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Simple Summary: Colitis-associated colorectal cancer is the third most significant condition that
increases the overall risk of developing colorectal cancer. In this study, we examined normal colonic
mucosa of tumor-bearing mice in the DSS/AOM mouse model by gene expression profiling and
fecal samples by 16s rDNA amplicon sequencing. Gene set enrichment analysis revealed that genes
associated with fatty acid metabolism, oxidative phosphorylation, and the PI3K-Akt-mTOR pathways
were enriched colonic mucosa of DSS/AOM mice. Additionally, enrichment of the sphingolipid
signal and lipoarabinomannan biosynthetic pathways were inferred from fecal microbial composition.
Our findings provide insights into altered transcriptome and microbiome in a mouse model of colitis-
induced carcinogenesis.

Abstract: Colitis is a risk factor for colorectal cancer (CRC) and can change the dynamics of gut mi-
crobiota, leading to dysbiosis and contributing to carcinogenesis. The functional interactions between
colitis-associated CRC and microbiota remain unknown. In this study, colitis and CRC were induced
in BALB/c mice by the administration of dextran sodium sulfate (DSS) and/or azoxymethane (AOM).
Whole transcriptome profiling of normal colon was then performed, and gene set enrichment analysis
(GSEA) revealed enriched fatty acid metabolism, oxidative phosphorylation, and PI3K-Akt-mTOR
signaling in the tissues from DSS/AOM mice. Additionally, immunohistochemical staining showed
increased expression levels of phosphorylated S6 ribosomal protein, a downstream target of the
PI3K-Akt-mTOR pathway in the inflamed mucosa of DSS/AOM mice. Fecal microbes were character-
ized using 16S rDNA gene sequencing. Redundancy analysis demonstrated a significant dissimilarity
between the DSS/AOM group and the others. Functional analysis inferred from microbial composi-
tion showed enrichments of the sphingolipid signal and lipoarabinomannan biosynthetic pathways.
This study provides additional insights into alterations associated with DSS/AOM-induced coli-
tis and associates PI3K-Akt-mTOR, sphingolipid-signaling and lipoarabinomannan biosynthetic
pathways in mouse DSS/AOM-induced colitis.

Keywords: 16S rDNA gene sequencing; Piphillin; inflammation-associated cancer; PI3K-Akt-mTOR

1. Introduction

Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative
colitis, is an important public health problem [1,2]. Patients with IBD typically suffer from
abdominal pain, diarrhea, weight loss, and rectal bleeding [2]. Moreover, patients with
inflammatory bowel disease are at an elevated risk for developing colon cancer [3–5], which
is dependent on the duration, extent, and severity of inflammatory disease [6,7]. The colonic
mucosa of patients suffering with active disease shows infiltration of mononuclear and
polymorphonuclear leukocytes, epithelial cell erosion, crypt abscesses, and epithelial cell
hyperplasia [8]. Colon carcinogenesis is a complex process that involves various interactive
responses from gut mucosa, stromal cells, including immune cells and fibroblasts, and

Cancers 2021, 13, 3683. https://doi.org/10.3390/cancers13153683 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-4011-6572
https://orcid.org/0000-0002-8275-0846
https://doi.org/10.3390/cancers13153683
https://doi.org/10.3390/cancers13153683
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13153683
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13153683?type=check_update&version=1


Cancers 2021, 13, 3683 2 of 15

intestinal microflora, which can be further influenced by host genetic susceptibility factors
and environmental elements. Immune cells in the colon have emerged as the principal
effectors in the pathogenesis of IBD and colitis-associated cancer (CAC) [9–11].

Animal models that recapitulate human diseases and have contributed greatly to the
understanding of IBD-associated colon cancer. The dextran sodium sulphate/azoxymethane
(DSS/AOM)-induced colon tumorigenesis model is the most widely accepted mouse
model [12–14]. In this model system, DSS-mediated injury induces intestinal inflammation
that contributes to colon carcinogenesis caused by AOM. This model is also useful in
evaluating the efficacy of prolonged prophylactic or therapeutic treatment of colitis and
colon cancer.

