,
extravasation, evasion of immune cells and apoptosis, self-
regeneration and preservation of pluripotency (15).

CD44 is a transmembrane glycoprotein with the ability to
activate EGFR and ErbB‐2 by binding to hyaluronic acid (HA) on
extracellular matrix. Such activation has been linked to increased
celldifferentiationandrelocation (45).WhileCD44canbe foundon
healthy cells, suchas leukocytes,mesenchymal cells, endothelial and
parenchymal liver cells (46), it is also a major player in different
types of cancers, like head and neck, skin, lung, breast, prostate,
pancreatic and liver cancer (47, 48). CD44 is hailed as a broad-
ranging biomarker for CSCs. Moreover, isoforms of CD44
(CD44v), which are rarer than standard CD44, have also been
linkedwithCSC subpopulations (3). Both the standard andvariants
ofCD44 are reported tohave alteredN-andO- linkedglycosylation
(83). Such differences in glycosylation are associated with altered
molecular weights (84, 85). Five probable N-linked glycosylation
locations on CD44 can initiate cell binding through HA (83).
Moreover, glycosylation of CD44 could control HA adhesion, as
demonstrated in ovarian cancer (86), amplifying or inhibiting
attachment of CD44 to HA. For example, improved binding has
been reported byO-linkedglycans (N-deglycosylated),N-linkedN-
acetylglucosamine and N-acetylgalactosamine recruitment in non-
N-linked glycans onCD44. On the contrary,a2,3- linked SA onN-
linked glycans have opposite effect and hinders such binding (87).
The expression of SA in particularly high on CD44 positive CSCs
(44, 88). In addition, the distorted glycosylation of CD44v and their
expression have been linked with the aggressiveness of cancer in
human patients (89).

Another extensively used CSC marker is CD133 or prominin-
1 (28), which is associated with the Wnt signaling (90), and the
PI3K/Akt pathway (91) in CSCs. CSCs identified with CD133+
markers in patients with ovarian cancer correspond to poor
survival (92). CD133 is encoded by PROM1 gene composed of 8
N-linked glycosylation sites (93), and the glycosylation plays
important roles in maintaining CSC properties (94, 95). In fact,
glycosylation of CD133 has been suggested as a secondary
indicator of CSCs (96–98). In particular, sialylation of CD133
N-glycan terminal via a2,3-site was found in the CSC of glioma
(54), which was augmented in hypoxic conditions, correlating
with the migration and survival of brain CSCs (99). Moreover,
CD133 could be co-expressed with STn, as found in a subset of
ovarian cancer cells (55).

CD24, which was originally identified as a B cell differentiation
marker (100), has been indicated as aCSCmarker in several tumors,
Frontiers in Oncology | www.frontiersin.org 4
such as ovarian (101), colorectal (102), bladder (103) and urothelial
(104) cancers. CD24 has been directly correlated with disease
progression and metastasis (59, 60, 105, 106). CD24 is a
glycoprotein having both N- and O-linked type glycosylation and
linked to glycosylphosphatidylinositol (61). CD24-expressing cells
can evade the immune systembybinding to Siglec-10 (a SAbinding
molecule) present on macrophages (61). Moreover, binding of
CD24 to immune cells through a sialylation dependent way
initiates a cascade facilitated by SHP-1/SHP-2 leading to
inactivation of immune cells (107). Apart from Siglecs, CD24 also
acts as a ligand for P-selectin, an adhesion receptor expressed on
platelets and endothelial cells (108). Thus, binding of cancer cells to
P-selectin via CD24 may be crucial for inducing tumor metastasis
(108). Moreover, sialylLewisx (sialylLex), a SA-bearing glycan,
controls CD24 facilitated rolling of cancer cells on P-selectin and
extravasation during metastasis (58).

EpCAM is expressed on different types of epithelial cells, stem
cells, cancer cells and CSCs (63). EpCAM is a cell surface
glycoprotein with 3 N-glycosylation sites (109), with
glycosylation at Asn198 being the most important for stability
(63). EpCAM+, CD44+, CD24- CSCs were 10-fold more likely to
induce tumors compared to EpCAM-, CD44+, CD24- CSCs in
breast cancer (110). In hepatocellular carcinoma, EpCAM+
CD133+ cells demonstrated elevated colony formation ability,
expression of stem cell related genes and chemoresistance
compared to EpCAM- CD133+ cells (111). Moreover,
inhibition of EpCAM in resistant head and neck cancer cells
sensitize them to cisplatin (64). EpCAM in carcinoma tissues
presented elevated levels of glycosylation compared to normal
epithelia (112). Particularly, elevated glycosylation at Asn198
mediates EpCAM stability and surface retention in HEK293 cells
(112). The deglycosylation of EpCAM repressed proliferation of
breast cancer cells and fostered apoptosis (113). More recent
research demonstrated the role of N-glycosylation of EpCAM in
maintaining stemness property and EMT in hypoxic
condition (114).

