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Best reply structure and equilibrium convergence
in generic games
Marco Pangallo1,2*, Torsten Heinrich1,2,3, J. Doyne Farmer1,2,4,5

Game theory is widely used to model interacting biological and social systems. In some situations, players may
converge to an equilibrium, e.g., a Nash equilibrium, but in other situations their strategic dynamics oscillate
endogenously. If the system is not designed to encourage convergence, which of these two behaviors can we
expect a priori? To address this question, we follow an approach that is popular in theoretical ecology to study
the stability of ecosystems: We generate payoff matrices at random, subject to constraints that may represent
properties of real-world games. We show that best reply cycles, basic topological structures in games, predict
nonconvergence of six well-known learning algorithms that are used in biology or have support from
experiments with human players. Best reply cycles are dominant in complicated and competitive games, indi-
cating that in this case equilibrium is typically an unrealistic assumption, and one must explicitly model the
dynamics of learning.
INTRODUCTION
Game theory is a set of mathematical models for strategic interactions
between decisionmakers (1) with applications to diverse problems such
as the emergence of cooperation (2), language formation (3), and con-
gestion on roads and on the internet (4). The same mathematical tools
are used to model evolution in ecology and population biology (5). A
long-standing question iswhether playerswill converge to an equilibrium
as they learn by playing a game repeatedly. Little is known about the
general case, as the answer depends on the properties of the game and
on the learning algorithm. Here, we introduce a formalism that we call
best reply structure that gives a roughmeasure of the convergence prob-
ability in any two-player normal-form game for a wide class of learning
algorithms. Analogies that illustrate the usefulness of our approach
in other fields are the theory of qualitative stability in ecology (6) and
the use of the Reynolds number to understand turbulence in fluid
dynamics (7).

The standard approach to the problem of equilibrium convergence
in game theory is to focus on classes of gameswith specialmathematical
properties, selected as stylized models of real-world scenarios. For ex-
ample, in potential games (8), all differences in payoffs for unilaterally
changing strategy can be expressed using a global potential function;
congestion games (4) belong to this class, so potential games can be
used as a stylized model of traffic. Most learning algorithms converge
to a Nash or correlated equilibrium in potential games, as well as in
dominance-solvable (9), coordination (10), supermodular (11), and
“weakly acyclic” (12) games. Studying classes of games with special
properties is really useful in situations such as mechanism design, in
which one can choose the game to be played. In these situations, it
may also be possible to design the learning algorithm that the players
are going to use, and choose the one that most likely will converge to
equilibrium. Examples include online auctions and internet routing (13).

There are other problems, however, where the game and the learning
algorithm are not designed, but rather are dictated by the intrinsic nature
of the setup. For example, a financialmarket canbe viewed as a gamewith
many possible actions corresponding to the assets that traders can buy or
sell. The outcome might converge to an equilibrium, or it might endog-
enously fluctuate. If the system is not designed to encourage convergence,
which of these two behaviors should we expect?

To address this issue, we follow an approach that has been extremely
productive in theoretical ecology and developmental biology and is
widespread in physics. An example of this approach is the seminal paper
in theoretical ecology byMay (14). He studied an ensemble of randomly
generated predator-prey interactions, which he took as a nullmodel of a
generic ecosystem. His key result was that random ecosystems tend to
become more unstable as they grow larger. Of course, as May was well
aware, real ecosystems are not random; rather, they are shaped by evo-
lutionary selection and other forces.Many large ecosystems have existed
for long periods of time, suggesting that they are in fact stable. Thus, this
contradiction indicated that real ecosystems are not typicalmembers of
the random ensemble used in May’s model, raising the important
question of precisely how these ecosystems are atypical, and how
and why they evolved to become stable. Forty-five years later, properly
answering this question remains a subject of active research. For exam-
ple, Johnson et al. (15) recently found that real ecosystems have a prop-
erty that they call trophic coherence, and showed that incorporating this
property as a constraint on the ensemble of randomly generated ecosys-
tems ensures stability.

Here, we apply a similar approach to game theory, taking an en-
semble of randomly generated two-player games as a null model.
For reasons of tractability, we study normal-form games, taking ad-
vantage of the fact that it is possible to systematically enumerate all
possible games. The nullmodel is refined by adding constraints that can
be varied to understand their effect on convergence to equilibrium.
Here, we study in detail a parameter G that tunes the correlation of
the payoffs to the two players. This regulates the intensity of competi-
tion in a game and encompasses zero-sum games as a special case for
G = −1. We also sketch how one might construct other constraints,
for example, to study deviations from potential games. With this ap-
proach, it is possible to see how deviations from particular classes of
games affect the stability of the learning dynamics.

Randomly generated games and general learning algorithms do not
have mathematical properties that allow exact solutions. To overcome
this limitation, we develop a formalism to obtain the approximate prob-
ability of convergence as a function of a simple indicator. An analogy to
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fluid dynamics clarifies how these approximate solutions can be useful.
As a fluid is driven away from equilibrium, it typically makes a
transition from stable (or laminar) flow to unstable (or turbulent) flow.
There exist no analytical solutions for the Navier-Stokes equations
that describe fluid dynamics, but this transition can nonetheless be
crudely characterized in terms of a nondimensional parameter called
the Reynolds number (7). A larger Reynolds number means a higher
likelihood of turbulence. Although this prediction is imprecise—it is just
a rule of thumb—it is nonetheless very useful. Our analogous estimate
for games does not have a simple closed form, but it has similar predic-
tive power. Another analogy to our approach is the theory of qualitative
stability in theoretical ecology (6). Manymodels in ecology consider the
magnitude of the interactions between different species in a food web.
For example, these models consider howmuch grass is eaten by rabbits
and how many rabbits are eaten by foxes. The qualitative stability ap-
proach instead considers only the sign of the predator-prey relations—
that rabbits eat grass and foxes eat rabbits. Thismakes it possible to obtain
an approximate assessment of the stability of an ecosystem just from the
topological properties of its food web. As with the theory of qualitative
stability, our approach only depends on the topological properties of
the game and not on the details of the payoffs.

Our formalism is based on best reply dynamics, under which each
player myopically responds with the best reply to her opponent’s last
action. Best reply dynamics is well known in game theory and is widely
used to develop intuition about learning, but we use it in a new way, to
obtain the approximate probability of convergence in generic games.
Under best reply dynamics, the system will asymptotically either con-
verge to a fixed point, corresponding to a pure strategy Nash equilib-
rium, or be trapped on a cycle. We consider a very simple indicator of
nonconvergence in a game based on the relative size of the best reply
cycles versus the fixed points of a game. Note that we are not assuming
that players follow best reply dynamics. Rather, we hypothesize that the
best reply structure of the payoffmatrix constitutes a first-order skeleton,
forming the backbone of the game the players are trying to learn, which is
useful for understanding the convergence of many learning algorithms.

To test this hypothesis, we choose a set of learning algorithms that
have support from experiments with human players. These are reinforce-
ment learning, fictitious play, experience-weighted attraction with and
without noise, and level-k learning.We also include (two-population) re-
plicator dynamics for its importance in ecology and population biology.
Our measure based on best reply dynamics predicts the nonconvergence
frequency of each of these algorithms with R2 ≥ 0.78.

