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Abstract: The demand for biodegradable sustained release carriers with minimally invasive and less
frequent administration properties for therapeutic proteins and peptides has increased over the years.
The purpose of achieving sustained minimally invasive and site-specific delivery of macromolecules
led to the investigation of a photo-responsive delivery system. This research explored a biodegradable
prolamin, zein, modified with an azo dye (DHAB) to synthesize photo-responsive azoprolamin
(AZP) nanospheres loaded with Immunoglobulin G (IgG). AZP nanospheres were incorporated in a
hyaluronic acid (HA) hydrogel to develop a novel injectable photo-responsive nanosystem (HA-NSP)
as a potential approach for the treatment of chorio-retinal diseases such as age-related macular
degeneration (AMD) and diabetic retinopathy. AZP nanospheres were prepared via coacervation
technique, dispersed in HA hydrogel and characterised via infrared spectroscopy (FTIR), X-ray
diffraction (XRD) and thermogravimetric analysis (TGA). Size and morphology were studied via
scanning electron microscopy (SEM) and dynamic light scattering (DLS), UV spectroscopy for photo-
responsiveness. Rheological properties and injectability were investigated, as well as cytotoxicity
effect on HRPE cell lines. Particle size obtained was <200 nm and photo-responsiveness to UV = 365
nm by decreasing particle diameter to 94 nm was confirmed by DLS. Encapsulation efficiency of the
optimised nanospheres was 85% and IgG was released over 32 days up to 60%. Injectability of HA-
NSP was confirmed with maximum force 10 N required and shear-thinning behaviour observed in
rheology studies. In vitro cell cytotoxicity effect of both NSPs and HA-NSP showed non-cytotoxicity
with relative cell viability of ≥80%. A biocompatible, biodegradable injectable photo-responsive
nanosystem for sustained release of macromolecular IgG was successfully developed.

Keywords: zein; macromolecules; photo-responsive; nanospheres; sustained release; biodegradable;
injectable; hydrogel

1. Introduction

Proteins and peptides have been extensively studied for various therapeutic applica-
tions because they resemble existing physiological molecules, making them highly effective
in vivo. However, their large molecular size, short half-life and provocation of immune
response result in low absorption and adverse effects such as elevated intraocular pressure.
This is a complication in clinical application such as ocular drug targeting where the struc-
tural anatomy is complex and possesses numerous tissue barriers restricting access to the
posterior segment. This has led to high demand for prolonged, non-invasive therapies to
reduce the frequency of administration and improve patient adherence to treatment [1,2].
Injectable delivery systems are minimally invasive drug delivery systems are capable to
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extend to the restricted posterior segment of the eye while maintaining minimal pain and
discomfort as opposed to the highly invasive surgical therapies.

Biodegradable nanocarriers have attained popularity in numerous biomedical ap-
plications including drug delivery design. They have a potential to increase uptake of
macromolecular therapeutics into the target tissue by enhancing passage through tissue
barriers and protect against harsh physiological environment to achieve localized delivery
and overcome limitations experienced in macromolecular drug delivery [3,4]. Nanocar-
riers can be designed to suit sustained and tuneable drug release through modification
of polymer chemistry, obtain responsive systems by the inclusion of responsive moieties,
thus aiding in prolonging the half-life of the molecules by decelerating elimination [5–7].
The augmented benefit of particle size and responsiveness is essential for optimization of
drug delivery.

Zein is a cost-effective hydrophobic prolamin polymer extracted from maize that
easily forms self-assembled spherical nanosized particles suitable as potential drug carriers.
It is also biodegradable, non-toxic, biocompatible and considered generally recognised as
safe (GRAS) [4,8]. An antioxidative property in zein resultant from its high aliphatic index,
fatty acid content and surface hydrophobicity has been reported [9]. These properties
make zein a good candidate for biodegradable nanocarriers, encapsulate and protect
both hydrophobic and hydrophilic bioactives including macromolecules [10–12]. Zein
nanospheres require surface coating to reduce aggregation encountered during formulation.
Gelatin has been investigated as a surface coat for nanomaterials [13].