Mucins are heavily glycosylated extracellular proteins, which
are mostly O-linked type, that have major impact on cell
differentiation, adhesion and metastasis (67). For example,
GALNT-6 elevated mucin-O-glycosylation of a2M, which
activates downstream PI3/Akt signaling pathway, fosters
metastasis of breast cancer (69). CD44+, CD24+ and CD133+
CSC populations of pancreatic cancer also express Mucin-1 (115)
and Mucin 5AC also plays significant role in maintaining
stemness properties of pancreatic CSC (116). Increased
fraction of CD44+, CD24- CSC and Mucin-1 expression was
also reported in breast cancer MCF-7 cells when exposed to
tumor associated macrophages (117). Mucin-1 have also been
identified as an important factor in effectiveness of colorectal
CSC vaccine (118). In case of gastric cancer metastasis,
expression of Mucin-1 was detected in peripheral blood and
bone marrow signifying its importance (119). Abnormal
expression of Mucin-4 has also been reported in many cancers
(120), and correlated with metastasis (121) and chemoresistance
(122). Downregulation of Mucin-4 sensitizes CSCs of pancreatic
cells to gemcitabine (123). Mucin-4 also helps to maintain CSC
April 2021 | Volume 11 | Article 649338
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population of ovarian cancer cells by stabilizing expression of
Her2 (124). Mucin-16 (CA125) enhancement is present in CSCs
of both pancreatic (125) and ovarian (126, 127) cancer. In
ALDH+ CSCs of pancreatic cancer, MUC16 (carboxyl terminal
fragment) facilitates augmentation of JAK2, which upregulates
LMO2 and NANOG genes to provide stemness properties (128).
GLYCOSYLATION IN THE RESISTANCE
OF CSCS TO CONVENTIONAL
TREATMENTS

Eliminating CSCs represents a major challenge, as CSCs present
less reactive oxygen species (129, 130) and are resistant to radio-
and chemotherapy (129, 130) by increased effluxpumps,DNArepair
and scavenger agents (129, 130). CSCs show phenotypical
heterogeneities both at inter- and intratumoral levels (131, 132),
which are associated with genetic mutations and epigenetic changes,
or differences in tumor microenvironment, e.g. cytokines and
hypoxia (131, 132). The heterogeneity of CSCs represents a major
challenge for targeted therapies. Moreover, CSCs could exist in
specialized environments within tumors by forming niches that
promote their survival (133, 134). CSCs can also adjust their niche
andkeephomeostatic processes, such asEMTandangiogenesis (133,
134). The CSC niche is dynamic, changing with tumor progression,
and adapting to the treatments.Moreover, the niche has the ability to
revert non-tumorigenic cancer cells into CSCs through EMT-related
processes (8, 9, 135). This fluctuation between cancer cells and CSCs
populations implies that targeting onlyCSCsmaynot be sufficient, as
residual cancer cellsmay repopulateCSCs. Thus, it can be envisioned
that for developing effective therapies, the elimination of both cancer
cells and CSCs should be considered for achieving safe and robust
long-term responses.