Here, we want to stress that our goal is descriptive rather than nor-
mative. In mechanism design, people or machines use algorithms that
are designed to have good convergence properties. For example, some
algorithms converge to correlated equilibria, a generalization of Nash
equilibrium that allows players to coordinate on a common signal in
all games (16–20). One such algorithm is regret matching (17), in which
players consider all past history of play and calculate what their payoff
would have been had they taken any other action. While these algo-
rithmsmight be feasibly executed by amachine or by a humanwith suf-
ficient record-keeping ability, it seemsunlikely that theywould actually be
usedby real peopleunless theywere specifically trained todo so.To thebest
of our knowledge, these algorithms only have indirect empirical support.
We focus on algorithms that have been tested experimentally. When they
reach a fixed point, these algorithms converge to a Nash equilibrium , or a
point near one, rather than a more general correlated equilibrium.

After showing that the best reply structure formalism works, we
analyze how best reply cycles or fixed points vary as two properties of
Pangallo et al., Sci. Adv. 2019;5 : eaat1328 20 February 2019
the game change. We define how complicated a game is based on the
number of actions N available to the players. A simple game has only a
few actions, and a complicated game has many actions. The compet-
itiveness of the game is defined by the correlationG between the payoffs
of the two players. The more negative the correlation, the more
competitive the game. The relative share of best reply cycles versus fixed
points tracks the convergence frequency of the six algorithms we con-
sider as we vary these two properties of the game, with the exception of
fictitious play in competitive games.

We show that at one end of the spectrum, games that are simple and
noncompetitive are unlikely to have cycles, while at the other end, games
that are complicated and competitive are likely to have cycles. The classes
of games that we mentioned before, i.e., potential, dominance-solvable,
coordination, supermodular, and weakly acyclic games, are acyclic by
construction (8–12). Any of these classes might be typical members of
the ensemble of simple noncompetitive games, where acyclic behav-
ior is common, but they are certainly not typical for games that are com-
plicated and competitive. These results match the intuition that
complicated games are harder to learn and it is harder for players to
coordinate on an equilibrium when one player’s gain is the other
player’s loss. Our formalismmakes this quantitative. For example, with
two actions per player and no correlation between the payoffs to the two
players (G = 0), acyclic games are about 85% of the total. However, with
N = 10 and G = −0.7, they make up only 2.7% of the total.

We also show how it is possible to use the best reply formalism to
study the stability of a given class of games, such as potential games, to
understand their stability under deviations from the given class.We show
that the behavior can be nonlinear, e.g., small perturbations of potential
games cause a disproportionately large increase in nonconvergence.

In the case of uncorrelated payoffs, G = 0, we use combinatorial
methods inspired by statistical mechanics to analytically compute the
frequency of best reply cycles of different lengths. The idea of using
methods inspired from statistical mechanics is not new in game theory
(21). Previous research has quantified properties of pure strategy Nash
equilibrium (22–25), mixed strategy equilibria (26, 27), and Pareto
equilibria (28), but we are the first to quantify the frequency and length
of best reply cycles and show their relevance for learning.The frequencyof
convergence for experience-weighted attraction in random games was
previously studied byGalla and Farmer (29) in the limit asN→∞ using
differentmethods; here, we extend this to arbitraryN, study a diverse set
of learning algorithms, and provide deeper insight into the origins of
instability. The formalism we introduce can be extended in many
directions and used in different fields. For example, our results are also
related to the stability of food webs (6, 14) through replicator dynamics
and can be mapped into Boolean networks (30).

When convergence to equilibrium fails, we often observe chaotic
learning dynamics (29, 31).When this happens, the players do not con-
verge to any sort of intertemporal “chaotic equilibrium” (32–34) in the
sense that their expectations do not match the outcomes of the game
even in a statistical sense. In many cases, the resulting attractor is high
dimensional, making it difficult for a “rational” player to outperform
other players by forecasting their actions using statisticalmethods.Once
at least one player systematically deviates from equilibrium, learning
and heuristics can outperform equilibrium thinking (35) and can be a
better description for the behavior of players.

We begin by developing our best reply framework. We next show
how it can be used to predict the frequency of nonconvergence of the six
learning algorithms that we study here, first presenting some arguments
giving some intuition about why this works and then providing more
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quantitative evidence. We then study whether best reply cycles become
prevalent as some properties of the games change, illustrating the effect
of two different constraints that represent deviations from well-known
classes of games. Last, wedevelop an analytical combinatorial approach to
compute the frequency of best reply cycles in the case of uncorrelated
payoffs.
RESULTS
Best reply structure
Webegin by introducing a framework thatwewill demonstrate provides
a useful estimate of the likelihood that the family of learning algorithms
we analyze will converge to a fixed point. As we will demonstrate, this
provides a kind of skeleton that can be analyzed to give a first-order
approximation to the stability problems the algorithm will encounter
as the players try to learn the game. The terminology that we will intro-
duce is summarized in Table 1.

Assume a two-player normal-form game in which the players are
Row and Column, each playing actions (or moves, or pure strategies)
i, j = 1, …, N. A best reply is the action that gives the best payoff in
response to a given action by an opponent. The best reply structure is
the arrangement of the best replies in the payoff bimatrix, i.e., the two
matrices describing both players’ payoffs. (In this paper, we will use the
term “payoffmatrix” tomean the bimatrix.) Under best reply dynamics,
each player myopically responds with the best reply to the opponent’s
last action. We consider a particular version of best reply dynamics in
which the two players alternate moves, each choosing her best response
to her opponent’s last action.

To see the basic idea, consider the game with N = 4 shown in
Fig. 1A. Suppose we choose (1, 1) as the initial condition. Assume that
Columnmoves first, choosing action SC = 2, which is the best response
to Row’s action SR = 1. Then, Row’s best response is SR = 2, then
Column moves SC = 1, etc. This traps the players in the cycle (1, 1) →
(1, 2)→ (2, 2)→ (2, 1)→ (1, 1), corresponding to the red arrows. We
call this a best reply 2-cycle, because each player moves twice. This
cycle is an attractor, as can be seen by the fact that starting at (3, 2)with a
play by Row leads to the cycle. The firstmover can be taken randomly; if
the players are on a cycle, this makes no difference, because at most one
player has incentive to deviate from the current situation.However, when
off an attractor, the order of themoves can be important. In this example,
for instance, there are two attractors: If we begin at (3, 2) with a play by
Pangallo et al., Sci. Adv. 2019;5 : eaat1328 20 February 2019
Column, we will arrive in one step at the best reply fixed point at (3, 3)
(shown inblue). A fixed point of the best reply dynamics is a pure strategy
Nash equilibrium (NE).

We characterize the set of attractors of best reply dynamics in a given
N × N payoff matrix P by a best reply vector u(P) = (nN, …, n2, n1),
where n1 is the number of fixed points, n2 is the number of 2-cycles, etc.
For instance, u = (0, 0, 1, 1) for the example in Fig. 1.

