
Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits
clonogenic tumour cell growth in vitro and in vivo consistent with a
cancer stem cell targeting mechanism
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The pentacyclic acridinium methosulfate salt RHPS4 induces the 30single-stranded guanine-rich telomeric overhang to fold into a
G-quadruplex structure. Stabilisation of the latter is incompatible with an attachment of telomerase to the telomere and thus
G-quadruplex ligands can effectively inhibit both the catalytic and capping functions of telomerase. In this study, we examined
mechanisms underlying telomere uncapping by RHPS4 in uterus carcinoma cells (UXF1138L) with short telomeres and compared
the susceptibility of bulk and clonogenic cancer cells to the G-quadruplex ligand. We show that treatment of UXF1138L cells with
RHPS4 leads to the displacement of the telomerase catalytic subunit (hTERT) from the nucleus, induction of telomere-initiated DNA-
damage signalling and chromosome fusions. We further report that RHPS4 is more potent against cancer cells that grow as colonies
in soft agar than cells growing as monolayers. Human cord blood and HEK293T embryonic kidney cell colony forming units, however,
were more resistant to RHPS4. RHPS4-treated UXF1138L xenografts had a decreased clonogenicity, showed loss of nuclear hTERT
expression and an induction of mitotic abnormalities compared with controls. Although single-agent RHPS4 had limited in vivo
efficacy, a combination of RHPS4 with the mitotic spindle poison Taxol caused tumour remissions and further enhancement of
telomere dysfunction.
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Protection of chromosome termini from end-to-end fusion,
recombination and degradation is achieved by the telomeres
(Blackburn, 1991; Blasco, 2004). A current model proposes that
telomeres form ‘a cap’ at the end of chromosomes. The structure
adopted by the G-rich 30-end overhang is thought to involve a
G-quadruplex (Williamson, 1994; Parkinson et al, 2002) and/or
loops after invading the double-stranded region of the telomere
(Griffith et al, 1999). The physical integrity of the telomere ‘cap’
must be intact to allow cell division to proceed (Blackburn, 2000).
Regulated uncapping occurs normally in dividing cells with the
crucial property that a functional telomere rapidly switches back
to a capped state (Smith and Blackburn, 1999; Blackburn, 2001).
The ‘uncapping’ signal for growth arrest, which is triggered when
telomere-mediated chromosome end-protection becomes insuffi-
cient due to reduction in telomere length and/or damage to
telomere structure, has been elucidated recently. It activates the
double-strand break (DSB)-mediated DNA damage response

pathway, because a short, dysfunctional telomere can resemble a
double-strand DNA break (Blackburn, 2000; d’Adda di Fagagna
et al, 2003; IJpma and Greider, 2003).

In normal somatic cells, which have a finite replicative lifespan,
telomeres progressively shorten with successive cell divisions due
to the inability of DNA polymerase to replicate DNA fully to the
chromosomal end (Hayflick and Moorhead, 1961; Makarov et al,
1997). Cells with self-renewal capacity such as stem and cancer
cells possess a telomere maintenance mechanism, namely the
expression of the telomere-elongating enzyme telomerase, con-
ferring their immortality. The activation of telomerase has also
been shown as an early, crucial event in the genesis of tumour
from normal cells and is considered a hallmark of cancer (Kim
et al, 1994; Hahn et al, 1999; Hanahan and Weinberg, 2000).
Recently it has become evident that telomerase stabilises telomeres
independently of its elongation role through an additional
‘capping’ function and appears to mediate cell survival in the
presence of various cytotoxic stresses (Blasco, 2002; Masutomi
et al, 2003; Sung et al, 2005).

Since most normal cells lack telomerase, and because marked
differences exist in telomere length between telomerase-positive
adult stem cells or germ cells (average telomere length B15 kb)
and cancer cells (B5 kb), inhibiting telomerase activity and/or
interfering with the telomere capping function have arisen as
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attractive targets for cancer treatment (Burger, 1999; Kelland, 2005;
Burger, 2007).

An approach that may be capable of both shortening telomeres
and directly causing telomere uncapping is the use of
G-quadruplex ligands. The sequestering of the telomere in a
G-quadruplex structure inhibits the catalytic lengthening activity
of telomerase, which requires the 30 end to be in a non-folded form
(Zahler et al, 1991). G-quadruplex structures are readily bound
and stabilised by small molecule ligands such as RHPS4 (3,11-
difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosul-
fate, a pentacyclic salt, NSC 714187, Figure 1A) (Gowan et al, 2001)
and other G-quadruplex ligands (Burger et al, 2005; Reed et al,
2006; Tahara et al, 2006). A characteristic of RHPS4 is a low overall
growth-inhibitory activity in short-term cytotoxicity assays such as
the 48 h sulforhodamine B assay used by the NCI 60 cell line screen
(mean IC50 13.18mM), but potent inhibition of telomerase enzyme
activity (IC50 0.33 mM) (Heald et al, 2002). RHPS4, however, exerts
clear tumour growth inhibitory effects in longer term growth
assays in vitro in various experimental models (Gowan et al, 2001;
Leonetti et al, 2004; Cookson et al, 2005); phenotypic changes are
consistent with a G-quadruplex-stabilizing mechanism of action at
telomeres, with the consequent inhibition of telomerase. Sensiti-
vity to growth inhibition by RHPS4 appears correlated to telomere
length as shown in a panel of human tumour lines that were grown
in the clonogenic assay, also known as the human tumour stem cell
assay (HTCA) (Hamburger and Salmon, 1977; Cookson et al,
2005). The most sensitive tumour line was the uterus carcinoma
UXF1138L, which possesses short telomeres (mean TRF 2.7 kb).
UXF1138L cells were thus selected for in vitro experiments and
in vivo efficacy testing reported here. We show that treatment of
UXF1138L cells with RHPS4 leads to rapid telomere uncapping,
DSB DNA-damage signalling and consequently chromosomal
end-to-end joining. We further report that RHPS4 is more potent
against cancer cells that grow as colonies in soft agar than bulk
cancer cells that grow as monolayers. Colonies formed by human
cord blood and HEK293T embryonic kidney cells were more

resistant to RHPS4. Similarly, in vivo-treated UXF1138L xenograft
tissue had a decreased clonogenicity and exhibited mitotic
abnormalities, consistent with telomere dysfunction. Finally, we
demonstrate that the telomere-targeting agent RHPS4 and the
tumour ‘debulking’ agent Taxol act in a synergistic manner and
can cause complete remission of UXF1138L xenografts.