The functions of glycans present on CSC markers in inducing
chemoresistance are not fully understood. Nonetheless, studies
have indicated that glycosylation may play key roles in the
resistance of CSCs. For example, O-GlcNAcylation of GNB2L1
facilitates chemoresistance of gastric cancer by regulating EMT
(136). Furthermore, resistance to chemotherapeutic drug
doxorubicin in the CD44+/CD24- CSC population of breast
tumors was reversed by silencing expression of glucosylceramide
synthase,which is involved in glycolipid biosynthesis (137).Also, in
breast cancer, treatment with doxorubicin induces resistance
through glycosylation of O-GlcNAc (138). Doxorubicin activates
Akt pathway leading to upregulation of HBP and eventually O-
GlcNAcylation, which promotes survival of cells through deterring
apoptotic function of caspases and stimulating pro-survival factors
like NF-KB and Akt (138). Elevated expression ofMucin-4 has also
been reported in CD133+ CSCs in pancreatic cancer, which
facilitated resistance to gemcitabine (123). Moreover, CD133+
CSC population isolated from patients malignant primary
neoplasm was also more resistant to gemcitabine than CD133-
cancer cells (52). Overexpression of Mucin-4 in two pancreatic cell
lines Panc-1 and Mia-PaCa-2 was correlated with aggressiveness
and resistance to gemcitabine compared tononMucin-4 expressing
Panc-1- and Mia-PaCa-pSectag C (123). In addition, the
Frontiers in Oncology | www.frontiersin.org 5
overexpression of Mucin-4/sialomucin complex (SMC) may
protect cancer cells from the antibody Herceptin, as well as
immune cells, by covering surface antigens, thus, hindering their
availability (139–141). Therefore, therapies capable of dealing with
the altered glycosylation of CSCs could allow developing strategies
overcoming the resistance of CSC to conventional treatments.
TARGETING ALTERED GLYCOSYLATION
IN CANCER CELLS AND CSCS

Treatment approaches against abnormal glycosylation are
emerging as appealing options for effective tumor therapy (142).
Inhibition of glycans can decrease CSCs ability for maintaining
stemness, thereby, decreasing tumor proliferation. For example, by
siRNA-mediated silencing of GALNT1, which control O-linked
glycosylation activation of SHH signaling in CD44+ CSCs in
bladder cancer to mediate stemness, the tumor growth was
suppressed in a similar extent to cyclopamine in an orthotopic
mouse model of bladder cancer (34). Moreover, inhibiting
glycosylation cannot only make changes in CSCs, but also in the
tumor microenvironment. For example, targeting the SA-siglec
interaction can convert the immunosuppressive tumor
microenvironment into an immunoactive environment, as
overexpression of SA has been deemed as a major mechanism for
cancer cells to evade detection by immune cells (143). The
sialoglycan-siglec glycol-immune checkpoint can be targeted in
CSCs. T cells inside tumors, specially CD8+T cells, present elevated
amount of Siglecs, which engage with heavily sialylated CSCs (143,
144). Besides, cancer cells expressing CD24 can escape detection by
the immune system by interacting with the inhibitory receptor SA-
binding Ig-like lectin 10 (Siglec-10). Blocking the CD24-Siglec-10
binding bymonoclonal antibodies improvesmice survival outcome
by increasing phagocytosis of CD24+ cells (61).

Targeting glycosylated CSC markers with specific antibodies is
another approach to aim CSC precisely (145). Among them, CD44
targeting appear as a promising approach for enhancing antitumor
efficacy. For example, KMP-1 antibody targeting CD44 can inhibit
cell division, relocation and adhesion, allowing tumor growth
suppression in a mouse model of bladder cancer (146). The anti-
CD44 antibody RG7356 have shown also the possibility to activate
the immune systemby initiatingphagocytosis throughmacrophage
recruitment inbreast cancermodel (147).Antibodies, suchasL2A5,
can also be used for targeting tumor specific STn and short glycans
expressing terminal a2–6 SA (78), and promote tumor inhibition
(148, 149). As STn is co-expressed with CD133, anti-STn antibody
drug conjugates could suppress tumor growth, effectively
diminishing CSCs (55). Other antibodies, such as the anti-sialyl-
di-Lewisa antibody FG129, are being tested for targeting tumor-
associated glycans toward the development of tumor-selective
treatments and diagnosis modalities (150).

In most cases, the abnormal glycosylation in tumor leads to
overexpression of SA at the terminal carbohydrate of the glycan
chains, providing a useful target (14). Thus, efforts are being
made to develop therapeutic and diagnostic approaches directed
towards aberrant sialylation (151). These tactics includes
April 2021 | Volume 11 | Article 649338
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FIGURE 2 | Targeting sialylated epitopes on cancer cells by using pH-activated 5-boronopicolinic acid (5-BPA) as a ligand. (A) Design strategy and targeting of
overexpressed SA in CSC using pH-sensitive 5-BPA installed polymeric micelles. (B) Reduction of CD44+ CSCs in head and neck cancer cells (HSC-2) in vitro.
(C) Improved survival of animal treated with 5-BPA installed polymeric micelles (D) Significant reduction in CD44+ CSC population (red) after treatment with 5-BPA
installed polymeric micelles. Adapted with permission from reference (88). Copyright 2020 American Chemical Society.
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blocking SA by using glycomimetics (152, 153) or targeting over
expressed SA in tumor to deliver therapeutic agents (154–157).
Glycomimetic drugs, such as Uproleselan (GMI 1271) and
Rivipansel (GMI 1070), which are both selectin (SA binding
molecule) inhibitors, are being tested in clinical trials for treating
acute myeloid leukemia (NCT03616470) (158, 159). Another
molecule GMI 1359 which inhibits both E-selectin and CXCR4
have recently started Phase 1b clinical trial for metastatic breast
cancer (NCT04197999) (160–162). Intratumoral injection of
glycomimetic agents has shown enhanced antitumor responses,
which are mediated by CD8+ T cell attack to cancer cells (152).
However, the systemic application of such glycomimetic strategies
blocking SA is difficult due to increased side effects.