It is useful to reduce the payoff matrix to a best reply (bi-)matrix as
shown in Fig. 1B. This is done by replacing all best replies for each player
by one and all other entries by zero. The best reply matrix has the same
best reply structure as the payoff matrix it is derived from, but it ignores
any other aspect of the payoffs. The best reply matrix has the same
cycles and pure strategy NE as the original game, but in general, the
mixed strategy NE differ. Once the attractors of the best reply dynamics
are known, it is trivial to list all the mixed strategy NE. There is one
mixed NE associated with each best reply cycle, and there is one asso-
ciated with all possible combinations of the cycles and fixed points. The
mixed strategyNE associatedwith a given cycle corresponds to randomly
playing each action with the frequency with which it is visited on the
cycle. For example, the mixed strategy equilibrium associated with the
best reply cycle in Fig. 1B is x, y= (0.5, 0.5, 0, 0), (0.5, 0.5, 0, 0). Themixed
strategy NE associated with each possible combination of cycles and
fixed points corresponds to playing the average over the combined
action sets. For example, in Fig. 1B, themixed NE associated with the
combination of the cycle and the fixed point is x, y= (0.33, 0.33, 0.33, 0),
(0.33, 0.33, 0.33, 0). For the best reply matrix, there are no other mixed
strategy NE.

In moving from the best reply matrix to the original game, some of
themixedNEmay survive and othersmay not, and newmixedNEmay
be introduced. For example, in Fig. 1A, none of them survive, and there
are twomixed equilibria at x, y= (0.32, 0, 0, 0.68), (0.36, 0.64, 0, 0) and at
x, y = (0.26, 0.15, 0, 0.59), (0.32, 0.24, 0.44, 0), which have no relation to
those of the associated best reply dynamics. We make these statements
quantitative for an ensemble of 1000 randomly generated gameswithN=
10 in section S2.

Learning dynamics
To address the question ofwhen learning converges, we have studied six
different learning algorithms. These are chosen to span different
information conditions and levels of rationality. Our focus is on algo-
rithms that have empirical support. This includes algorithms that are
Table 1. Terminology. NE, Nash equlibrium.
Best reply
 Action that gives the best payoff in response to a given action by an opponent
Best reply structure
 Arrangement of the best replies in the payoff matrix
Best reply matrix
 Derived payoff matrix, with one for the best reply to each possible move of the opponent and zero everywhere else
Best reply dynamics
 Simple learning algorithm in which the players myopically choose the best reply to the last action of their opponent
Best reply k-cycle
 Closed loop of best replies of length k (each player moves k times)
Best reply fixed point
 Pure NE, i.e., the action for each player that is a best reply to the move of the other player
Best reply vector u
 List of the number of distinct attractors of the best reply dynamics, ordered from longest cycles to fixed points
Free action/free best reply
 Best reply to an action that is neither part of a cycle nor a fixed point
Best reply configuration
 Unique set of best replies by both players to all actions of their opponent
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used in biology for purposes such as animal learning or population
genetics as well as those that are used to fit experiments about human
behavior in playing games in laboratory settings. We provide a short
summary of each of the six algorithms inMaterials andMethods and
present details in section S1. Here, we simply discuss the basic idea be-
hind each algorithm and give our reasons for including it in this study.

Reinforcement learning (36) is based on the idea that players are
more likely to play actions that yielded a better payoff in the past. It
is the standard learning algorithm that is used with limited information
and/or without sophisticated reasoning, such as in animal learning. We
study the Bush-Mosteller implementation, which has been extensively
tested in experiments (37).

Fictitious play (38, 39) requires more sophistication, as it assumes
that the players construct amentalmodel of their opponent. Eachplayer
assumes that the empirical distribution of her opponent’s past actions
is hermixed strategy, and plays the best response to this belief. A com-
monly used variant—weighted fictitious play—assumes discounting
of past actions. The empirical evidence for standard versus weighted
fictitious play ismixed (40). From a theoretical point of view, standard
fictitious play converges to mixed strategy NE in many cases, while
weighted fictitious play cannot do so (41). Aswewill see, our best reply
formalism does not work as well if learning algorithms frequently
reach mixed equilibria. We choose the standard version of fictitious
play to illustrate this point, as it provides a stronger test.

Replicator dynamics (42) is commonly used in ecology and popula-
tion biology. It represents the evolution of certain traits in a population
over generations, with the fitness of each trait depending on the shares
of all other traits in the population. Replicator dynamics can also be
viewed as a learning algorithm in which each trait corresponds to an
action (43). Here, we consider two-population replicator dynamics and
not the more standard one-population version because, in the one-
population version, the payoff matrices of the two players are, by defini-
tion, symmetric, whereas we want to study the dependence on the
correlation of the payoffs.

Experience-weighted attraction (EWA) has been proposed (44) to
generalize reinforcement learning and fictitious play and has been
Pangallo et al., Sci. Adv. 2019;5 : eaat1328 20 February 2019
shown to fit experimental data well. The key of its success is a parameter
that weighs realized payoffs versus forgone payoffs. EWA also includes
other parameters such as memory and payoff sensitivity. In contrast to
the three learning algorithms above, its parameters are crucial in
determining convergence: For some parameter values, it always con-
verges to fixed points that can be arbitrarily far fromNash or correlated
equilibria (45). As we discuss at length in the Supplementary Materials,
lacking experimental guidance for parameters in generic games, we
choose parameter values that potentially allow convergence close to
NE. [EWAdoes not converge close tomore general correlated equilibria
unless they correspond to NE (45).]

The above algorithms are all based on the concept of batch learning,
which is convenient because itmeans that they are deterministic. Under
batch learning, the players observe the actions of their opponent a large
number of times before updating their strategies and so learn based on
the actual mixed strategy of their opponent at each point in time. The
deterministic assumption is useful to identify stationary states numeri-
cally. Inmany experimental situations, it ismore realistic to assume that
players update their strategies after observing a single action by their
opponent, which is randomly sampled from her mixed strategy. This
is called online learning. As an example of online learning, we study
the stochastic version of EWA.

The above five algorithms are all backward looking. To compare to
an example with forward-looking behavior, we use level-k learning (46),
or anticipatory learning (47), in which the players try to outsmart their
opponent by thinking k steps ahead. There is considerable empirical
support for the idea of level-k thinking (48), and some studies for
anticipatory learning specifically (49). Here, we implement level-k
reasoning by using level-2 EWA learning. Both players assume that
their opponent is a level 1 learner and update their strategies using
EWA. So the players try to preempt their opponent based on her pre-
dicted action, as opposed to acting based solely on the frequency of her
historical actions. This provides ameasure of forward-looking behavior.

To summarize, we have chosen these six algorithms because they are
important in their own right and because they are illustrative of different
properties. We are interested in algorithms that are used in ecology and
biology or that display the kind of bounded rationality that is observed
in laboratory experiments with human subjects (36, 37, 40, 44, 49). We
are specifically not studying sophisticated algorithms that are relevant
for computer science or mechanism design but are not relevant from a
behavioral point of view. These algorithmsmay have very different con-
vergence properties from those studied here. An example of the kind of
algorithm we are not studying is regret matching (17), which is con-
sidered an “adaptive heuristic” and is boundedly rational and myopic.
However, it still requires that players compute what payoff they would
have received had they played anyother action in all previous time steps,
and there is no empirical evidence that players in human experiments
use it. The other algorithms that reach correlated equilibria, such as
calibrated learning, are even more sophisticated.