Externally controlled delivery systems have been largely explored for various phar-
maceutical applications due to their riveting capabilities such as adjustment of the rate
of response from an external source of stimulus to accomplish minimally invasive drug
delivery [14–16]. Photo-responsive delivery systems undergo structural transformation
upon irradiation with either visible light, ultraviolet light (UV) or near infrared light (NIR).
Chromophores utilise a photoreaction to convert photoirradiation to a chemical signal
which is then transferred to the functional part of the particle to control its properties
through photoisomerization. Natural polymers can be modified into photosensitive ma-
terials by adding a chromophore [17]. 4,4′-dihydroxyazobenzene (DHAB) is an azo dye
with a chromophore (N = N) that undergoes reversible photoisomerization from trans to
cis when irradiated with UV light of a certain wavelength. Light is remotely controlled
and that renders it non-invasive; it is also independent of chemical environmental changes
experienced at different stages of disease progression and increases prospects of targeted
delivery [18,19].

Hydrogel based drug delivery systems are best suitable for the purpose of flexibility
and injectability. Directly incorporating drugs into hydrogels results in a shorter drug
release time as a consequence of fast diffusion caused by high water content in the hydro-
gel [20]. Nanocarriers improve passage through tissue and control drug release into the
target tissue. However, administration of drug loaded nanocarriers as solid implantable
delivery systems requires invasive surgical procedures and injection is not applicable
due to aggregation and sedimentation which leads to high residue in the syringe after
injection and insufficient therapeutic levels at the target site. Injectable hydrogels can
overcome these drawbacks as they possess the advantage of minimal invasive adminis-
tration and reach for asymmetrical target sites [21]. Drug loaded solid nanoparticles can
be dispersed in an injectable hydrogel for homogeneity, ease of administration and opti-
mal therapeutic concentrations at target tissue to improve patient adherence. In addition,
hydrogel-nanoparticle combinations provide diverse synergistic properties superior to
their individual composites [22,23].

The aim of this study was to develop an injectable photo-responsive delivery system
for sustained release of macromolecules. In this study, zein was blended with DHAB
to formulate photo-responsive nanospheres encapsulated with a monoclonal antibody
Immunoglobulin G (IgG) as a model protein via coacervation method. A nanosystem
comprising of photo-responsive IgG loaded azoprolamin (AZP) nanospheres coated with
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gelatin and dispersed in genipin (GP) crosslinked hyaluronic acid hydrogel (HA) were
successfully prepared and characterised through Fourier transform infrared (FTIR) spec-
troscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron
microscopy (SEM). To our knowledge, this is the first report investigating photo-responsive
AZP nanospheres dispersed in HA hydrogel for sustained delivery of macromolecules.

2. Results and Discussion

IgG loaded photo-responsive AZP nanospheres were prepared by coacervation method,
freeze-dried and homogenously dispersed in HA hydrogel to obtain an injectable nanosys-
tem. Genipin was used to enhance the viscosity of the HA hydrogel in order to avoid
sedimentation of the dispersed nanospheres. Genipin reacts with primary amino groups
of proteins and amino acids to produce blue pigments [24]. This pigment was observed
in the HA hydrogels modified with genipin. The colour variation is shown in Figure 1
where a and c are pure HA hydrogels with a clear colour, b, the HA-GP hydrogel showing
a light blue colour and d, the obtained HA-NSP nanosystem displaying the dispersion
of nanospheres in the hydrogel. The darker pigment in HA-NSP may be attributed to
the presence of amino groups in the composition of AZP nanospheres as well as their
brown colour.
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Figure 1. Images of the formulations (a) pure HA hydrogel, (b) HA-GP hydrogel, (c) pure HA hydrogel and (d) HA-NSP
nanosystem (nanospheres + hydrogel).

2.1. Particle Size and Morphology

The size and morphology of the dried IgG loaded AZP nanospheres were examined
using SEM and dynamic light scattering (DLS). The average diameter of the nanospheres
~145 nm for the blank sample and ~185 nm for IgG loaded nanospheres. The nanospheres
showed a low PDI of 0.190, indicating uniformity and less aggregation in dispersion [25].
SEM micrographs in Figure 2 confirmed the spherical shape and the size of the nanospheres
was <200 nm. The average diameter of the nanospheres slightly increased after the in-
corporation of IgG. This variation in size, displayed in Figure 3, may be attributed to the
inclusion of a high molecular weight peptide [26]. A few spheres in the macro scale were
observed and this large size may be due to overlapping of the nanospheres resulting from
aggregation during solvent evaporation [27].
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Figure 2. SEM micrographs of freeze-dried IgG loaded AZP nanospheres.
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Figure 3. Particle size distribution for (a) blank (144.5 nm, PDI = 0.207) and (b) IgG loaded AZP nanospheres (185.5 nm,
PDI = 0.190).