MATERIALS AND METHODS

Drugs

RHPS4 was synthesised as described (Heald et al, 2002). RHPS4 is
water-soluble and was therefore dissolved in phosphate-buffered
saline (PBS). For in vitro studies, paclitaxel (Taxol) was purchased
from Sigma (St Louis, MO, USA) and dissolved in dimethylsulph-
oxide; for in vivo experiments, the clinical formulation was used
and obtained from our Hospital Pharmacy (in Cremophor from
Bristol-Myers Squibb, New York, NY, USA).

Cell lines and animals

The UXF1138L uterus carcinoma cell line was originally estab-
lished from a patient tumour by Prof Heiner Fiebig at the
University of Freiburg, Germany (Fiebig and Burger, 2001). All
animal experiments were conducted under an animal license
approved by the German Federal Government (Regierungspräsi-
dium Freiburg) and in compliance with the UKCCCR guidelines on
experimental neoplasia (Workman et al, 1998). Six- to 8-week-old
female thymus aplastic nude mice of NMRI genetic background
were used for establishment and serial propagation of the human
tumour xenograft from the cell line. PC3 and MCF-7 cells were
obtained from American Type Culture Collection (Manassas, VA,
USA). The HEK293T human embryonic kidney cell line was a kind
gift from Dr Arun Seth (Sunnybrook Health Sciences Centre,
Toronto, Canada). Umbilical cord blood was freshly obtained from
our hospital maternity ward with the consent of the respective
patient, specimens were anonymised. The cord blood was collected
into a BD Vacutainer CPTt and the mononuclear fraction isolated
by centrifugation following the manufacturers instructions.

MTT proliferation assay and in vitro combination studies

Cells were grown under standard conditions (5% CO2/371C/
humidified atmosphere) in their respective recommended media
such as RMPI 1640, or DMEM (from Invitrogen, Carlsbad, CA,
USA) supplemented with 10% fetal calf serum and passaged
routinely. Exponentially growing cells were seeded in 96-well plates
(2000 per well) and drugs (RHPS4 or Taxol) were added in
concentrations ranging from 0.1 nM to 100 mM the following day.
Cell proliferation was determined 5 days after continuous exposure
to drug by addition of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazoliumbromide (MTT) (Mosmann, 1983). The conversion of
MTT to purple formazan by viable cells was measured using a
SynergyHT plate reader (550 nm) and K4C software (BioTEK,
Winooski, VT, USA). Growth curves were generated as percent of
control and growth inhibitory concentrations 50 and 100%
determined.

Drugs were combined at the fixed ratio of their IC50 in six
concentrations, ranging from 0.01 to 10mM for RHPS4, and MTT
assays were performed as described above. Fractions of affected cells
were calculated from the absorbance readouts and entered into the
Calcusyn 2.0 software (Biosoft, Ferguson, MO, USA) (Chou and
Talalay, 1984); combination index values were extracted.

Preparation of metaphase spreads

Cells were grown to 70% confluency and treated with 1 mM RHPS4
or PBS (vehicle control) for 24 h in a T75 tissue culture flask.
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Figure 1 (A) Structure of RHPS4 (NSC 714187), 3,11-difluoro-6,8,13-
trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate. (B) Design of in vivo
xenograft studies. Fragments (grey spheres) from an untreated donor
animal were implanted into recipient mice, which were treated orally with
5 mg kg�1 day�1 RHPS4 every 3 days for eight times after randomisation
(¼ 6 days after tumour transplantation). Tissue from the vital rim of three
tumours from each group was homogenised, digested and primary cultures
as well as clonogenic growth assays prepared from single-cell suspensions.
Primary cultures were used for analysis of telomere length. The control
mouse group was always derived from untreated tumour fragments, but
from the same initial passage and donor mouse as were the RHPS4-treated
tumours. A total of four passages were analysed.
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Supernatants were then replaced with media containing 10 mg ml�1

Colcemid (Sigma) and incubated for 90–120 min at 371C. Next,
cells were trypsinised and centrifuged at 500 g for 5 min; 8 ml of
60 mmol l�1 KCl was added to the pellets and the cell suspension
incubated for 20 min at 371C. In a pre-fixation step, 2 ml freshly
made fixative (methanol/glacial acid 3 : 1) was added on top of the
hypotonic suspension and mixed carefully by turning the tube.
After 10 min at RT, the mix was centrifuged at 600 g for 10 min and
the supernatant removed. For fixation, 10 ml fixative was added
and the mix kept at RT for 10 min and centrifuged as above, the
step was repeated two more times. Then, 0.5 ml fresh fixative was
added to obtain a milky suspension of cells without clumps.
Cleaned slides were placed horizontally at a 451 angle and 100ml of
cell solution dropped onto the slide from a distance of about
20 cm. Slides were dried at RT or directly dehydrated through
an ethanol series of 70, 90 and 100%. After dehydration, slides
were rinsed in PBS and incubated with 0.1 mg ml�1 DAPI (40,6-
diamidino-2-phenylindole)/PBS for 30 min at RT. To remove
excess DAPI, slides were rinsed � 4 with PBS and mounted
(Vectashield, Burlingame, CA, USA). Results were documented
using the fluorescent module of a Leica DM4000 microscope with
Retiga camera (Leica, Wetzlar, Germany).

Telomere fluorescence in situ hybridisation

All human centromere (cat. no. CP5095-B.5) and telomere
(CP5097-DG.5) probes labelled with biotin or digoxigenin (Q-
Biogene, Irvine, CA, USA) were used for hybridisation to
metaphase preparations of UXF1138L cells following a protocol
provided by the manufacturer. The probes were detected with
fluorescein-labelled avidin for centromere signal (green), and
rhodamine-labelled anti-digoxigenin for telomeres (red/pink). The
chromosomes were counterstained with DAPI (blue). Images
were captured at � 100 magnification by using a Zeiss Axiovert
Fluorescence Microscope (Carl Zeiss, Gottingen, Germany).

Phosphorylated H2AX (c-H2AX) and hTERT
immunofluorescence staining

Approximately 75 000 UXF1138L cells per chamber were seeded
onto eight-chamber glass slides (Corning, Acton, MA, USA) 24 h
before RHPS4 treatment. After exposure to 1 mM RHPS4 for 1, 6 or
24 h, cells were washed twice with PBS and air-dried. Cells were
fixed and permeabilised by immersion into ice-cold methanol/
acetone (1 : 1; 3� 1 min). Slides were blocked overnight at 41C with
5% bovine serum albumin in PBS and washed with PBS (� 3)
before incubation (2 h) with anti-g-H2AX mouse monoclonal
antibody (Upstate, Waltham, MA, USA; 1 : 250 in PBS) or hTERT
monoclonal antibody (NCL-L-hTERT Novacastra, Newcastle, UK;
1 : 40), respectively. Control cells were probed with mouse IgG
(Santa Cruz Biotechnolog Inc., Santa Cruz, CA, USA). Slides were
washed 3� with PBS, before incubation with a goat anti-mouse
FITC-conjugated secondary antibody (Sigma; 1 : 100, 3 h). Follow-
ing further PBS washes (3� ), slides were incubated with 1 : 5000
DAPI (2 mg ml�1; Sigma), washed 3� in PBS and mounted with
Vectashield mounting media. Images were visualised as described
above.