How does the best reply structure shape learning dynamics?
Our working hypothesis is that the best reply structure influences the
convergence properties of these learning algorithms, even if the learning
trajectories may not follow best reply cycles in detail. More specifically,
our hypothesis is that the presence or absence of best reply cycles is cor-
relatedwith the stability of the learningdynamics. Learning ismore likely
to convergewhen there are nobest reply cycles and less likely to converge
when they are present. We cannot prove this analytically in generic
games, but it is supported by anecdotal examples. It is impossible to pres-
Fig. 1. Illustration of the best reply structure. SR = {1, 2, 3, 4} and SC = {1, 2, 3, 4}
are the possible actions of players Row and Column, and each cell in the matrix
represents their payoffs (Row is given first). The best response arrows point to the
cell corresponding to the best reply. The vertical arrows correspond to player
Row, and the horizontal arrows correspond to player Column. The arrows are
colored red if they are part of a cycle, orange if they are not part of a cycle
but lead to one, blue if they lead directly to a fixed point, and cyan if they lead
to a fixed point in more than one step. The best reply matrix in (B) is a Boolean
reduction that is constructed to have the same best reply structure as the payoff
matrix in (A), but to only have one and zero as its entries.
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ent these in detail, but here, we present a few representative samples to
motivate the correspondence. In the next section,we presentmore quan-
titative evidence.

To develop intuition into whether and why the best reply structure
could predict convergence of the learning algorithms above, in Fig. 2, we
analyze four games with N = 3, showing some learning trajectories in a
three-dimensional projection of the four-dimensional strategy space
(there are six components of the mixed strategy vectors with two nor-
malization constraints). The axis labels x1 and x2 are the probabilities of
player Row to play actions sR = 1 and sR = 2, respectively, and y1 is the
probability for Column to play sC = 1. The corners of the strategy space
(x1, y1, x2) = (1, 1, 0) and (0, 1, 1) correspond to the action profiles (1, 1)
and (2, 1), respectively.

In Fig. 2A, we consider a best reply matrix with a 2-cycle and a
single pure strategy NE. Our first illustration uses replicator dynamics.
The attractors of the learning algorithm closely mimic the attractors of
the best reply dynamics; all trajectories go to either the fixed point or the
limit cycle, depending on the initial condition. The limit cycle in this
example corresponds to the best reply cycle, as we always have y3 = 0.
(Coordinate y3 is not shown due to the three-dimensional projection of
the six-dimensional system.) Reinforcement learning, EWA, and EWA
with noise behave similarly. In contrast, fictitious play always converges
to a fixed point, either to the pure strategy NE or to the mixed strategy
equilibrium in the support of the cycle, depending on initial conditions.
We never observe it converging to the other mixed NE, which
corresponds to the combination of the two attractors. In section S2,
Pangallo et al., Sci. Adv. 2019;5 : eaat1328 20 February 2019
we show that in generic games withN = 10, fictitious play is more likely
to converge to mixed equilibria in the support of a best reply cycle than
to other mixed equilibria, with respect to the proportions of existing
mixed equilibria. Level-kEWAalso converges (close) to the samemixed
equilibrium. As we will show quantitatively in the following section,
level-k EWA behaves like fictitious play in games with few actions
and more like the other four algorithms in games with many actions.
For best reply matrices, it is not surprising that the learning dynamics
mimic the best reply structure, but because the learning algorithms have
free parameters and memory of the past, it is not obvious that they
should do so this closely.

The payoff matrix in Fig. 2B has the same best reply structure as that
in Fig. 2A but has generic payoffs. To show a wider variety of learning
algorithms, we illustrate the learning dynamics this time with reinforce-
ment learning and EWA with noise. In both cases, the learning tra-
jectories either converge to the pure strategy NE or do not converge.
Reinforcement learning converges to a limit cycle that is related to the
best reply cycle, even if the trajectory is distorted and penetrates more
deeply into the center of the strategy space, and there is a similar cor-
respondence for EWA with noise. As in Fig. 2A, replicator dynamics
and EWA behave similarly, while fictitious play and level-k EWA con-
verge to or close to mixed equilibria.

To see what happens once the best reply cycle is removed, in
Fig. 2C, we consider the same payoff matrix in Fig. 2B, except that
the payoff for Row at (3, 1) is 2.0 instead of 0.1. In this case, the only
attractor of the best reply dynamics is the pure strategy NE at (3, 3). For
Fig. 2. How the best reply structure influences convergence of six learning algorithms. For each payoff matrix (A) to (D), we show the dynamics of two learning algorithms.
We plot the probabilities x1 and x2 for Row to play actions sR = 1 and sR = 2, respectively, and the probability y1 for Column to play sC = 1. The black dots are the positions of the NE:
For payoff matrices (A) to (C), the dot at x1 = x2 = y1 = 0 is the pure strategy NE; all other dots are mixed strategy equilibria. The trajectories are colored in shades of blue if they
converge to a pure equilibrium, in shades of green if they converge to a mixed equilibrium, and in shades of red if they do not converge. NE, Nash equilibrium.
5 of 13
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all initial conditions, reinforcement learning converges to the pure
strategy NE, illustrating how removing the best reply cycle makes the
fixed point globally stable. However, for replicator dynamics, there exist
some initial conditions leading instead to a limit cycle, suggesting that a
small basin of attraction for unstable learning dynamics may still exist
even in the absence of best reply cycles. (Fictitious play and level-kEWA
behave like reinforcement learning, while EWA and EWA with noise
behave like replicator dynamics.)

This case illustrates an important example of how the learning
dynamics can qualitatively deviate from the best reply dynamics.When
the replicator dynamics reaches the point (x1, y1, x2) = (0.86, 0.87, 0.14),
indicated by a black arrow in the figure, the expected payoff for Row is
0.25. If Row switches to sR = 3 (his best reply), his payoff raises to 1.60. If
instead Row switches to sR = 1, Row’s expected payoff still increases to
0.29, so we say that action 1 is a better reply. With replicator dynamics,
the probability for actions corresponding to better replies grows over
time, although at a lower rate than best replies. Here, because of past
play, x3 is very small (of the order of 10−53), so x1 increases to 1 before
x3 can reach a similar value, and the dynamics gets trapped in the cycle
shown in the figure.

In Fig. 2D, we consider a payoff matrix with a 2-cycle and no
pure strategy NE. EWA reaches a chaotic attractor for all initial
conditions. Note that this attractor shares some of the structure
of the best reply cycle, visiting the two corners of the strategy space
corresponding to (x1, y1, x2) = (1, 0, 0) and (1, 1, 0) closely and the
other two more loosely. Level-k EWA, in contrast, converges close
to the mixed NE in the center of the chaotic attractor. [Due to finite
memory and finite payoff sensitivity, EWA, EWA with noise, and
level-k EWA cannot reach mixed equilibria exactly (45).] The other
algorithms behave similarly: Both EWA with noise and replicator
dynamics reach a chaotic attractor, while reinforcement learning
follows a limit cycle. Fictitious play fluctuates close to the mixed
equilibrium, with each component of the mixed strategy vector at
a maximum distance of 0.03 from the equilibrium point.

We thus see that, despite the fact that the learning dynamics of
these algorithms do not mimic the best reply dynamics in detail, in
most cases remnants of it are seen in the learning dynamics. Even if
the correspondence is not exact, the best reply structure influences
the learning dynamics.

Quantitative evidence
We now quantitatively test the hypothesis that the presence of best
reply cycles is positively correlated to nonconvergence, at least for
these learning algorithms. To do this, we first prove a very useful
theorem relating the configuration of cycles and fixed points to the
relative size of the basin of attraction for unstable best reply dynam-
ics. Recalling that nk is the number of best reply cycles of length k, let
C ¼ ∑Nk¼2nkk be the number of actions that are part of best reply cycles.
The quantity

FðuÞ ¼ C=ðC þ n1Þ ð1Þ

measures the relative number of actions on attractors that are part of
cycles versus fixed points. For the example of Fig. 1, where there is one
fixed point and one cycle, F (0, 0, 1, 1) = 2/3.