A large number of reports have confirmed the role of bacterial flora in the pathogenesis
of colorectal cancer, outlining the structural composition of gut microbiota in patients with
colorectal cancer [15]. Previous studies have found that there was a reduction in the
abundance of colonic mucosal flora in patients with colorectal cancer, and an increase in
Bacteroides was postulated to be related to the pathogenesis of colorectal cancer [3,4,16,17].
However, the relationships between gut microbes and colorectal carcinogenesis remain
unclear. We hypothesized that the colonic microbes could influence colitis-associated
cancer, therefore, we utilized a mouse model of colon carcinogenesis induced by AOM and
DSS as a colitis-associated cancer model to test our hypothesis [18]. For this, we performed
a comprehensive analysis using gene expression profiling on mucosal colon tissues and 16S
rDNA sequencing in fecal samples and elucidated the interactions between gut microbes
and inflammation in the host colon during carcinogenesis.

2. Materials and Methods
2.1. DSS/AOM-Induced Enteritis/Carcinogenesis Mouse Model

Female BALB/c mice were purchased from CLEA Japan (Tokyo, Japan). The animals
were housed in the Animal Laboratory at Kindai University Faculty of Medicine. The
mice (8–10 weeks of age) were maintained in a specific pathogen-free vivarium at 18 ◦C
to 23 ◦C with humidity at 50% and with a 12-h/12-h dark/light cycle. The animals had
free access to drinking water and a pelleted basal diet. AOM and DSS were purchased
from Sigma-Aldrich (St. Louis, MO, USA) and MP Biomedicals (Santa Ana, CA, USA). All
other chemicals used in this study were of reagent grade and were purchased from general
laboratory suppliers. For the carcinogenesis study, mice were randomized into untreated
control (n = 8), DSS (n = 8), AOM (n = 8), and DSS/AOM (n = 6) treatment groups. To
induce CRC, mice received triple injections of 10 mg/kg AOM and/or 3 subsequent cycles
of 2% DSS-supplemented water over a period of 4 weeks. Mice were monitored weekly
for the presence of bloody stools and or diarrhea as indicators for the formation of colonic
tumors. After 6 months, the mice were euthanized, and the colon tissue and fecal contents
were collected for pathological examination, whole transcriptomic profiling, and 16S rDNA
amplicon sequencing. The distal portion of the colon tissue that was macroscopically nor-
mal was fixed in 70% ethanol, paraffin embedded, sectioned and stained with hematoxylin
and eosin (HE). The Institutional Animal Care Committee of the Kindai University Faculty
of Medicine approved all the animal experiments (protocols KAME-30-003 (approval date:
30 January 2019) and KAME-2020-026 (approval date: 26 May 2020)).

2.2. Ion Torrent Sequencing Using the AmpliSeq Transcriptome Gene Expression Assay and
Transcriptome Analysis

Total RNA was extracted from the mouse colon tissues using the AllPrep DNA/RNA
Mini Kit, according to the manufacturer’s instructions (Qiagen, Valencia, CA, USA).
The quality and quantity of the RNA were verified using the NanoDrop 2000 de-
vice (Thermo Fisher Scientific, Foster City, CA, USA) and the RiboGreen RNA assay kit
(Life Technologies, Carlsbad, CA, USA). Whole transcriptome analysis of colon mucosal
tissues from untreated control (n = 4), DSS (n = 4), AOM (n = 4), and DSS/AOM-treated
(n = 6) mice was performed using the Ion AmpliSeq Transcriptome Mouse Gene Expression



Cancers 2021, 13, 3683 3 of 15

assay (Thermo Fisher Scientific) [16]. Ten nanograms of RNA were subjected to reverse
transcription, followed by library preparation. The Ion Xpress Barcode Adapters were
used for sample identification. Purified libraries were pooled and sequenced on an Ion
Torrent S5 system. Of the 18 samples, 1 sample from the DSS group was excluded from
the analysis because of its low sequence quality with a total read count of 2,652,660 and an
on-target alignment rate of 38.2%. The average total number of reads for the samples used
in the analysis was 9,639,739 (6,033,709–16,119,594), and the average on-target alignment
rate was 52.0% (47.1–61.8%). The generated gene expression data were normalized, and
low-expression genes were filtered out.