Immunoblotting for c-H2AX

Cells were grown to 50% confluency in six-well plates (BD Falcon,
Franklin Lake, NJ, USA) and treated with 1 mM RHPS4 for 1, 6 and
24 h. Histones were released by the method described by Meng
et al (2005). Briefly, cells were scraped and spun at 2 –41C/1000 g
for 15 min. Pellets were washed twice with PBS, homogenised with
0.2 N sulphuric acid and centrifuged for 15 min at 2 –41C/13 000 g.
Supernatants were collected and 0.25 volume of 100% (w/v)
trichloroacetic acid was added to precipitate histones. After

centrifugation for 15 min at 2 –4oC/13 000 g, pellets were sus-
pended in absolute ethanol for overnight and again spun for
15 min at 2–41C/13 000 g. Histones were dissolved in water and
protein concentration was determined using the BioRad protein
assay (BioRad Laboratories, Hercules CA, USA). About 12.5mg of
protein were loaded onto 4 –20% Tris-glycine gels (Invitrogen) and
separated at 125 V for 90 min. Proteins were then transfered onto a
polyvinylidene difluoride membrane (Immobilon-P, Millipore,
Billerica, MA, USA). Membranes were blocked with 10% non-fat
milk in TBS-T (0.02% Tween 20) for 1 h, followed by overnight
incubation with g-H2AX (Upstate) antibody (1 : 1000 dilution).
Signals were visualised by chemiluminescence using the ECLt
Western-blotting analysis system (Amersham Biosciences, Pitts-
burgh, PA, USA). Coomassie blue staining was used to assure equal
loading control.

In vivo testing

Single-agent activity: For the first in vivo experiment, tumour
fragments (5� 5 mm) from untreated donor animals were
implanted subcutaneously into both flanks of recipient mice.
Treatment was initiated 6 days after transplantation (¼ day 0,
median tumour volume of B70 mm3). Animals were randomised
into groups following Lindner’s randomisation tables and treated
by oral gavage with 5 mg kg�1 day RHPS4 or vehicle (PBS), (n¼ 5–8
animals per group). In earlier experiments, this dose was found to
be the 1

2 maximal tolerated dose in the mouse strain used and was
well tolerated in repetitive dosing regimens. Drug administration
was repeated twice weekly for eight times (Q3d� 8) after
randomisation. Tumour growth was followed twice weekly by
serial caliper measurement, body weights were recorded and
tumour volumes were calculated using the standard formula
(length�width2)/2, where length is the largest dimension and
width the smallest dimension perpendicular to the length (Geran
et al, 1972; Alley et al, 2004). The median relative tumour volume
was plotted against time. Relative tumour volumes were calculated
for each single tumour by dividing the tumour volume on day X
by that on day 0 (time of randomisation). Growth curves were
analysed in terms of tumour inhibition (treated/control, T/C,
calculated as median tumour weight of treated divided by median
tumour weight of control animals� 100). Statistical data analyses
were performed using non-parametrical Wilcoxon Mann– Whitney
statistics. Median relative tumour volumes of each treatment group
were compared with those of the vehicle control groups. P-values
o0.05 were considered statistically significant. SPSS 2000, SYSTAT
version 10 software, was used.

Upon termination of the experiment, which was when control
tumours reached a volume of 1.5 cm in diameter (day 28), RHPS4-
treated tumour tissue and control tumours were excised, minced
and digested using a mixture of collagenase (123 U ml�1), DNase
(375 U ml�1) and hyaluronidase (290 U ml�1) in RPMI 1640
medium at 371C for 3 h. All enzymes were purchased from Roche
(Indianapolis, IN, USA). Primary cultures as well as clonogenic
growth assays were prepared from the resulting single-cell
suspensions. Primary cultures were used for analysis of telomere
length. In addition, RHPS4-treated tumours (5 mg kg�1 day�1) and
control were propagated into new animals for up to three times.
The control mouse group was always derived from untreated
tumour fragments, but from the same initial passage as were the
RHPS4-treated tumours (Figure 1B).

Combination treatment with Taxol: After four serial propaga-
tions of RHPS4-treated tumour tissue in nude mice (Figure 1),
RHPS4 was combined with Taxol. Single-agent Taxol was
given at 20 mg�1 kg�1 i.v. on days 1 and 15. In combination
with RHPS4 (given at 5 mg kg�1 p.o. twice weekly), only a single
dose of Taxol (20 mg kg�1 i.v.) was administered on day 1. Tumour
growth parameters and body weight were assessed as described
above.
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Upon termination of the experiments, tumours from three mice
per group were excised and immediately fixed in 10% PBS-
buffered formalin for 24 h followed by routine paraffin embedding
procedures (Burger et al, 2005).

Immunohistochemistry

About 5-mm paraffin sections were cut, dewaxed and antigen
retrieval performed in citrate buffer (pH 6.0) in the microwave for
30 min. Sections were then treated with methanol/3% hydrogen
peroxide to remove endogenous peroxidase and blocked with 10%
normal goat serum in PBS and stained. PBS was used as washing
buffer. Cells were incubated overnight at 4oC with a monoclonal
anti-hTERT antibody (class IgG2a, kappa, Novacastra, Newcastle,
UK) diluted 1 : 40 in PBS. Mouse immunoglobulin G2a isotype
control (Santa Cruz) was used as negative control. hTERT-specific
immunoperoxidase staining was developed using the DAKO
Envisionþ system (Envision 3,3V-diaminobenzidine Plus kit
mouse, DAKO Cytomation). To enhance contrast, tissues were
counterstained with haematoxylin. hTERT-specific staining in-
tensity was documented using a Leica DM4000 microscope and
digital camera. Sections were viewed and evaluated by two
independent pathologists. Mean numbers of atypical mitoses were
counted in control and treated tissues from three tumours (four
fields of 250 cells per tumour) for the three groups (Burger et al,
2005). Box plots were generated using SigmaPlot version 10
software and statistical significance between treatments calculated
in SigmaPlot using the Student’s t-test.