This also measures the relative size of the basins of attraction of
cycles versus fixed points under best reply dynamics. This is not true for
a given individual game, but as we show in section S3.1, it is true for the
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average over the ensemble of all games with a given best reply vector u.
For example, for the game shown in Fig. 1, five of eight of the initial
conditions lead to the cycle and three of eight lead to the fixed point.
However, if one averages over all possible 4 × 4 games that have one best
reply cycle of length 2 and a single pure strategy NE and no other best
reply attractors (giving an equal weighting to each possible game), the
relative size of initial conditions leading to the best reply cycle is exactly
2/3. As we show in the Supplementary Materials, this is true in general.

To test the relationship between best reply dynamics and the con-
vergence properties of our family of learning algorithms, we generate
games at random. This is done by populating each payoff bimatrix with
2N2 normally distributed numbers; as discussed in section S1.2, the nor-
mal distribution is the maximum entropy distribution and so is the
natural choice.Here, we let the payoffs of the two players be uncorrelated.
We then simulate the learning process of the players in a repeated game,
holding the payoff matrix fixed. Convergence to pure andmixed strategy
NE is checked using the criteria explained inMaterials andMethods and
in the Supplementary Materials. We generate 1000 different games;
for each game, we simulate all six learning algorithms starting from
100 different initial conditions. As a point of comparison, we repeat
the entire process using the best reply matrices associated with each
of the 1000 randomly generated games. Results with N = 20 are re-
ported in Fig. 3, and results withN = 5 andN = 50 are given in figs. S8
and S9.

Figure 3 compares the share of best reply cyclesF(u) to the non-
convergence frequency. To test the relationship between the best
reply vector u and the learning dynamics, we group together the
results for payoff matrices with the same u and plot a circle whose
radius is proportional to the logarithm of the number of times this
was sampled. We place each best reply vector on the horizontal axis
according to its share of best reply cyclesF(u). On the vertical axis,
we plot the average frequency of nonconvergence for results with this
best reply vector. Thus, if the best reply structure perfectly predicts the
rate of convergence of the other learning algorithms, all circles should
be centered on the identity line. We estimate the weighted correlation
coefficient R2

w using weights corresponding to the number of times
each best reply vector was sampled.

The results when we simulate using the best reply matrices are
shown in the top row of Fig. 3. The correlation is nearly one for all
the algorithms except fictitious play. On one hand, given that best reply
matrices do not have better replies, this may not seem too surprising.
But on the other hand, these learning algorithms all use memory of the
past (beyond the most recent action) and most of them have free pa-
rameters, while best reply dynamics has neither of these. Given that,
it is remarkable that the size of the basins of attraction of learning
algorithms with different functional forms is so well approximated by
best reply dynamics. The failure for fictitious play is due to its strong
tendency to converge to mixed strategy NE, although even in this case
it typically fails to converge for longer cycles. [Fictitious play converges in
most cases in the presence of 2-cycles but fails to converge with 3-cycles,
in line with Miyazawa (50) and Shapley (51).] The results in the top
panels of Fig. 3 reinforce the intuition that, for best reply matrices, the
attractors of the learning algorithms closelymatch the best reply dynam-
ics for all algorithms except fictitious play.

The general case is shown in the bottom row of Fig. 3. The cor-
relations are still very strong, with weighted correlation coefficient
R2
w ¼ 0:78 for fictitious play andR2

w≈0:84 for all of the other algorithms.
The best reply dynamics are not a perfect predictor of convergence, but
the predictions are still good enough to be very useful.
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This analysis also gives clues about some of the other factors that
cause nonconvergence. For example, even when F (u) = 0, indicating
that best reply cycles are absent, convergence is not certain. This is
evident from the vertical columnof circles on the left of each figure. This
column corresponds to best reply vectorswith no cycles, i.e., those of the
formu = (0,…, 0, 0, x), where x=1, 2, 3, 4 is the number of distinct fixed
points. The highest circle corresponds to a single fixed point, the one
below it to two fixed points, etc. In the case where there is a unique pure
NE and no cycles, the nonconvergence frequency is typically around
35%, dropping to about 20% if there are two pure equilibria. The pres-
ence of multiple pure equilibria makes the existence of better reply cycles
like the one in Fig. 2C less likely. Conversely, there are also cases of con-
vergence when there are cycles without any fixed points. This cor-
responds to the column of vertical circles on the right, with F (u) = 1,
for level-k EWA, fictitious play, and reinforcement learning.

Nonconvergence in the presence of a unique pure NEwith no cycles
is particularly pronounced for replicator dynamics, where nonconver-
gence happens about 60% of the time when there is a single fixed point.
As we explain in the SupplementaryMaterials, this is in part due to nu-
merical limitations that become more serious as N grows, so we will
drop observations of replicator dynamics if N ≥ 50.

Convergence in the absence of fixed points is entirely due to conver-
gence to mixed strategy NE. As demonstrated in fig. S10, this effect is
almost independent ofF(u) and so causes a constant offset. This is the
reason that, for F (u) > 0, the circles are below the identity line. This
effect is particularly strong for reinforcement learning, where conver-
gence to mixed equilibria occurs 21% of the time, and fictitious play,
for which it occurs 32% of the time. In contrast, this effect is absent
for (two-population) replicator dynamics, which cannot converge to
mixed strategy NE (52). For the other algorithms, the frequency of
convergence tomixed strategy NE is less than 15%. Once these effects
are taken into account, there is a strong proportionality betweenF(u)
and the nonconvergence rate for all of the learning algorithms, includ-
ing fictitious play.

In fig. S11, we show the correlationmatrix of the convergence of the
six learning algorithms.We find that convergence co-occurs on average
60% of the time, suggesting a significant degree of heterogeneity among
the algorithms, in line with the intuition in Fig. 2.
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In summary, even ifF(u) ignores better replies and underestimates
the convergence to mixed strategy NE, a robust correlation between the
average probability of convergence and the share of best reply cycles
exists. This indicates that the best reply structure and the stability of
these algorithms are closely linked.

Variation of the best reply structure
We now investigate the prevalence of best reply cycles and fixed points
as we vary the properties of the games, and test the prediction of non-
convergence as we vary parameters. The parameters that we investigate
are the number of possible actionsN and the correlation G between the
payoffs of the two players. (Later, we also consider a parameter x to in-
terpolate between random and potential games.)

As before, we generate games at random, but we now impose con-
straints on the ensemble from which the games are drawn. To under-
stand how G affects convergence, we generate payoff matrices by
drawing from a bivariate normal distribution so that the expected value
of the product of the payoffs to players Row and Column for any given
combination of actions is equal to G. A negative correlation, G < 0,
implies that the game is competitive, becausewhat is good for oneplayer
is likely to be bad for the other. The extreme case is where G = −1,
meaning the game is zero sum. In contrast, G > 0 encourages coopera-
tion, in the sense that payoffs tend to be either good for both players or
bad for both players.

In Fig. 4, we show how the share of best reply cycles varies with N
and G. For a given value of N and G, we randomly generate payoff
matrices and compute the average share of best reply cycles 〈F (u)〉N,G.
We compare 〈F(u)〉N,G to the average frequency of nonconvergence
of the six learning algorithms. The agreement is generally good. The
striking exception is fictitious play, which has a high convergence rate
when N is large and G is negative. This is at odds with the other algo-
rithms, which rarely converge in this parameter range and agree closely
with the prediction. Thus, as expected, fictitious play must be regarded
somewhat differently than the other algorithms.