2.2. X-ray Diffraction

XRD patterns for lyophilised AZP nanospheres, drug and native components are
shown in Figure 4. Intense peaks were observed at 19, 22, 26, 29, 31, 45 and 56 degrees
in DHAB and AZP patterns, indicative of the crystalline nature of the azo dye. On the
contrary, flattened peaks were seen in zein, gelatin and IgG patterns indicating their
amorphous nature. DHAB characteristic peaks, 31, 45 and 56 degrees, were seen in the
nanospheres pattern substantiating the unaltered structure of DHAB and suggesting that
the photoisomerization property was retained [28].
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Figure 4. X-ray diffractograms of (a) zein, (b) AZP, (c) DHAB, (d) gelatin, (e) IgG and (f) IgG loaded
AZP nanospheres.

2.3. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR was used to examine the interactions between zein, DHAB, AZP nanospheres and
IgG during formulation. Spectra of the lyophilised nanospheres and native components
were obtained and are presented in Figure 5a,b. Characteristic bands and peaks are
seen at 828 cm−1 verifying the 4,4′ distribution in the ring [29], the strong absorption at
1231 cm−1 assigned to the aromatic C-O stretch, 1508 cm−1 assigned to the azo group
(N = N) responsible for photo-responsiveness of the system, aromatic C-N, C = C and
C-H positioned at 1381 cm−1,1438 cm−1 and 2925 cm−1, respectively. Amide C = O
stretching, seen at 1634 cm−1, was accounted for by the structure of zein. The interaction
between zein and DHAB results in hydrogen bonds formed from amide groups in zein
and hydroxyl groups in DHAB, which is also confirmed by the right shift observed in
O-H stretching bands from 3287 cm−1 and 3279 cm−1, in zein and DHAB spectra, to
3251 cm−1 in AZP spectrum due to the amide-hydroxyl interaction [30]. Based on these
results, it was deduced that the AZP blend retained the azo group that is ascribed to the
photo-responsive behaviour of the nanospheres. In Figure 5c, stretching vibrations at
3327 cm−1 and 3295 cm−1, protein amide I at (C = O) at 1635 cm−1 and 1643 cm−1, C-O
stretching at 1058 cm−1 and 1074 cm−1 were seen in HA hydrogel and AZP nanospheres,
respectively [31]. The presence of genipin in HA was clearly observed. There were no
significant differences in the spectra of genipin modified HA hydrogel and HA-NSP;
however, a slight shift in the peaks was detected in HA-NSP spectrum from 3289 cm−1,
1643 cm−1 and 1058 cm−1 to 3271 cm−1, 1627 cm−1 and 1050 cm−1. This is an indication of
weak hydrogen bonding between the hydrogel and nanospheres [32].
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Figure 5. FTIR spectra of (a) Zein, DHAB, IgG and IgG loaded AZP nanospheres, (b) Genipin,
Pristine HA and genipin crosslinked HA hydrogel and (c) IgG loaded AZP nanospheres and HA-NSP
nanosystem.
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2.4. Thermal Analysis