HTCA/clonogenic assay

Digested tumour tissue from in vivo studies discussed above were
washed in medium and passed through sieves and the resulting
single-cell suspensions seeded into soft agar (n¼ 3 tumours per
group) as described by us before (Fiebig et al, 2004). Single-cell
suspensions of cell lines were prepared by trypsinisation from
cells growing as monolayers on plastic. Briefly, 5000 (HEK293T
cells), 10 000 (PC3, MCF-7 and UXF1138L cells) or 50 000
(UXF1138L tumour tissue) vital cells were added to 0.2 ml Iscove’s
medium/20% fetal bovine serum/0.05% gentamycin containing
0.4% agar and plated on top of a base layer consisting of 0.2 ml
medium with 0.75% agar. The next day, the agar layers were fed
with Isocve’s medium and cultures incubated at 371C, 7% CO2

for approximately 11 days. Vital colonies were stained with
2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride
(1 mg ml�1) 24 h before evaluation, and colonies 470mm were
counted with an automated image analysis system (Omincon
FAS IV, BIOSYS GmbH, Karben, Germany). Drug effect was
assessed as growth inhibitory concentrations 50 and 70% (IC50 and
IC70). Methylcellulose was used to grow cord blood stem cells
instead of soft agar. The seeding density was 20 000 cells well�1.
Stem cell growth factor supplemented and optimised methylcellu-
lose (Methocult H4434) was purchased from Stem Cell Techno-
logies (Vancouver, CA, USA). Methylcellulose lacking growth
factors was used as negative growth control. Statistical significance
between treatment groups was evaluated by using the Student’s
t-test.

Measurement of telomere restriction fragment length

Genomic DNA was isolated from 3- to 7-day primary cultures
established from single cell suspensions of control and treated
UXF1138L xenograft tissues using the DNeasy Tissue Kit (Qiagen,
Hilden, Germany). Southern blotting was performed with
the Telo-TAGGG-telomere length kit from Roche (Penzberg,
Germany) and analysed as described before (Burger et al, 2005;
Cookson et al, 2005).

RESULTS

Effects of RHPS4 on clonogenic cell growth in vitro

We have compared the growth inhibitory activity of RHPS4 in
human bulk tumour cells, by MTT assay, against RHPS4 activity
in tumour cells grown as colonies in the clonogenic assay, also
termed as HTCA (Figure 2A and B). HEK293T human embryonic
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Figure 2 (A) Comparison of the antiproliferative activity of RHPS4 in
uterus (UXF1138L) and prostate (PC3) cancer cell lines grown as colonies
in the HTCA (broken lines) or as monolayers in the MTT assay (solid lines).
UXF1138L #of colonies 100%¼ 56; O.D. 100%¼ 0.770.03; PC3 #of
colonies 100%¼ 94718, O.D. 100%¼ 0.7570.01. (B) RHPS4 is two log-
fold more active in MCF-7 cells grown as colonies (IC50¼ 0.04 mM, grey
arrow) in the HTCA than in MCF-7 whole-cell populations (IC50¼ 2 mM,
grey arrow). #of colonies 100%¼ 101736, O.D. 100%¼ 2.770.19. (C)
Effects of RHPS4 on colonies of HEK293T embryonic kidney cells in the
HTCA and human cord blood mononuclear cells in the methylcellulose
assay. Colony growth of HEK293T cells is compared to the growth of
the bulk cell population by MTT assay. Data are depicted as % of control
growth and mean number of colonies per well (HTCA), or the mean
optical density measured at 550 nm (MTT assay). All data represent the
mean of three independent experiments plus standard deviation. Cord
blood #of colonies in the control (100%)¼ 31.6; HEK293T, #of colonies
100%¼ 187.25; O.D. 100%¼ 1.215. Data shown are representative of
three independent experiments. O.D.¼ optical density.
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kidney cells grown in the HTCA, and cord blood cells cultured
in methylcellulose were also treated with RHPS4 (Figure 2C). The
MTT assay is a 5-day proliferation test measuring effects on a
morphologically heterogeneous, differentiated cell population
(bulk cells), whereas the HTCA and methylcellulose assays are
longer term (10–15 days) tests in which only a very small fraction
of a bulk culture (B0.1–1%) will grow as colonies. Cells growing
anchorage independently as colonies in a semi-solid matrix are
considered to be pluripotent stem cells (Hamburger and Salmon,
1977; Fiebig et al, 2004; Locke et al, 2005). Figure 2A shows a
comparison of responses to RHPS4 in two tumour cell lines with
short telomeres, the uterus carcinoma UXF1138L and the prostate
cancer cell line PC3. Drug concentrations needed to inhibit colony
growth in the HTCA were a magnitude of around 20– 60-fold lower
(IC50 UXF1138L¼ 0.02 mM, PC3¼ 0.03 mM) than those needed to
cause 50% growth inhibition of the bulk population by MTT assay
(IC50 UXF1138L¼ 0.4 mM, PC3¼ 1.8mM). Similar observations were
made with the breast cancer cell line MCF-7 (shown in Figure 2B,
HTCA IC50¼ 0.04 mM; bulk cell IC50¼ 2 mM). These data suggest
that cancer stem cells are more sensitive to RHPS4 than the whole
cancer cell population.

To assess RHPS4 effects on normal stem cells, we exposed the
human embryonic kidney cell line HEK293T to drug in the MTT
and HTCA assays, and tested RHPS4 effects on colony forming
units of the mononuclear cell fraction of human cord blood in
methyl cellulose (Figure 2C). The cord blood colony assay was
performed with and without colony stimulating growth factors,
only methylcellulose containing growth factors grew colonies.
Interestingly, RHPS4 concentrations that inhibited colony forma-
tion by human embryonic kidney and cord blood (41 mM) cells
were over 25-fold above those inhibiting tumour cell colony
formation (Figure 2C). Additionally, in normal cell types as
compared with tumour cells, low and pharmacodynamically
relevant concentrations of RHPS4 (0.01–1 mM) induced colony
formation (Figure 2C). To assure that the induction of colony
growth by RHPS4 in normal stem cells is reproducible, we used
cord blood from three different individuals and HEK293T cells
from different passages. Data shown in Figure 2C represent the
mean and standard deviation from three independent experiments.
Consistently, 0.1 and 1 mM RHPS4 caused a stimulation of growth
by doubling to tripling the number of colonies compared to vehicle

(PBS)-treated controls (Figure 2C). However, the plating efficiency
(actual number of colonies growing per total number of cells
seeded) varied among the experiments and therefore the results
are shown as % of control growth. For example, HEK293T control
colony growth ranged from a mean number of 54–463 colonies per
well, but the least percentage (cut-off level) of growth induction
by RHPS4 observed in either the individual HEK293T or the cord
blood experiments was 150 %. In contrast, HEK293T cells grown as
monolayer cultures in the MTT assay showed no induction of
growth at any of the eight dose levels tested (0.001–50 mM).
Instead, at RHPS4 levels that induced colony growth 2.4-fold
(1mM), bulk cell growth was inhibited to 60% of control
(Figure 2C).