We would like to emphasize that these predictions are made a
priori—they do not involve fitting any parameters. With the excep-
tion of fictitious play, the predictions fit the overall trends in the data,
both estimating the magnitude correctly and capturing the functional
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Fig. 3. Test for how well the best reply structure predicts nonconvergence for six learning algorithms. We generate 1000 random payoff matrices with N = 20
actions, and for each of these, we simulate learning 100 times based on random initial conditions. The same process is repeated using the best reply matrix associated
with each of the 1000 random games. Each circle corresponds to a specific best reply vector u. Its size is the logarithm of the number of times a payoff matrix with u was
sampled. The horizontal axis is the share of best reply cyclesF(u). For example, the largest circle atF(u) = 0.66 corresponds to u = (0,…, 0, 1, 1). The vertical axis gives the
frequency of nonconvergence in the simulations, averaged over all payoff matrices and initial conditions having the same u. The top row shows results for the best reply
matrices, and the bottom row shows results using normally distributed payoffs. The identity line is plotted for reference.
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dependence. For the other five algorithms, the predictions are particu-
larly goodwhenN is large andG is strongly negative, with a near-perfect
fit for N > 10.

What are the conclusions about the circumstances in which conver-
gence is likely as we varyN andG?WhenG is positive (meaning that the
game is not competitive), convergence is almost guaranteed, regardless
ofN, but when G is strongly negative, convergence is likely only whenN
is very small. At G =− 0.7, forN = 4, the nonconvergence rate is roughly
70%, quickly rising to approach 100% by N = 8. Our analysis indicates
that this is because complicated competitive games are dominated by
cycles. In this region of the parameter space, acyclic games are extremely
rare. Therefore, dominance-solvable, coordination, potential, and super-
modular games are atypical.

Last, we sketch how one might introduce other constraints to study
deviations from the classes of games above. Here, we just give a high-
level discussion, reporting the technical details in section S4. We
consider potential games, in which all differences in payoffs for uni-
laterally switching to another action can be expressed using a global
potential function (8). The potential function maps each action
profile to a real number. We generate payoff matrices at random,
and for each payoff matrix, we also generate an associated potential
function. We then modify the game so that the differences in payoffs
conform to the potential function. This is tuned by a parameter x ∈
[0, 1]: When x = 0, there is no modification, and so the game is com-
pletely random, and when x = 1, the payoff matrix describes a perfect
potential game.

What is the effect of changing N and x? We repeat the process
described above for 1000 payoffmatrices for valuesN= 3, 10, 50 and x ∈
[0.0, 0.1,…, 0.5,…, 0.9, 1.0]. As we show in fig. S12, when x approaches
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1, the share of best reply cycles 〈F(u)〉N,x goes to zero as expected. How-
ever, it does so in a highly nonlinear way, particularly for largeN.When
N=3and x =0.8, it is 〈F(u)〉N,x =0.05only, but forN=50 and x=0.8, it is
〈F (u)〉N,x = 0.35. This suggests that, in some situations, small devia-
tions from commonly studied classes of games may cause a signifi-
cant increase in the share of best reply cycles, making them less stable
under learning.

Analytical approach
For G = 0, it is possible to derive analytically how the best reply
structure varies with N. Our derivation follows the framework of
statistical mechanics, suggesting that problems such as the existence
of phase transitions in the best reply structure may be studied within
our formalism. We define a best reply configuration as a unique set
of best replies by both players to all possible actions of their opponent.
Because the best replymatrix is a Booleanmatrix, for any givenN, there
is a countable number of possibilities. The total number of possible best
reply configurations is N2N. For uncorrelated payoffs, G = 0, all best
reply configurations are equally likely. Therefore, we can compute the
frequency r(u) for any set of attractorsu by counting the number of best
reply configurations leading to u. In the jargon of statistical mechanics,
this means that we are assuming a microcanonical ensemble of games.

Here, we just sketch the derivation, referring the reader to section
S5.1 for a detailed explanation. Because of independence, the frequency
r(u) can bewritten as a product of terms f corresponding to the number
of ways to obtain each type of attractor multiplied by a term g for free
actions (best replies that are not on attractors). We denote by n the
number of actions per player, which are not already part of cycles or
fixed points.
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Fig. 4. How the share of best reply cycles predicts convergence as a function of the number of actionsN and the competitionparameterG. Dashed lines are the average
share of best reply cycles 〈F (u)〉N,G for those values of N and G. Markers are the fraction of simulation runs in which the learning algorithms do not converge.
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The function f(n, k) counts the ways to have a k-cycle (including
fixed points, which are cycles of length k = 1)

f ðn; kÞ ¼ n
k

� �2

k!ðk� 1Þ! ð2Þ

where the binomial coefficient means that, for each player, we can
choose any k actions out of n to form cycles or fixed points, and
the factorials quantify all combinations of best replies that yield cycles
or fixed points with the selected k actions. For instance, in Fig. 1, for
each player, we can choose any two actions out of four to form a 2-cycle,
and for each of these, there are two possible cycles (one clockwise and
the other counterclockwise). The number of ways to have a 2-cycle is
f(4, 2) = 72. Similarly, for each player, we can select any action out of
the remaining two to form a fixed point, in f(2, 1) = 4 ways.

In this example, for both players, we can still freely choose one best
reply, provided that this does not form another fixed point (otherwise,
the best reply vector would be different). In Fig. 1, the free best replies
are (3, 4) for Row and (4, 1) for Column. In general, gN(n, d) counts
the number of ways to combine the remaining n free best replies in a
N×N payoffmatrix so that they do not formother cycles or fixed points

gNðn; dÞ ¼ N2n � ∑
n

k¼1
f ðn; kÞgNðn� k; d þ 1Þ=ðd þ 1Þ ð3Þ

The first term N2n quantifies all possible combinations of the free
best replies, and the summation counts the “forbidden” combina-
tions, i.e., the ones that form cycles or fixed points. This term has
a recursive structure. It counts the number of ways to form each type
of attractor and then the number of ways not to have other attractors
with the remaining n − k actions. Note that N is a parameter and
therefore is indicated as a subscript, while n is a recursion variable.
d denotes the recursion depth. Last, the division by d + 1 is needed to
prevent double, triple, etc., counting of attractors. In the example of
Fig. 1, g4(1, 0) = 15.

For any given best reply vector, u = (nN, …, n2, n1), the general
expression for its frequency r is

rðuÞ ¼ ∏
N

k¼1
∏
nk

j¼1

f N �∑N

l¼kþ1nll � ðj� 1Þk; k
� �

j

0
B@

1
CA

�gN N � ∑
N

l¼1
nll; 0

 !
=ðN2NÞ

ð4Þ

The product in the first brackets counts all possible ways to have the
set of attractors u. The first argument of f, N � ∑Nl¼kþ1nll � ð j� 1Þk,
iteratively quantifies the number of actions that are not already part of
other attractors. The division by j, like the division by d + 1 in Eq. 3, is
needed to prevent double, triple, etc., counting of attractors. The second
term gN counts all possible ways to position the free best replies so that
they do not form other attractors. The first argument of gN is the count
of actions that are not part of attractors, and the initial recursion
depth is 0. Last, we obtain the frequency by dividing by all possible
configurations N2N. For the payoff matrix in Fig. 1, r(0, 0, 1, 1) =
f(4, 2)f(2, 1)g4(1, 0)/4

8 = 0.07.
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Equation 4 can then be used to compute the ensemble average
of the share of best reply cycles F for any given N

FN ¼ ∑
u
rðuÞFðuÞ ð5Þ

summing over all possible u s:t: ∑Nk¼1nkk≤N. It is also possible to
calculate other quantities, including the fraction of payoff matrices
without fixed points (F (u) = 1) and without cycles (F (u) = 0). We
provide the expressions and explain their derivation in section S5.2.