Thermal stability of the lyophilised AZP nanospheres, AZP and bulk components
was investigated using thermogravimetric analysis under nitrogen flow and thermograms
are presented in Figure 6a and b. DHAB onset of degradation was observed at ~150 ◦C
while other components had a lower onset of degradation temperature between 60 ◦C
and 110 ◦C, indicating loss of water from the samples [26]. Zein shows thermal resistance
in the initial phase but undergoes more weight loss at the end. Furthermore, DHAB
had the highest stable thermal residue of 35% while zein had the lowest (13%) and the
nanospheres followed a similar degradation pattern to that of AZP with the total thermal
stable residue of 26%. This indicates that the presence of the crystalline DHAB increases
the total stable residue and, therefore, enhances thermal resistance of both the blend
and nanospheres. Thermograms displayed in Figure 6c show the degradation pattern
and stability of HA-NSP and its components, AZP nanospheres and HA gel. HA-NSP
underwent a two-step degradation process at 120 ◦C and 237 ◦C, whereas the components
showed single degradation points with HA at 235 ◦C and AZP nanospheres at 280 ◦C. AZP
nanospheres had the lowest residue (11%) and HA-NSP had the highest residues (21%),
confirming its thermal stability, thus suggesting that the combination of HA gel and AZP
nanospheres is more stable than the individual components.
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Thermal behaviour of the nanospheres, HA gel and HA-NSP was analysed using
differential scanning calorimetry. Samples were freeze-dried and analysed in the tem-
perature range 25 ◦C–300 ◦C. Thermogram for pristine HA in Figure 7a showed a broad
endothermic melting point at 117 ◦C and a sharp exothermic crystallization point at 238 ◦C.
HA hydrogel in 7b displayed a sharp endothermic peak at 117 ◦C corresponding to its
melting point and a broader exothermic peak at 238 ◦C suggesting that the gel is more
prone to degradation compared to the native HA [33]. AZP nanospheres thermogram in c
exhibited a broad exothermic peak at 276 ◦C. A distinct sharp endothermic melting point
at 117 ◦C was observed in the thermogram for HA-NSP d and a broad exothermic peak at
239 ◦C confirming that the nanosystem’s thermal behaviour is more endothermic, therefore,
the dispersed AZP nanospheres can be released from the gel without substantial energy
involved in the process.
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Figure 7. DSC thermograms of (a) Pristine HA, (b) HA gel, (c) NSP and (d) HA-NSP, measured from
25 ◦C to 300 ◦C.



Int. J. Mol. Sci. 2021, 22, 3359 9 of 21

2.5. Determination of Photo-Responsive Property of AZP Nanospheres

To investigate photo-response, UV-Vis spectra of AZP nanosphere aqueous dispersion
were obtained before and after UV irradiation and are shown in Figure 8. To incite photo-
isomerisation, samples were irradiated with UV light (365 nm) to induce conversion from
trans to the cis structural isomer [34]. Prior to irradiation, a maximum absorption peak was
seen at 345 nm and a flat and smaller peak at 430 nm. After UV irradiation, the peak at
345 nm decreased while a slight increase in intensity in the peak at 430 nm was observed.
Irradiation of the solution with white light resulted in the recovery of the peaks observed
before UV irradiation. This decrease in intensity can be described, according to Ding et al.
(2016), as the decrease in molar extinction coefficient caused by the reduced concentration of
the trans isomer in the solution, concurrently, the cis form increases, leading to an increased
intensity at 430 nm. This is accounted for by the transformation of the azo group from
trans to cis isomer upon UV irradiation and recovery (trans to cis) upon exposure to white
light [27,35].
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Furthermore, results from dynamic light scattering are presented in Figure 9 where
the change in diameter as a function of irradiation is plotted against time. The same sample
was used for all time points to avoid inconsistent results. A significant decrease in the
diameter of the nanosphere in the first 20 min was observed from ~185 nm to ~97 nm,
followed by a constant diameter of 94 nm. These results displayed a more compact sphere
after UV irradiation and this is ascribed to the photo-isomerisation of the structure from
trans to cis [36].

2.6. Encapsulation Efficiency and In Vitro Release of IgG from AZP Nanospheres

The drug loading capacity (IgG) of the nanospheres, calculated using Equations (1) and
(2), was 83%. In Figure 10, in vitro release of IgG from non-irradiated and UV irradiated
AZP nanospheres is shown. In the first 24 h, 25% of IgG was released from non-irradiated
nanospheres and 15% from the UV irradiated nanospheres; this initial burst release of IgG
is explained as the release of free drug that is not interacted with the polymer [26]. The
rest of the drug was gradually released over 4 weeks up to 60% and 84% at day 32 from
irradiated and non-irradiated nanospheres, respectively. The total drug released from the
UV irradiated nanospheres at day 32 was 24% less than that of non-irradiated nanospheres
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(p ≤ 0.05); this may be due to the irradiation which results in a compact nanosphere and
reduction of free volume, thus decreasing rate of diffusion and prolonging the release
of IgG.
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The proposed mechanism, previously described by Cai et al. (2014), of the reversible
photo-induced IgG release, is illustrated in Figure 11, wherein, the AZP loaded nanosphere
is subjected to UV light of wavelength 365 nm for a set amount of time and the trans-azo
groups change into the cis form, resulting in reduced diameter of the nanosphere. The rate
of diffusion decreases to allow slow release of IgG and in the reverse process where the
nanospheres are irradiated with white light, azo groups reverse to trans form and the size
of the sphere and rate of diffusion are increased [27,37].
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2.7. Rheology