Effects of RHPS4 on bulk tumour and clonogenic tumuor
cell growth in vivo

RHPS4 was administered orally twice a week for the course of the
experiment at half of its maximal tolerated dose (5 mg kg�1 day�1).
RHPS4 at 5 mg kg�1 day�1 was well tolerated in all in vivo studies
and did not cause any noticeable side effects, such as body weight
loss (Table 1). Efficacy of RHPS4 in subcutaneously growing
UXF1138L xenografts was determined in terms of ‘bulk’ tumour
growth inhibition relative to vehicle-treated controls (Figure 3A)
as well as by measuring clonogenicity. As shown in Figure 1,
control-treated and RHPS4-treated UXF1138L tumours were
transplanted into new animals upon termination of a therapy
experiment and treatment was essentially continued in another
host. Engraftments of treated tumour tissues were performed for
four consecutive passages. The result for single-agent RHPS4 in
passages 1 –4 are summarised in Table 1. Because UXF1138
xenografts are fast growing (average tumour doubling time¼ 5
days), we had to employ serial transplantation of RHPS4-treated
tissues to evaluate pharmacodynamic end points that would likely
require ‘chronic’ drug exposure such as successive telomere
erosion and inhibition of G0-arrested tumour stem cell fractions.
The results of the single-agent study in passage 3 are shown in
Figure 3A. Although, RHPS4 did not show oral single-agent
activity in any of the four passages, we did observe marked
reduction in clonogenicity of RHPS4-treated tumour tissue in the
soft agar tumour stem cell assay; inhibition of stem cell growth

Table 1 Summary of in vivo efficacy and pharmacodynamics

UXF1138L Xenograft Opt. test/control (%) (day) BWC (%) Deaths (n/n) HTCA growth (%) TRF (kb)

Passage #1
Vehicle control 100 (0) +9 0/5 10075.2 6.0
RHPS4 5 mg kg�1 63 (16) +26 0/5 8372.3 5.1

Passage #2
Vehicle control 100 (0) +13 0/6 100722 5.7
RHPS4 5 mg kg�1 100 (7) +9 0/6 9372.3 4.7

Passage #3
Vehicle control 100 (0) +29 0/8 100735 4.6
RHPS4 5 mg kg�1 67.7 (28) +21 0/8 54.576.6 3.4

Passage #4
Vehicle control 100 (0) +22 0/5 10076.2 4.9
RHPS4 5 mg kg�1 62 (16) +17 0/5 4476.4 4.2

CR PR P

Taxol 20 mg kg�1 8 (24) +6 0/6 2/12 7/12 3/12
Taxol/RHPS4 0 (19) +10 0/5 8/10 2/10 0/10

Opt. Test/Control (%) (day), optimal test/control median tumour volume in % and day it was observed; BWC, maximal median body weight change in %; n/n, number of drug-
related death per number of mice per group; HTCA, growth in the human tumour colony assay, colony growth of control was set 100%; TRF, mean telomere restriction
fragment length in kilo bases; CR, complete remission; PR, partial regression at any time during the experiment compared to initial tumour volume; P, progression.
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increased with successive passages (Table 1). In the experiment
depicted in Figure 3, we found tumour growth inhibition to a
maximal extent of 33% (optimal T/C at day 28 was 67%, P¼ 0.02)
compared with control, but a significant inhibition of colony
forming units in the same tumour tissues of 54%76.6 (Po0.0028)
(Figure 3A, insert).

Single-agent RHPS4 modulates telomeres and telomerase
in vivo

DNA generated from primary cultures of RHPS4-treated tumour
tissues that were harvested at termination of each experiment (see
Figure 1) was analysed for telomere length (Table 1). As shown
for passages 2 and 3 a clear difference between TRF length of
control and treatment groups was observed (Figure 3C). The mean
telomere length in RHPS4-treated xenograft tissue was approxi-
mately 1 kb lower than in control tissues (Table 1). Overall, TRF
length appeared to shorten at a rate of 1 kb per passage (B28
days). It has to be noted that accurate measurement of telomere
length of primary cultures from xenografts is problematic, because

the cultures contain a mix of human cancer cells and murine cells.
As seen in Figure 3C, an additional strong very high TRF signal
(421 kb) representing mouse telomeres was detected. Compared
to the TRF length of pure human UXF 1138L cells growing in tissue
culture (2.7 kb), the primary cells derived from in vivo grown
UXF1138L tumours had longer telomeres that varied in control
cultures from passage to passage (Table 1 and Figure 3C). This is
likely due to contamination with mouse cells.

Control and treated UXF1138L xenograft tissues were also
analysed for hTERT protein expression (Figure 3Da–c). Control
tumour tissue (Figure 3Db) readily expressed nuclear hTERT with
an accumulation of the enzyme in the nucleoli. In RHPS4-treated
UXF1138L xenograft tissue, loss of strong nuclear hTERT
expression was observed, but weak nuclear and cytoplasmic
hTERT staining remained (Figure 3Dc). Isotype control anti-
body-stained sections were completely negative (Figure 3Da),
confirming that the weak hTERT protein expression is specific.
Reduced-hTERT expression was accompanied by the prominent
occurrence of atypical mitotic figures such as ring chromosomes
(Figure 3Dc, enlargement) and anaphase bridges, indicative of
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Figure 3 (A) Tumour growth inhibition of subcutaneous UXF1138L xenografts in passage 3 of chronic RHPS4 exposure or vehicle only treated controls.
Drug was given orally every 3 days, eight times. Shown are the median relative tumour volumes in %; the tumour size at randomisation was set as 100%. (B)
Effects of RHPS4 in vivo treatment on tumour colony growth/stem cell formation in vitro from tumours in A. Colony count: control¼ 847s.d. 29.6; RHPS4
5 mg kg�1 day�1¼ 467s.d. 5.1. (C) Telomere restriction fragment length measured in primary cultures from tumours in (A) (passage 3, P3) and the
previous experiment (passage 2, P2) by Southern blot. Telomeres of treated UXF1138L xenografts were B1 kb shorter than control tissues (TRF P2, lane 2:
B5.7 kb compared to lane 3: B4.7 kb; TRF P3, lane 4: B4.6 kb vs lane 5: B3.4 kb). Lane 1¼molecular weight standard supplied with the Roche Telo-
TAGGG kit. (D) Loss of nuclear hTERT expression and occurrence of atypical mitotic figures after RHPS4 treatment. Control tissues were probed with
mouse IgG (isotype negative control, (a), and monoclonal hTERT antibodies (b). RHPS4-treated tissue was stained for hTERT protein expression (c),
sections were counterstained with haematoxylin. RHPS4 treatment leads to the loss of nuclear hTERT expression (c) and increase in mitotic abnormalities,
for example ring chromosomes (enlargement and black arrows) and anaphase bridges.
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telomere dysfunction and chromosomal damage. Atypical mitotic
figures were quantified in Figure 5C. RHPS4 mono therapy
(5 mg kg�1 day�1 p.o.) evoked a significant induction of mitotic
abnormalities compared to vehicle-treated control (P¼ 0.0011).