2.3. Gene Selection, Pathway Analysis and Gene Set Enrichment Analysis (GSEA)

Differentially expressed genes against DSS/AOM-treated samples were selected using
log2 fold change (α = 0.01 and null distribution with 20 permutations) as cutoff values in
Orange data mining software version 3.28 (https://orangedatamining.com/ access date:
20 March 2021) with the bioinformatics add-on version 4.3.1 [19]. Unsupervised hierarchi-
cal clustering was performed using Euclidean distance and Ward’s linkage, and clustered
heatmaps were generated in Orange analysis software. To explore the potential biological
pathways underlying carcinogenesis, differentially expressed genes were submitted to En-
richr and analyzed against reference pathways in the WikiPathways Mouse 2019 biological
pathway database [20,21] Gene Set Enrichment Analysis (GSEA) [22,23] was performed
to identify pathways enriched in the Molecular Signatures Database (MSigDB) Hallmark
gene set. A normalized p value of <0.05 and an FDR (false discovery rate) q value of <0.25
were considered statistically significant.

2.4. 16S Metagenomic Sequencing and Analysis

DNA was extracted from the fecal samples and bacterial 16S rDNA regions were
amplified using PCR and two primer pools covering variable regions (V2–V4, V6–V9) from
the Ion 16S Metagenomics Kit (Thermo Fisher Scientific), according to the manufacturer’s
instructions [24]. For library preparation, the V2, V3, V4, V6, V7, V8, and V9 16S rRNA re-
gions were amplified, followed by end-repair and barcoded-adaptor ligation using the Ion
Plus Fragment Library Kit (Thermo Fisher Scientific). The pooled library was sequenced
as single-end 400-bp reads using the Ion S5 sequencing kit (Thermo Fisher Scientific). The
FASTQ files were analyzed using the CLC Genomics Workbench version 12.0 (Qiagen)
and the Microbial Genomics Module (Qiagen). Sequence reads were clustered into
operational taxonomic units (OTUs) with a 99% identify threshold against the Green-
genes database, version 13.8. A set of sequences representing OTUs were analyzed using
Calypso (version 8.84) [25]. OTU abundance was normalized with cumulative-sum scaling
(CSS) and log2 transformation. Samples with a total read count <1000 were filtered from
subsequent analyses. An analysis of similarities (ANOSIM) and a principal component
analysis were carried out to assess dissimilarity. Redundancy analysis (RDA) was used
as a constrained ordination method to determine the degree of variance according to vari-
ables [25,26]. Hierarchical clustering and heatmap, using the Bray-Curtis distance metric,
and Linear discriminant analysis Effect Size (LEfSe) were carried out in Calypso. Pearson
correlation analysis of OTUs correlated to treatment were generated using Microbiome-
Analyst [27]. Prediction of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
in the control and DSS/AOM-exposed groups were inferred from OTU abundances in
Piphillin [28].

2.5. Immunohistochemical Staining

A standard immunohistochemistry analysis was performed for the phosphorylated
S6 ribosomal protein (p-S6), a downstream molecule of the phosphoinositide 3-kinase
(PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signal pathway.
Ethanol-fixed tissue sections were sectioned and placed on positively charged slides and
pretreated with steam heating in DAKO target retrieval solution (Catalog #S1699, Agilent,
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Santa Clara, CA, USA) for 20 min. Slides were incubated with anti-p-S6 (Ser 235/236)
antibody (Catalog #2211, Cell Signaling, Danvers, MA, USA, dilution 1:100), overnight
stained using the ABC kit (Vector Laboratories, Burlingame, CA, USA) following the manu-
facturer’s protocols, developed in diaminobenzidine DAB (Invitrogen), and counterstained
with hematoxylin. Assessment of immunohistochemical staining was performed on scanned
colon mucosa sections captured at 10x magnification. H scores were calculated for p-S6
positivity in the epithelial and stromal regions of the distal colon using QuPath v0.2.0-m4
image analysis software (https://qupath.github.io/ access date: 1 February 2021).