Shear viscosity measurements of the pure HA and HA-GP gels were performed to
study the mechanical variation caused by the addition of genipin. In Figure 12, a slightly
higher shear viscosity is observed in the HA-GP gel over the pure HA gel with a p-value
0.0006 substantiating the significant difference between these two hydrogels. These results
confirm that adding genipin to pure HA increases viscosity of the gel. HA lacks the primary
amino groups that genipin is known to react with; however, it is postulated that its highly
reactive hydroxy groups are capable of forming glycosidic bonds with genipin which are
stable in water [38,39].
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Rheological behaviour of HA-NSP was determined through the mechanical properties
which are, viscosity, elastic (G’) and viscous (G”) modulus. These are important parameters
in the determination of hydrogel injectability [40]. Viscosity is a measurement of material’s
resistance to deformation upon stress application and a response to shear stress variations
taking place during injection of hydrogel formulations. Elastic and viscous moduli measure
the elasticity or rigidity of a hydrogel and provide information about the viscoelastic
response upon shear, in this case, during injection [41].
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A frequency sweep from 0.1 Hz to 10 Hz at 1% strain, strain sweep of up to 100 Pa
and yield stress tests were conducted at 25 ◦C as this is the temperature of the environ-
ment in which an injection would be performed. Viscoelastic behaviour was observed in
Figure 13a, wherein the loss modulus was dominant below the crossover frequency 8 Hz
(G’ = G” = 75 ± 0.5 Pa) and storage modulus was dominant above this frequency. Complex
viscosity decreased with the increase in frequency, indicating shear thinning behaviour
of the HA-NSP nanosystem [42]. The crossover point is the transition from viscous gel
character where G” > G’ to elastic behaviour, G’ > G”. Material yielding was observed
from the strain sweep in Figure 13b indicated by a drop in storage and loss moduli after
47.22 Pa strain. This yield strain is the point at which material starts to flow and this is
essential for ease of injection of the formulation. Viscosity decreased with increasing shear
stress confirming shear thinning behaviour of HA-NSP and further indicating homogenous
dispersion of the nanospheres in the gel. Shear thinning gels experience a high shear rate
exerted by the walls during injection, which results in a reasonable force of injection as a
consequence of the decreased viscosity [43,44].
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2.8. Injectability

Injectability of the HA gel and HA-NSP was measured as the force required to inject
the hydrogel through a 1 mL syringe fitted with 27 G and 31 G needles. HA-NSP is a
composition of chromophore-equipped nanospheres dispersed in HA gel. The force re-
quired for injection works on 3 parts, (i) the resistance of the syringe plunger, (ii) the kinetic
energy to the contents of the syringe and (iii) forcing the liquid through the needle [45].
This process is affected by the viscosity of the sample and the size of the needle used.
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The maximum force required to inject hydrogels was determined via texture analysis and
results are shown in Figure 14. Injectability tests were conducted on HA and HA-NSP
hydrogels through 27 G and 31 G needles. HA hydrogel required 9 N and 14 N, whereas
the HA-NSP hydrogel required 10 N and 18 N to inject through 27 G and 31 G needles,
respectively. Two parameters that affected the force of injection are the decrease in the
size of the needle and the dispersion of nanospheres in the hydrogel which resulted in
increased maximum force required for injection. These results remain within two thirds
of the recommended value of the maximum force for a manual injection which is 30 N;
therefore, the HA-NSP is suitable for injection through various routes of administration.
Furthermore, for ease of administration and minimal discomfort, 10 N is the recommended
maximum force and this qualifies the 27 G needle as the best suited selection for this
formulation [46].
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2.9. Cell Cytotoxicity

HRPE cells treated with injectable photo-responsive nanosystem (HA-NSP), NSPs,
zein, HA gel and IgG solution were analysed using annexin v and dead cell assay. Results
are presented Figure 15 as relative cell viability from the treated cultures of HRPE cells
for up to a period of 48 h. The maximum concentrations of each component drug in
the nanosystem were used as treatment. The relative viability of HRPE cells remained
over 80% in all treated cultures. There was no significant change in viability from cells
treated with both zein and IgG compared with untreated control cells, which confirmed
the cytocompatibility of these components. Literature has attributed the cytocompatibility
of zein to its degradation products that are beneficial to cell proliferation [47]. HA gel
decreased cell viability by 20% over 48 h, whereas IgG loaded nanospheres and the HA-
NSP decreased cell viability by 8% and 11%, respectively. Where relative cell viability is
≥70%, the material is considered non-cytotoxic [48]; therefore, these results show that the
HA-NSP nanosystem is non-cytotoxic to HRPE cell lines.
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Figure 15. Cytotoxicity testing of HA-NSP on HRPE cells cultured for up to 48 h.