Evidence of telomere uncapping by RHPS4 in vitro

To confirm and clarify the data presented in Figure 3D, we
followed hTERT protein expression after treatment with 1 mM

RHPS4 in UXF1138L cells in vitro. Control cells exhibited strong
expression of hTERT in the nucleoplasm particularly in the
nucleoli (Figure 4A); nuclear hTERT expression was attenuated,
whereas cytoplasmic protein was more detectable in cells treated
with RHPS4 for 24 h (Figure 4A, white arrows). This suggests that

RHPS4 binding to the telomere can displace hTERT from the
nucleus leading to its translocation into the cytoplasm. Con-
comitantly, we observed the phosphorylation of histone variant
H2AX, g-H2AX (Figure 4B and C), which indicates putative
telomere-initiated DNA-damage signalling. g-H2AX expression
was seen as early as 1 h after exposure of UXF1138L cells to 1 mM

RHPS4 by Western blot and at similar levels at 6 and 24 h
(Figure 4B), suggesting the maximal signal was reached at 1 h
already. We confirmed the 24 h time point by immunoflourescence
staining of g-H2AX foci (Figure 4C). The majority of RHPS4-
treated UXF1138L cells showed strong g-H2AX foci formation that
were extended throughout the nucleus (Figure 4Da), a smaller
fraction of nuclei showed a distinct punctuate g-H2AX pattern
(Figure 4C and Da). To investigate whether g-H2AX foci might
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Figure 4 (A) Expression of hTERT in UXF1138L cells. Expression of hTERT in UXF1138L cells treated with PBS (control) or 1mM RHPS4 for 24 h. In
RHPS4-treated cells, nuclear hTERT signal is attenuated. The white arrows in the lower panel to the right indicate distribution of hTERT in the cytoplasm.
Cells were dual labelled against hTERT (green) and for DNA (blue). Bars¼ 15mm. (B) Western blot of nuclear extracts from UXF1138L cells treated for 1,
6 and 24 h with 1mM of RHPS4. Membranes were developed with anti-g-H2AX antibodies (upper panel), and/or gels directly stained with Coomassie blue
(lower panel, equal loading control). (C) g-H2AX expression in nuclei of UXF1138L cultured in the absence (top) and presence of RHPS4 (bottom). (D)
Enlargement of g-H2AX positive, DAPI-stained UXF1138L cells from (D) (indicated by white box) in (a), and UXF1138L interphase nuclei probed with
human telomere (pink) and centromere (green) paints by fluorescence in situ hybridisation in (b). (E) Metaphase spreads from treated (24 h) and control
UXF1138L cells. RHPS4 exposure for 24 h (1mM) results in ring and dicentric chromosomes (white arrows) that are responsible for the formation of
anaphase bridges.
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localise to telomeres, we performed fluorescence in situ hybridisa-
tions with telomere and centromere probes on interphase nuclei of
UXF1138L cells (Figure 4Db). Because of the very short telomere
length in UXF1138L cells, telomere signal (pink, Figure 4Db) was

very weak, but a clear punctuate pattern was observed that did not
match to the more diffuse and extensive g-H2AX foci. Moreover,
the number of centromere (green) and telomere signals (pink,
Figure 4Db) was consistent with the number of chromosomes,
whereas g-H2AX foci exceeded the number of telomeres.

During the microscopic evaluation of g-H2AX foci, it became
apparent that RHPS4-treated UXF1138L had an increased occur-
rence of anaphase bridges (data not shown). To test whether
anaphase bridges are a result of chromosome fusions, we
generated metaphase spreads from control cells and cells treated
with 1 mM RHPS4 for 24 h (Figure 4E). DAPI staining revealed that
RHPS4 has a marked effect on chromosome morphology; an
increase in end-to-end joining, as evident in ring and dicentric
chromosomes were observed (Figure 4E, white arrows). The
very rapid occurrence of RHPS4 effects depicted in Figure 4
strongly supports the hypothesis that RHPS4 can cause telomere-
capping alterations in tumour cells with short telomeres such as
UXF1138L.

RHPS4 and Taxol act synergistically

Under the influence of a mitotic spindle poison (Taxol stabilises
microtubles), mitotic cells fail to enter anaphase. This mechanism
together with the telomeric DNA-damage response induced by
RHPS4, which leads to anaphase bridging (see Figure 4E),
suggested us that the two agents might synergise. First, we
performed in vitro cytotoxicity assays in UXF1138L cells with the
single agents and the combinations thereof at their fixed IC50

values, and processed the results using Calcusyn software. Taxol
combined with RHPS4 showed combination indices (CI) below 1 at
all levels (%) of effect, ED50 (ED, effective dose), ED75 and ED90,
indicating synergism of the two drugs (Figure 5A). Second, we
combined RHPS4 with Taxol in vivo and evaluated UXF1138L
tumour growth inhibition in nude mice. The study was performed
with UXF1138L tumours in passage 4 (Figure 1B) of continuous
treatment with RHPS4 and not previously untreated UXF1138L
tumours because we wished to continue to study single-agent
activity with successive passages and exploit the concept of RHPS4
as a chemosensitising agent; RHPS4 was given as detailed above
(see Figure 3). The combination of RHPS4 and Taxol together
showed markedly enhanced efficacy over that of either single agent
alone (Figure 5B, Table 1). Taxol alone produced significant
growth inhibition (optimal T/C (day 21)¼ 8%, Po0.04) with
transient remissions seen on days 7–10 when the drug was given
i.v. on days 1 and 15. RHPS4 single-agent activity was slightly more
pronounced than in passage 3 (Figure 3) with an optimal T/C of
62% (Figure 5B). For the in vivo combination, we administered
RHPS4 at 5 mg kg�1 p.o. twice weekly till the experiment was
terminated (day 40, Figure 5B) and injected Taxol i.v.
(20 mg kg�1¼MTD) together with the first dose of RHPS4. A
second dose of Taxol on day 15 was not given, because the
tumours had regressed (T/C day 15¼ 1%, Figure 5B). Complete
remissions were observed as of day 19 (T/C¼ 0%, Po0.0017). The
combination regimen and both of the single agents were well
tolerated and appeared to lack noticeable, side effects. No body
weight loss or drug-related deaths were observed (Table 1). We
have used groups of 5 –6 animals with two subcutaneously growing
xenografts each (n¼ 10–12 tumours). Individual animals in the
combination group had residual tumour masses (smaller than the
tumour size at day 0 of the experiment, Table 1), which were
excised and analysed for mitotic abnormalities. UXF1138L vehicle
control tumours and xenografts treated with RHPS4 alone were
also examined. As seen before for the single-agent treatment,
anaphase bridging and atypical mitoses occurred (Figures 3D and
5C, Po0.001). They were even more pronounced in the combina-
tion group (Figure 5C, Po0.0003). Together, our in vitro and in
vivo data suggest that Taxol and RHPS4 could be useful clinical
combination partners.