In Fig. 5, we analyze the best reply structure for increasing values of
N. We report, from bottom to top, the fraction of payoff matrices with
no fixed points, the average share of best reply cyclesFN, and the fraction
of games with at least one cycle. For instance, for N = 30, 36% of the
payoff matrices have no fixed points and 84% have at least one cycle (so
16% have no cycles and 48% have a mixture of cycles and fixed points),
with an average FN = 0.70. There is a very good agreement between
analytical results (solid lines) and Monte Carlo sampling (markers).
The fraction of games with cycles is an increasing function of N; it is
computationally intractable to compute this for large N, but it seems
to be tending to one. However, the fraction of games with at least one
fixed point seems to reach a fixed value for N→∞. In section S5.3, we
show that this is approximated by 1/3, in agreement with numerical
simulations and close to the exact result 1/e (22).
DISCUSSION
We have characterized instability in two-player, normal-form, generic
games, showing that the best reply structure predicts the convergence
frequency of awide variety of learning algorithms. This result is remark-
able because these algorithms have no explicit relationship to best
reply dynamics. Best reply dynamics depends only on the other player’s
previous move, whereas these algorithms all have longer memory, and
also because best reply dynamics has no free parameters, whereas most
of these algorithms do. Why does this correspondence work? We con-
jecture that the presence of best reply cycles makes the existence of
basins of attraction for unstable dynamics statisticallymore likely, while
their absencemakes it probable that pure strategyNE are globally stable
fixed points. This is not always true—some learning dynamics may be
Fig. 5. Comparison of analytical predictions about best reply cycles to numerical
simulations when G = 0. Markers are numerical results, and solid lines are analytical
results. Red circles depict the frequency of randomly generated payoff matrices with
no fixed points (F(u) = 1), and blue triangles show the frequencywith at least one cycle
(F(u) > 0). The text in the figure refers to the area delimited by solid lines, e.g., “Cycles +
fixed points” means that the fraction of payoff matrices with both cycles and fixed
points is the distance between the red and blue lines. Last, green squares represent
the average share of best reply cyclesFN; this is discontinuedatN=50due toexcessive
computational cost (see section S5.2).
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trapped in better reply cycles, and others sometimes converge to mixed
strategy NE—but it is a valid approximation that enormously simplifies
the problem. It makes it possible to use combinatorics to analytically
explore the space of generic games under the microcanonical ensemble
using the conceptual framework of statistical mechanics.

Why are the predictions of the best reply formalism this good? To
understand this, one could explicitly treat the best reply payoff matrix
as a first-order approximation and then study the behavior as one
moves along a continuous path through the family of payoff matrices
it is associated with. One could use this method to study the factors
that cause deviations, such as the appearance and disappearance of
mixed equilibria or better replies. This could potentially lead to a kind of
perturbation expansion for understanding the convergence of learning
algorithms in normal-form games. This is beyond the scope of this paper
but could be an interesting topic of further study.

We have also shown that in the absence of any constraints on the
payoffs, increasing the number of available actions per player makes
best reply cycles dominant, therebymaking convergence to equilibrium
unlikely. This is akin to May’s result (14) on large ecosystems. We con-
sidered a competition parameter that constrains the pairs of payoffs to
both players. With negative correlation, the game is competitive (zero
sum in the extreme case of perfectly anticorrelated payoffs), and best
reply cycles become even more prevalent. Positive correlation instead
makes best reply cycles rare.

Wehave also constrained the games so that the differences in payoffs
conform to a global potential function, as in potential games. The cor-
respondence is tuned by a parameter that interpolates between perfect
random games and perfect potential games. We have shown that small
deviations from perfect potential games entail a substantial share of best
reply cycles when the number of actions is large.

Many other constraints could be included. Supermodular games have
also received great attention in the literature (11). In these games, actions
are ordered, and if one player increases her action, all other players’
marginal payoffs increase. (This is the concept of strategic complementa-
rities.) It would be possible to generate games at random with this con-
straint and to see how the share of best reply cycles varies as perfect
supermodular games are approached. In general, our formalism makes
it possible to evaluate whether constraints make ensembles of normal-
form games more or less stable. In most situations, for the learning algo-
rithms we study here, it is enough to check if the constraints make
best reply cycles common or rare, without the need to simulate learning
dynamics.

We have studied normal-form games here because they are trac-
table, but our study can potentially be extended to other types of
games. For example, the sequencing of different actions and the ex-
istence of private information are properly modeled in extensive form
games. While our theory does not apply directly, extensive form games
have a normal-form representation (1), suggesting that such an ex-
tension should be possible. Similarly, we have already begun the study
of games with more than two players. A previous study of competitive
games with an infinite number of actionsN suggests that nonconver-
gence becomes even more likely (53), and our preliminary results sug-
gest that this is also true for N < ∞.

In ecology, the mere fact that ecosystems are so persistent makes
it clear from the outset that they must be fairly stable. In contrast, there
are many biological and social systems that fluctuate in time, and it is
not clear a priori whether their dynamics are exogenous or endogenous.
When these systems are modeled using game theory, there is no prior
that says that they should be stable. Thus, unlike ecosystems, where the
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answer is known in advance, in these systems,we should be open-minded
about whether they are generically stable or unstable. In the absence of
selection mechanisms or intentionally designed stability, our approach
sheds light on this question. In the presence of either of these, it provides
a null hypothesis against which the effectiveness of these mechanisms
can be measured.

These results are useful because they give a warning about situations
in which the assumption of equilibrium is dangerous. There are many
real-world situations where the number of possible actions is large and
where payoffs are likely to be anticorrelated. In the absence of other con-
straints, our results suggest that, in these circumstances, equilibrium is
unlikely to be a good behavioral assumption. Although equilibria exist,
insofar as normal-form games apply, and insofar as the type of learning
algorithmswehave studied here is relevant, in these circumstances, con-
vergence is unlikely.
MATERIALS AND METHODS
We summarize here the protocol that was used to simulate the
learning algorithms in Figs. 3 and 4. We only report the minimal
information that would allow replication of the results. A more
detailed description, in which we provide behavioral explanations
and mention alternative specifications, is given in section S1. We
had tomake arbitrary choices about convergence criteria and parameter
values, but when testing alternative specifications, we found that the
correlation coefficients had changed by no more than a few decimal
units. This confirms a robust correlation between the share of best
reply cycles and the nonconvergence frequency of the six learning
algorithms.

Consider a two-player, N-actions normal-form game. We index
the players by m ∈ {Row = R, Column = C} and their actions by i,
j = 1,… N. Let xmi ðtÞbe the probability for player m to play action i at
time t, i.e., the ith component of her mixed strategy vector. For no-
tational convenience, we also denote by xi(t) the probability for
player R to play action i at time t, and by yj(t) the probability for
player C to play action j at time t. We further denote by sm(t) the
action that is actually taken by player m at time t, and by s− m(t) the
action taken by her opponent. The payoff matrix for player m isPm,
with Pm(i, j) as the payoff m receives if she plays action i and the
other player chooses action j. So if player Row plays action i and
player Column plays action j, they receive payoffsPR(i, j) andPC( j, i),
respectively.