Annexin v binds to the externalised phosphatidylserine (PS) from asymmetrical cell
membrane in apoptotic cells and the dead cell marker 7-AAD binds to necrotic cells [49].
Apoptosis eventually results in necrosis [50]. Late apoptosis is detected when the cell is
positive for both PS and 7-AAD. Apoptosis profiles obtained from the study are displayed
in Figure 16. Treated HRPE cell death after 48 h is presented as the percentage apoptosis
and necrosis (Figure 17). These results show that the dominant pathway for cell death was
apoptosis for all treatments. HA gel showed the highest percentage of necrotic cells (7%)
and this may be attributed to the presence of genipin [24]; however, this percentage was
0.25% for HA-NSP confirming that cytocompatibility was improved in the composition of
HA gel and AZP nanospheres.
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3. Materials and Methods
3.1. Materials

Zein purified powder from maize; ethanol (EtOH) reagent grade (absolute), gelatin,
4,4′ dihydroxyazobenzene (DHAB), Immunoglobulin G from human serum, Hyaluronic
acid sodium salt from streptococcus and Genipin were all purchased from Sigma-Aldrich
(St. Louis, MO, USA). Sodium chloride was supplied by Merck Chemicals Pty Ltd., Ger-
miston, South Africa.

3.2. Preparation of AZP Nanospheres

The azoprolamin (AZP) blend was prepared by mixing zein with DHAB in a volatile
solvent under magnetic stirring overnight and dried under vacuum at 40 ◦C for approx-
imately 36 h. Nanospheres were prepared via coacervation method which involves the
formation of two liquid phases by partial desolvation of polymer. The solvent is evaporated
by magnetic stirring at room temperature, making the formulation of the nanospheres
simple and inexpensive [12,51]. The AZP blend was solubilized in 70% aqueous ethanol
(0.5 mg/mL) under magnetic stirring at a speed of 300 rpm; concurrently, IgG was dis-
solved in 150 Mm sodium chloride solution (1 mg/mL). IgG solution was then added
dropwise to the AZP solution with mild stirring for 30 min to incorporate the IgG into
the nanospheres. Gelatin aqueous solution was then added with continuous stirring at



Int. J. Mol. Sci. 2021, 22, 3359 16 of 21

room temperature to evaporate 70% ethanol. The ratio of oil to water phase was 1:4. The
obtained dispersion was freeze-dried and characterized.

3.3. Dispersion of Nanospheres in Hyaluronic Acid Hydrogel

The nanosphere-in-hydrogel system (HA-NSP) was formulated by dispersing nanospheres
in an aqueous solution and a gelling agent was added, followed by a crosslinker [22]. Genipin
was used as the crosslinker and hyaluronic acid (HA) as a gelling agent. Various concentrations
of HA and Genipin were explored to find the composition best suited for the nanosystem.
Freeze-dried IgG loaded AZP nanospheres were dispersed in distilled water, HA was added
into the dispersion stirring until completely dissolved and, finally, genipin was added to the
gel to obtain the nanosphere-in-gel system.

3.4. Particle Size and Morphology of Nanospheres

Size distribution and polydispersity index (PDI) of the nanospheres were determined
using the dynamic laser light scattering technique. Briefly, lyophilised nanospheres were
dispersed in phosphate buffer saline (PBS, pH 7.4), transferred into a cuvette and sub-
jected to laser light through the Zetasizer Nano ZS instrument (Malvern Instruments Ltd.,
Malvern, UK) for the measurement of particle diameter. Morphology of the nanospheres
was studied via scanning electron microscopy (SEM) FEI Quanta 400 F (Hillsboro, OR,
USA). Dried nanospheres were fixed onto metal stubs using double sided tape and sputter
coated with a thin layer of gold under vacuum and observed under the microscope. All
measurements were performed in triplicates at 25 ◦C, with a scattering angle of 90◦.