Combination index values at
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Figure 5 (A) The combination of RHPS4 and Taxol in UXF 1138L cells
in vitro is synergistic. Shown are the CI against fractional effect (on growth)
for the in vitro combination of RHPS4 and Taxol at a fixed ratio of their
individual IC50 values. CI values are given for the doses effecting 50, 75 and
90% growth inhibition compared with control (ED50, ED75 and ED90,
respectively); CI values below 1 indicate synergistic drug effects (Chou and
Talalay, 1984). (B) Tumour growth inhibition of UXF1138L xenografts by
Taxol given at 20 mg kg�1 i.v. on days 1 and 15. Shown is the median
relative tumour volume in %. Control and RHPS4 groups had to be
sacrificed on day 21, whereas the combination showed complete
remissions and was terminated after 40 days. Minor remissions were seen
on days 7–10 (n¼ 6 mice). The combination of RHPS4 (5 mg kg�1 p.o.
twice weekly) and Taxol (single dose 20 mg kg�1 i.v. on day 1) was highly
effective and led to complete, durable remissions of UXF1138L xenografts.
RHPS4 alone produced only marginal growth inhibition (n¼ 5 mice). (C)
Box plots for atypical mitosis in UXF1138L tumours. Residual tissues
masses from RHPS4/Taxol treated tumours show pronounced induction of
atypical mitoses compared to vehicle control. The number of mitotic
abnormalities is further increased in the combination group from that
seen with single-agent RHPS4. Control¼ 0.3570.07, RHPS4
alone¼ 1.2570.19, and RHPS4þTaxol¼ 1.870.08. The line within the
box marks the median, whiskers indicate the 10th and 90th percentiles of
the box plots.
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DISCUSSION

Here we provide evidence for phenotypic effects consistent with
telomere uncapping induced by the G-quadruplex ligand RHPS4 as
the mechanism for in vitro and in vivo anti-tumour activity. Our
data showing the loss of the telomerase catalytic subunit hTERT
from the nucleus (Figure 4A) and the rapid induction of putative
telomere-initiated DNA-damage signalling as indicated by gH2AX
phosphorylation support the hypothesis that RHPS4 targets both
telomeres and telomerase. The loss of telomere-associated proteins
that have capping function such as hTERT and the stabilisation of
G-quadruplexes at the telomeric G-strand overhang upon ligand
binding appears to be more detrimental to cancer cells than
normal cells that express telomerase (Figure 2). Normal cell types
expressing telomerase are those with self-renewal capacity; they
include germ cells, embryonic stem cells and adult stem cells (Holt
et al, 1996; Burger, 1999). To examine the specificity of RHPS4 for
cancer cells, we have cultured the human embryonic kidney cell
line, HEK293T, and human cord blood in clonogenic assays, which
are known to grow stem cells (Hamburger and Salmon, 1977;
Fiebig et al, 2004). Interestingly, as shown in Figure 2C, colony
forming units of cord blood and HEK293T cells were over a log-
fold less sensitive to RHPS4 treatment than colonies forming from
tumour cells (Figure 2A and B). Cell kill of normal stem cells was
only seen at high drug concentrations (B10 mM) suggesting that
RHPS4 might have a relatively wide therapeutic window. More-
over, at RHPS4 concentrations that markedly inhibited tumour
colony forming units (0.1– 1 mM), cord blood and HEK293T-
derived colony growth was induced. When clonogenic growth of
human tumour cells was compared to bulk cell growth,
pronounced differences were seen (Figure 2A and B). Whole-cell
populations were more resistant to RHPS4. These observations
strongly suggest that human tumour stem cells can be differentially
targeted by G-quadruplex stabilising ligands and are in agreement
with recent findings that hTERT is a ‘stemness’ gene: hTERT
overexpression has been found to promote stem cell mobilisation,
whereas short telomeres have been reported to cause stem cell
failure (Hao et al, 2005; Sarin et al, 2005). In cancer, stem cells are
best understood in haematological malignancies. Whereas telo-
mere length maintenance in primitive human haematopoietic cells
is dissociated from telomerase activity, telomerase-dependent
telomere shortening appears to be involved in the chromosomal
instability and transformation of haematopoietic stem cells into
leukaemia stem cells (Wang et al, 2005; Ju and Rudolph, 2006).
Despite the inherent presence of telomerase in normal stem cells,
cancer stem cells arising from the latter require markedly higher
telomerase levels that are more efficient at telomere maintenance
(Armanios and Greider, 2005). Thus, cancer stem cells might be
more susceptible to loss of functional telomerase by telomere
uncapping.

While telomerase expression and telomere maintenance are key
to the limitless proliferative potential of stem cells, another key
feature is their ability of self-protection. At a molecular level this is
due to the expression of drug efflux pumps such as P-glycoprotein
(Pgp) and breast cancer resistance protein (BCRP) (Goodell et al,
1996; Donnenberg and Donnenberg, 2005). The uterine carcinoma
UXF1138L xenograft used in this study is overall resistant to
standard chemotherapy including drugs that are substrates of Pgp
and BCRP such as doxorubicin and mitoxantrone (Fiebig and
Burger, 2001); only Taxol has single-agent activity and tumours
inevitably re-grow after treatment (Figure 5B). This indicates that
UXF1138L tumours contain cells that can escape cytotoxic therapy
and re-populate the tumour consistent with the existence of cancer
stem cells.