Reinforcement learning
We only describe player Row, because the learning algorithm for
Column is equivalent. Player Row at time t has a level of aspiration
AR(t) that updates as

ARðt þ 1Þ ¼ ð1� aÞARðtÞ þ a∑
i;j
xiðtÞPRði; jÞyjðtÞ ð6Þ

where a is a parameter. For each action i and at each time t, player
Row has a level of satisfaction sRi ðtÞ given by

sRi ðtÞ ¼
∑ij xiðtÞyjðtÞðPRði; jÞ � ARðtÞÞ

maxi;jjPRði; jÞ � ARðtÞj ð7Þ
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All components of the mixed strategy vector are updated. The
update rule is

xiðt þ 1Þ ¼ xiðtÞ þ xiðtÞDxiðtÞ þ∑
j≠i
xjðtÞDxijðtÞ ð8Þ

Here, Dxi(t) is the contribution due to the choice of action i by
player Row (which occurs with probability xi(t), hence the multiplying
term), and Dxij(t) is the contribution on action i due to the choice of
another action j (i.e., a normalization update), each occurring with
probability xj(t). We have

DxiðtÞ ¼ bsRi ðtÞð1� xiðtÞÞ; sRi ðtÞ > 0
bsRi ðtÞxiðtÞ; sRi ðtÞ < 0

�
ð9Þ

and

DxijðtÞ ¼
�bsRj ðtÞxiðtÞ; sRj ðtÞ > 0

�bsRj ðtÞ
xjðtÞxiðtÞ
1� xjðtÞ ; sRj ðtÞ < 0

8<
: ð10Þ

with b being a parameter.
Starting from random mixed strategy vectors—the initializa-

tion of the mixed strategies will be identical for all learning algorithms
that follow—and null levels of aspiration and satisfaction, we iterated
the dynamics in Eqs. 6 to 10 for 5000 time steps (we set a = 0.2 and
b = 0.5). To identify the simulation run as convergent, we only con-
sidered the last 20% of the time steps and the components of the
mixed strategy vectors played with average probability greater than
0.05 in this time interval. If the standard deviation averaged over
these components and time steps was larger than 0.01, the simulation
run was identified as nonconvergent.

Fictitious play
Player Row calculates the jth component of the expected mixed
strategy of Column at time T, which we denote by ~y j(T), as the
fraction of times that j has been played in the past

~yjðTÞ ¼
∑T

t¼1Iðj; sCðtÞÞ
T

ð11Þ

In the above equation, I(a, b) is the indicator function, I(a, b) = 1 if
a = b and I(a, b) = 0 if a ≠ b. Player Row then selects the action that
maximizes the expected payoff at time T

iðTÞ ¼ argmaxk∑
j
PRðk; jÞ~yjðTÞ ð12Þ

The behavior of Column is equivalent. We used the same conver-
gence criteria and the same length of the simulation runs as in rein-
forcement learning. We checked convergence of the empirical
distribution of actions, and not of actual actions, as the latter would
be impossible in cyclic games (54). There are no parameters in ficti-
tious play.
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Replicator dynamics
We simulated the discrete version proposed by Maynard Smith [(5),
appendix D, p. 183]

xiðt þ 1Þ ¼ xiðtÞ
1þ d∑jPRði; jÞyjðtÞ

1þ d∑kj xkðtÞPRðk; jÞyjðtÞ

yjðt þ 1Þ ¼ yjðtÞ
1þ d∑iPCðj; iÞxiðtÞ

1þ d∑ik ykðtÞPCðk; iÞxiðtÞ

ð13Þ

with d = 0.1. Here, the length of the simulation run was endogenously
determined by the first component of the mixed strategy vector hitting
the machine precision boundary. (Because replicator dynamics is of
multiplicative nature, the components drift exponentially toward the
faces of the strategy space and quickly reach the machine precision
boundaries.) To verify convergence, we checked if the largest component
of the mixed strategy vector of each player has been monotonically
increasing over the last 20% of the time steps, and if all other components
have been monotonically decreasing in the same time interval.

Experience-weighted attraction
Each player m at time t has an attractionQm

i ðtÞ toward action i. The
attractions update as

Qm
i ðt þ 1Þ ¼

ð1� aÞN ðtÞQm
i ðtÞ þ ðdþ ð1� dÞxmi ðtÞÞ∑j Pmði; jÞyjðtÞ

N ðt þ 1Þ ð14Þ

where a and d are parameters and NðtÞ is interpreted as experience.
Experience updates asNðt þ 1Þ ¼ ð1� aÞð1� kÞN ðtÞ þ 1, where k
is a parameter. Attractionsmap to probabilities through a logit function

xmi ðt þ 1Þ ¼ ebQ
m
i ðtþ1Þ

∑je
bQm

j ðtþ1Þ ð15Þ

where b is a parameter.We simulated Eqs. 14 and 15 for 500 time steps,
starting withNð0Þ ¼ 1. The parameter values are a = 0.18, b ¼ ffiffiffiffi

N
p

,
k = 1, and d = 1. If in the last 100 time steps the average log variation
is larger than 0.01, the simulation run was identified as nonconvergent.
In formula, we checked if 1=N∑Ni¼15=T∑

T
t¼4=5TðlogxiðtÞÞ2 > 10�2, and

equivalently for Column.

EWA with noise
We replace Eq. 14 by

Qm
i ðt þ 1Þ ¼

ð1� aÞN ðtÞQm
i ðtÞ þ ðdþ ð1� dÞIði; smðt þ 1ÞÞPmði; s�mðt þ 1ÞÞ

N ðt þ 1Þ
ð16Þ

i.e., we consider online learning. The parameter values are the same
as in EWA. The convergence criteria are different. We ran the dynamics
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for 5000 time steps and—as in reinforcement learning—we con-
sidered only the last 20% of the time steps and only the components
of the mixed strategy vectors played with average probability greater
than 0.05 in this time interval. We then identified the position of the
fixed point, and we classified the run as nonconvergent if play was
farther than 0.02 from the fixed point in more than 10% of the time
steps (i.e., in at least 100 time steps).

Level-k learning
Let FR(⋅) and FC(⋅) be the EWA updates for players Row and Column,
respectively, i.e., if both players use EWA, then x(t + 1) = FR(x(t), y(t))
and y(t + 1) = FC(x(t), y(t)). (x and ywithout a subscript indicate the full
mixed strategy vector.) Then, if Column is a level 2 learner, she updates
her strategies according to y2(t + 1) = FC(x(t + 1), y(t)) = FC(FR(x(t),
y(t)), y(t)). Row behaves equivalently. In the simulations, we assumed
that both players are level 2 and used the same parameters and con-
vergence criteria as in EWA.

Payoff matrices
For each payoff matrix, we randomly generated N2 pairs of payoffs—if
Row plays i and Column plays j, a pair (a, b) implies that Row receives
payoff a andColumngets payoff b.We then kept the payoffmatrix fixed
for the rest of the simulation. Each pair was randomly sampled from a
bivariateGaussian distributionwithmean 0, variance 1, and covarianceG.
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