3.5. X-Ray Diffraction

The physical state of the nanospheres after the formulation process and blending of
zein with DHAB was assessed through X-ray diffraction (XRD) analysis. X-ray patterns of
the components were obtained from X-ray diffractometer (MiniFlex 600, Rigaku, Japan),
using Nickel-filtered Cu Kα radiation generated at a voltage of 40 kV and a current of
30 mA. Data were collected with a range between 5◦ and 90◦ (2θ) at room temperature, at a
scanning rate of 5◦ min−1.

3.6. Fourier Transform Infrared Spectroscopy (FTIR)

To study chemical structures and interactions between components during formu-
lation, infrared spectra were obtained using FT-IR spectrometer (PerkinElmer Spectrum
100). Spectra were recorded in the region from 4000 cm−1 to 650 cm−1 wavenumbers at a
resolution of 4 cm−1. Powder samples of native components and freeze-dried nanospheres
were mounted directly onto the attenuated total reflectance (ATR) crystal for analysis and
to identify chemical architecture and characteristic functional groups in the formulation.

3.7. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

Thermal decomposition of the nanosystem was observed via Thermogravimetric
analysis (TGA), heated from 20 ◦C to 900 ◦C under nitrogen atmosphere at a flow rate of
20 mL/min. The thermal decomposition analyses of the samples were determined using
a TGA 400 thermogravimetric analyser (PerkinElmer Inc., Waltham, MA, USA). Thermal
properties of the nanosystem and its components were explored using differential scanning
calorimetry (DSC) (Mettler Toledo, Schwerzernback, Switzerland). Freeze-dried samples
were weighed (3–10 mg) into aluminium pans and analyzed under nitrogen atmosphere
(Afrox, Germiston, Gauteng, South Africa) with 200 mL/min flow rate and the samples
were then heated from 25 ◦C to 300 ◦C at the rate of 10 ◦C/min.

3.8. Photo-Responsive Property of AZP Nanospheres

The UV-vis spectra for dried nanospheres were obtained using UV spectrophotometer
(Cecil CE 3021, 3000 Series, Cecil Instruments, Cambridge, UK) following a method pre-
viously explained by Ding et al. [27]. Briefly, nanospheres were dispersed in phosphate
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buffer saline (PBS, pH 7.4) in a 10 mm standard UV quartz cell and analysed through
the UV-vis spectrophotometer. Pure PBS was used as a reference solution and samples
scanned in the wavelength range of 200 nm to 800 nm for the confirmation of response to
light. Additionally, the change in diameter of the nanosphere as a function of irradiation
(UV = 365 nm) time was tracked by dynamic light scattering. Dried nanospheres were
dispersed in PBS (pH 7.4) and exposed to UV light of 365 nm. Samples were extracted at
each time point, transferred into a disposable cuvette and subjected to laser light via the
Zetasizer Nano ZS instrument. All measurements were performed in triplicates.

3.9. In Vitro Release of IgG from AZP Nanospheres

A monoclonal antibody, Immunoglobulin G (IgG) was incorporated into the nanospheres
as a model protein. Drug loading efficiency was determined by sampling a certain amount
of the nanospheres and dissolving it in 70% ethanol with a probe sonicator [52]. Dried
nanospheres were weighed to determine the amount recovered from formulation, particle
yield was calculated using Equation (1) [11]. Particle yield, drug loading and encapsulation
efficiency were calculated using Equations (2) and (3) below.

Particle yield =
Practical yield

Theoretical yield
× 100 (1)

Drug loading =

(
Drug mass in nanospheres

Mass of nanospheres

)
× 100 (2)

Encapsulation efficiency =

(
Drug mass in nanospheres

Mass of feed drug

)
× 100 (3)

In vitro drug release was determined using the sample and separate method previ-
ously described by Souza, et al. [53]. Briefly, dried nanospheres were introduced into a
clear cylindrical glass with PBS (pH 7.4) and incubated in a shaker bath (Orbital Shaker
Incubator, LM-530, Lasec Scientific Equipment. Johannesburg, South Africa) at 20 rpm
with a constant temperature of 37 ± 0.5 ◦C. One sample was exposed to UV light (365 nm)
irradiation through a UV curing box for 10 min prior incubation in the shaker bath. A
portion of the release medium was extracted and replaced with an equal volume of fresh
PBS at each time point in order to maintain release conditions for the duration of the
study. The amount of IgG released was measured through ultra-high performance liquid
chromatography (UPLC) using acetonitrile:water:trichloroacetic acid as the mobile phase
(Waters® ACQUITY™LC system; Waters®, Milford, MA, USA) coupled with a photodiode
array detector (PAD; 280 nm) and fitted with a SunfireTM C18 column with a pore size
of 3.3 µm. Empower® Pro Software (Waters®, Milford, MA, USA) was used for analysis
(Figure S1).