Although RHPS4 did not show significant single-agent activity
in the regimen that we evaluated (optimal T/C 67%) according to
criteria set by the US-NCI (optimal T/C 40%¼ efficacy, Alley et al,
2004), we did observe marked target effects, namely loss of hTERT

expression in the nucleus, telomere shortening (B1 kb over 28
days) and telomere uncapping as suggested by the occurrence of
anaphase bridges or ring chromosomes (lack of significant single-
agent activity might be due to poor oral bioavailability of the
aridinium methosulfate salt, intravenous injections of RHPS4
might prove more effective) (Figure 3; Gisselsson et al, 2001). Most
importantly, however, a significant reduction in clonogenicity of
RHPS4-treated tumour tissue in the soft agar tumour stem cell
assay was seen (Figure 3, inset). Thus, the striking efficacy and
synergism between RHPS4 and Taxol, in the results shown in
Figure 5, can be interpreted in light of two factors: firstly,
mechanistic synergism between a mitotic spindle poison,
under which mitotic cells fail to enter anaphase, and a telomere-
damaging agent which induces anaphase bridging; and
secondly, the combination of a debulking agent (Taxol), with an
agent that can target critical ‘stemness factors’ in tumour stem cells
(RHPS4).

Our observations and data interpretation are supported by
several previous publications. First, mutant (dominant negative)
hTERT-expressing cancer cells show reduced telomerase activity
(inhibition), reduction in telomere length, chromosome fusions,
slowing and eventual arrest of cell growth related to initial
telomere length, and reduced tumourigenicity in immunodeficient
nude mice (Hahn et al, 1999). Our own mutant-hTERT MCF-7
breast cancer cell line model also demonstrated markedly reduced
clonogenicity and tumourigenicity (Cookson et al, 2005; data not
shown). Second, GRN163L, a modified antisense oligonucleotide
directed against the telomerase RNA component and the first
telomerase inhibitor to enter clinical trials, produces in vitro
telomerase inhibition, progressive telomere shortening, reduced
clonogenicity and tumourigenicity of breast cancer cell lines, and
suppression of tumour growth and lung metastases in animal
models in vivo (Dikmen et al, 2005; Kelland, 2005; Hochreiter
et al, 2006; Burger, 2007). Third, Gowan et al (2002) showed that
after debulking a tumour with Taxol, re-growth was effectively
prevented by subsequent treatment with the small molecule
G-quadruplex binding ligand BRACO19.

However, not all cytotoxic drugs might be suitable as debulking
agents and/or combination partners for RHPS4. We have
previously evaluated a range of clinically approved and experi-
mental anticancer agents in combination with RHPS4 in cancer
cell lines in vitro using the combination index method by
Chou and Talalay (1984). Although, the in vitro data demonstrated
that RHPS4 can act synergistically with Taxol in the UXF1138L
cell line (Figure 5), as well as in MCF-7 cells, DNA-cross
linking and alkylating agents such as cisplatin and temozolomide
were antagonistic, possibly because these agents preferentially
react at G-rich DNA sequences. Synergism between RHPS4
and other drugs were observed if there was an overlap between
the molecular mechanism of the combination partners (Cookson
et al, 2005).

In vitro observations by Leonetti et al (2004) initially established
a telomere uncapping effect of RHPS4, while Incles et al (2004)
showed the same mechanism for another G-quadruplex ligand,
BRACO19. Both agents caused DNA end-to-end joining as a result
of 3–21 days treatment in prostate cancer and melanoma cell lines
that had an average telomere length between 4–10 kb. The same
phenomenon was seen by us in UXF1138L in vitro cultures, after
just 24 h treatment with RHPS4 (Figure 4E). Exposure to 1 mM

RHPS4 for 24 h led to a marked increase in end-to-end joining, as
evident in ring and dicentric chromosomes in metaphase spreads
compared to vehicle controls. This earlier response to telomere
dysfunction by UXF1138L cells compared to melanoma and
prostate cancer cell lines might be due to their very short
telomeres (2.7 Kb) and suggests that in proposed clinical trials with
RHPS4, patient tumours should be tested for telomere length at the
outset of therapy and considered as a putative predictive marker of
response.
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A DNA break within a chromosome is sensed by the DNA
damage response machinery of the cell with the result that,
following cell cycle arrest to allow time for the repair, the DNA
break is fixed by end-to-end rejoining (Blasco, 2005). One of the
earliest events at the site of DNA DSB is the phosphorylation
of histone variant H2AX, g-H2AX, on residue Ser139. The loss of
telomere function by either gradual telomere shortening or
uncapping (loss of binding proteins e.g. hTERT, TRF2) has been
proposed to mimic DNA double-stranded breaks (d’Adda di
Fagagna et al, 2003; Hao et al, 2004). We have tested whether a
short term (24 h) treatment of UXF1138L cells (telomere
length¼ 2.7 Kb) with RHPS4 leads to g-H2AX expression, indicat-
ing uncapping, and found indeed a rapid induction of g-H2AX
phosphorylation by RHPS4. The pattern of g-H2AX foci formation
suggests that RHPS4-induced DNA damage is not limited to
telomeric DNA, but appears to extend beyond telomeric regions.
This becomes evident from comparing the number of g-H2AX foci
after RHPS4 treatment to telomere signal in UXF1138L cells
(Figure 4Da and b).

These phenomena are indicative of RHPS4 inducing G-quad-
ruplex DNA formation in the telomeric sequence and causing
displacement of the catalytic subunit from the telomere
(Figure 4A). While we have focused on following the displacement
of hTERT from the telomere (results herein; and Burger et al,
2005), Salvati et al (2007) have recently shown that RHPS4 also
modulates other telomere binding proteins (TBP). This highlights
the possibility that the detection of hTERT and/or TBP localisation
together with the induction of g-H2AX should be considered as

surrogate markers for the response to telomere targeting agents,
and that they might provide reliable and fast signals of target
inhibition that could replace the need for post-therapeutic
telomere length determination.

In summary our data indicate that the combination of RHPS4
and Taxol should be evaluated clinically for the treatment of
tumours with short telomeres. The exploitation of pre-treatment
telomere length should be integrated into the clinical trial designs
along with post-treatment g-H2AX phosphorylation or loss of
telomere-binding proteins. We have presented intriguing
evidence that RHPS4 can differentially inhibit the growth of
clonogenic tumour cells, considered to be cancer stem cells.
Effective tumour debulking by Taxol together with eradication of
cancer stem cells by RHPS4 could explain the marked synergism
of these two agents against UXF138LX xenografts in vivo.
Further studies defining the efficacy of RHPS4 in targeting cancer
stem cells, such as NOD/SCID mouse repopulation assays, are
warranted.
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