SA is also a promising target for developing targeted
therapies. Lectins can target receptors containing sialic acid.
For example, a Phase I clinical trial with Maackia amurensis
seed lectin (MASL), which can target podoplanin, is set to start
for the treatment of squamous cell carcinoma of head and neck
(NCT04188665) (163, 164). Podoplanin is a mucin like
sialoglycoprotein, co-expressed with CSC marker CD44 and
CD44v (165). However, lectins may also bind to healthy cells
presenting SA. Moreover, treatment with the SA-cleaving
enzyme, neuraminidase, for removing the SA on cancer cells
has been explored as a therapeutic approach (166). By
conjugating neuraminidase with the HER2-binding antibody
trastuzumab (167, 168), it was possible to selectively remove
SA from the surface of cancer cells and avoid damaging normal
cells. However, systemic injection of such systems could pose
major toxicity issues due to the vital role of SA on normal cells
and tissues. Thus, it is essential to develop smart ligand-based
sys tems that can only be act ivated at the tumor
microenvironment for specifically targeting SA overexpressed
on cancer cells. We have recently reported a novel phenylboronic
acid derivative, i.e. 5-boronopicolinic acid (5-BPA), with a
unique pH-dependent binding profile to SA (169). The binding
of 5-BPA to SA and glucose follows opposite trend with reduced
pH (169). In other words, 5-BPA molecule favors binding with
glucose at pH 7.4, but strongly binds to SA at the acidic tumor
microenvironment (pH 7.2-6.5) (170). Thus, 5-BPA can be used
to develop pH triggered smart ligand systems, which will only
activate in the low pH microenvironment of tumors, avoiding
unspecific binding to normal cells. We have recently
demonstrated the potential of 5-BPA as a ligand for targeting
highly sialylated CD44+ CSCs (Figure 2A). Installing 5-BPA
molecules on the surface of polymeric micelles loading (1,2-
diaminocyclohexane)platinum(II), which is the parent complex
of the anticancer drug oxaliplatin, allow reducing CSCs in vitro
(Figure 2B) and also in an orthotopic model of head and neck
cancer (Figure 2D), improving overall survival (Figure 2C) (88).
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Importantly, as SA is broadly available at the end of glycan
chains of different tumors, and tumor acidosis is a hallmark of
cancer, 5-BPA could be applied for developing targeted
treatments against CSCs in a wide range of tumors.
CONCLUSION AND FUTURE
PERSPECTIVES

Here, we briefly presented the effects of glycosylation on CSCs
and the possibility to develop therapeutic approaches against
such aberrant glycosylation. While glycosylation has been
identified to be essential in the signaling pathways and markers
of CSC regulating self-renewal, stemness and extravasation,
more studies are necessary to unveil differences in glycome and
glycosylation of normal cells, stem cells, CSCs and non-CSCs.
Such information will allow researchers to develop biomarkers
for detecting cancer progression, and precisely target cancer cells
and resistant CSCs. Abnormal glycosylation of CSCs plays key
role and contributes to their resistance to chemotherapy and
ability to metastasize via several pathways. While inhibition or
manipulation of the glycosylation in CSCs has been shown to be
therapeutic, further exploration into the glycosylation associated
processes is required to develop effective strategies targeting
specific altered markers or signaling pathways without affecting
healthy cells. Some approaches, like selectively cleaving surface
glycan of tumors, or drugs with affinity for tumor associated
glycans, have already demonstrated differential toxicity to tumor
cells compared to normal cells, suggesting therapeutic potential
through therapeutic window optimization. Moreover, even
though CSC markers can present intratumoral and
intertumoral heterogeneities, glycosylation could provide
relevant targets that are preserved throughout tumors, such as
SA, thereby, facilitating the development effective and wide-
ranging treatment strategies.
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