3.10. Rheology and Injectability Properties

Rheological measurements were carried out on a rotational rheometer (Thermo Fisher
Scientific HAAKETM MARSTM, Waltham, MA, USA) equipped with RheoWin software for
data analysis. Samples were loaded onto the rheometer; a frequency sweep from 0.1 to
10 Hz and a strain sweep from 0.1 to 100 Pa were performed on the samples to determine
storage (G’) and loss (G”) moduli. To determine the consistency and injectability of the
hydrogel, the texture analyser (Stable Micro Systems TA-XT2, Surrey, UK) was used. All
tests were performed in compression mode using 27 G and 31 G needles. For the test, a
needle was fitted into a 1 mL syringe and placed in a holder vertically with the needle
downward. A cylinder probe (P/50 R) was aligned to the plunger plate for displacement
of the volume, mimicking the manual syringe injection. The compression speed was set at
1 mm/s for a distance of 20 mm. During the test, the probe compresses the syringe plunger,
forcing the contents of the syringe out and the maximum force used is recorded [54,55].
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3.11. In Vitro Cytotoxicity Testing Using H-RPE Cell Lines

Retinal pigment epithelium (RPE) is a multifunctional, nonproliferating cell mono-
layer located between the vascular choroid and the retina, forming the outer layer of the
blood-retinal barrier. These cells function as a nutrient supplier, structural maintenance,
functional integrity of the retina as well as regulating of drug transport into the inner parts
of the eye [56]. RPE dysfunction is associated with the development of various retinal
pathologies such as macular degeneration which may result in irreversible blindness in
elderly people [57]. H-RPE cell lines were used for cytocompatibility testing on the HA-
NSP 0nanosystem. Cytotoxicity effect of the HA-NSP and individual components in HRPE
cell lines was assessed using the Annexin v & Dead cell assay (Millipore Corp., Billerica,
MA, USA) according to the manufacturer’s protocol. Samples were analysed through the
MuseTM Cell Analyzer (Millipore Corp., Billerica, MA, USA) and all measurements were
performed in triplicate.

4. Conclusions

Biodegradable photo-responsive AZP nanospheres from zein and DHAB blend were
successfully developed and dispersed in HA hydrogel for injectability. The HA-NSP
showed sustained release of IgG, a potential to achieve minimally invasive drug adminis-
tration and slight discomfort upon injection. The photo-responsive property of the HA-NSP
nanosystem is afforded by the AZP nanospheres which undergo photo-isomerization under
UV light (365 nm) and their size decreased; this change in size was observed via dynamic
light scattering.

Injectability of the HA-NSP nanosystem was confirmed by texture analysis in which
a maximum injection force of 10 N through the 27 G needle was observed, indicative
of ease of injection. These findings were supported by data from rheology, displaying
shear-thinning behaviour of the HA-NSP nanosystem which is attributed to the presence
of HA. Data obtained from in vitro drug release study were substantial enough to confirm
the prolonged release of the macromolecular IgG in a sustained manner, up to 60% over
32 days. Results obtained from in vitro cytotoxicity testing in HRPE cells were positive as
cytocompatibility was observed when cells were treated with the formulation. Though cell
cytotoxicity findings suggest potential tissue compatibility of the HA-NSP nanosystem,
in vivo animal studies would provide detailed data of how the delivery system behaves in
an actual physiological environment.

The overall results suggest that the novel injectable HA-NSP is potentially suitable
for minimally invasive site-specific delivery of any macromolecular therapeutics, such
as monoclonal antibodies for age-related macular degeneration treatment. The next step
includes in vivo animal testing of the HA-NSP nanosystem to examine pharmacokinetics
and intraocular behaviour of the delivery system.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/7/3359/s1, Figure S1: Separation chromatogram of IgG.
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