3. Results
3.1. Evaluation of the DSS/AOM-Induced Colon Cancer Model

To study the relationships associated between colon inflammation and colon car-
cinogenesis, we used the well-established DSS/AOM-induced colon cancer protocol to
induce colon tumor formation in 8-10-week-old female BALB/c mice. Experimental groups
consisted of untreated control, DSS-, AOM- and DSS/AOM-treated mice. In our study, all
mice treated with the combination of DSS and AOM developed tumors after 6 months. No
changes in mouse bodyweights were noted in the early phase of the experiment, however,
mice in the DSS/AOM group experienced gradual bodyweight declines from day 78–112,
which remained stable for the duration of the experiment (Supplementary Figure S1). Over-
all, mice developed an average of 4.16 tumors ranging from one to 12 in the distal colon
with an average maximum diameter of 4.92 mm (range 0.92–11.28 mm, Figure 1A). His-
tological evaluation confirmed the development of adenocarcinoma in all mice. Further
histological evaluation of normal mucosa and normal-appearing mucosa adjacent to tumors
showed features consistent with inflammation, including thickening of the submucosa
accompanied with leukocyte infiltration in the submucosa and lamina propria in colons
from DSS- and DSS/AOM-treated but not AOM-only treated mice (Figure 1B). Addition-
ally, multiple lymphoid aggregates were found throughout the colons of DSS-, AOM-,
and DSS/AOM-treated mice. The lack of tumor formation in AOM-only-treated mice
indicated that induction of inflammation is required for colon carcinogenesis in mice, thus
establishing the development of inflammation induced colon cancer.

3.2. Whole Transcriptome Profiling

Having established inflammation induced carcinogenesis in our mouse model, we
subsequently performed gene expression profiling of normal mucosa from the distal
colons of untreated control, DSS-, and AOM-treated colons and normal appearing mucosa
adjacent to tumors in DSS/AOM-treated mice. Gene expression data for mouse colon
mucosal tissues were obtained using whole transcriptome analysis. After normalization,
low-expression genes were filtered and a total of 256 genes differentially expressed in
DSS/AOM-treated mice were selected for further profiling analysis. Hierarchical clustering
analysis revealed clusters of genes upregulated or downregulated in DSS/AOM-treated
mucosal samples (Figure 2). Normal mucosal samples from DSS- and AOM-treated mice
clustered together and showed similar expression profile distinct from that of untreated
controls and DSS/AOM-treated mice. Genes that were overexpressed in this cluster were
downregulated in both DSS/AOM and control samples. Functional profiling showed that
genes in this cluster were associated with peptide and class A G protein-coupled receptors
(GPCRs), type II interferon signaling, chemokine-signaling pathways and macrophage
markers (Figure 3A). Genes that were overexpressed in DSS/AOM-treated mice were
downregulated in all other groups and were associated with the focal adhesion-PI3K-Akt-
mTOR-signaling pathway, bone morphogenetic protein (BMP) pathway, class B GPCR, one
carbon metabolism and inflammatory response pathway (Figure 3B).

https://qupath.github.io/
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Figure 1. Induction of inflammation induced colon cancer in mice. Female BALB/c were randomized as untreated
controls or mice treated with three daily doses of AOM and/or three subsequent cycles of 2% DSS-supplemented for four
weeks. (A) Gross visualization of colon tumor development six months after the indicated treatment. (B) Representative
hematoxylin and eosin -stained sections showing histopathological changes in colonic mucosa after the indicated treatments.
DSS, dextran sodium sulfate; AOM, azoxymethane; DSS/AOM; dextran sodium sulfate + azoxymethane. High power
magnification = 200×, low power magnification = 100×.

To further explore the functional differences of enriched genes sets in inflammation
induced colon cancer, we evaluated differences in enrichment profiles of hallmark gene
sets from the MSigDB database in DSS/AOM samples against untreated controls using
GSEA. Notably, the top five enriched gene sets in the DSS/AOM group were protein
secretion, mammalian target of rapamycin complex 1 (MTORC1) signaling, G2M check-
point, downregulation of ultraviolet (UV) response and hypoxia (Table 1). These results
provide preclinical evidence that link alterations of these pathways to the development of
inflammation induced colon tumors.

3.3. 16S Metagenomic Sequencing

Next, we sought to determine whether differences of gut microbial composition could
be correlated to DSS/AOM-induced colon carcinogenesis. For this, we performed 16S
rDNA sequencing to analyze differences in microbial composition of fecal samples of
untreated control, DSS-, AOM- and DSS/AOM-treated mice. We used proximal and dis-
tal fecal samples for these analyses. Rarefaction analysis indicated that our sequencing
depth was adequate (data not shown). Overall significant differences in microbial com-
position were observed between the different treatments (Anoisim Bray-Curtis R = 0.499,
p = 0.001). Moreover, site did not contribute to differences in microbial composition, how-
ever, DSS/AOM treatment accounted from maximal variation. (Figure 4A). We performed
redundancy analysis (RDA) to evaluate the effect of treatment as a contributing factor
influencing microbial composition. This analysis showed that treatment of DSS/AOM
and the presence of cancer were indeed factors contributing to differences in microbial
composition (Figure 4B). No significance was observed when the RDA was applied to site
(RDA significance, p = 0.249). Subsequently, we performed species-level unsupervised
hierarchical clustering of the top 50 OTUs with the highest abundance, to identify key
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factors associated with treatments. Overall, fecal samples from DSS/AOM-exposed mice
showed distinct clustering from all other groups (Figure 4C). These data indicate that the
presence of tumors is associated with fecal bacterial composition.
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Figure 3. Functional gene expression profiling of colonic mucosa of DSS/AOM mice and control mice. The top ten biological
pathways from the mouse 2019 WikiPathways database enriched from genes upregulated in DSS- and AOM-treated mice
(blue square in Figure 2) (A) and genes upregulated in DSS/AOM-treated mice (red square in Figure 2) (B). DSS, dextran
sodium sulfate; AOM, azoxymethane, DSS/AOM; dextran sodium sulfate + azoxymethane, GPCRs; G protein-coupled
receptors, BMP; bone morphogenetic protein, WP; WikiPathways.

Table 1. Gene Set Enrichment Analysis (GSEA) results according to the MSigDB Hallmark gene sets.

MSigDB Hallmark Pathway NES NOM p-Value FDR q-Value

Protein secretion 1.75 0 0.005
TGF-β signaling 1.73 0.001 0.003

mTORC1 signaling 1.7 0 0.005
Cholesterol homeostasis 1.68 0.001 0.006

G2M checkpoint 1.67 0 0.005
UV response down-regulated 1.6 0 0.01

Hypoxia 1.6 0 0.009
E2F targets 1.58 0 0.009
Glycolysis 1.57 0 0.009

Hedgehog signaling 1.57 0.008 0.008
PI3K-Akt-mTOR signaling 1.57 0 0.007

Mitotic spindle 1.55 0 0.009
Interferon-α response 1.54 0.004 0.009

Oxidative phosphorylation 1.51 0 0.011
Reactive oxygen species pathway 1.51 0.008 0.011
Epithelial mesenchymal transition 1.5 0 0.012

Fatty acid metabolism 1.49 0 0.013
UV response up-regulated 1.43 0.002 0.025

Interferon-γ response 1.43 0.002 0.024
Androgen response 1.42 0.013 0.026

NES; normalized enrichment score, NOM; nominal, FDR; false discovery rate.
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DSS-, AOM- and DSS/AOM-treated mice. (A) Principal component analysis showing dissimilarity between site and
treatment. (B) Redundancy analysis (RDA) showing significance of treatment cancer as a factor contributing to variation in
microbial composition of fecal microbes. (C) Hierarchical clustering and heatmap of core taxa (top 300 OTUs). (D) Genus-
level LEfSe (Linear discriminant analysis Effect Size) analysis showing taxa associated with cancer (DSS/AOM) and no
cancer (Control, DSS and AOM). (E) Pearson correlation analysis showing the top 25 taxa correlated to treatment. Ctrl;
control, DSS, dextran sodium sulfate; AOM, azoxymethane, DSS/AOM; dextran sodium sulfate + azoxymethane, LDA;
linear discriminant analysis.

Next, we aimed to identify taxa most likely to be associated with DSS/AOM-induced
carcinogenesis. LEfSe analysis revealed genus-level taxa associated with fecal samples from
tumor bearing DSS/AOM-treated mice compared to all other treatment groups (Figure 4D).
We subsequently performed correlation analysis using Pearson’s coefficient to correlate
individual OTUs to specific treatment. Of the top 25 OTUs, 19 were correlated to DSS/AOM
samples, notably 11 of these (59%) were classified as Clostridiales and three (27%) were
classified as Staphylococcus aureus (Figure 4E).

3.4. Functional Prediction Analysis Comparing Inflammation Induced Colon Cancer and
Normal Mucosa

Bacterial communities tend to be resistant to stresses and show functional redundancy.
To determine the effect of this phenomenon in our model of colon-induced carcinogenesis,
we performed functional prediction analysis by community profiling in fecal samples from
DSS/AOM-treated mice and compared it to samples from healthy untreated control mice.
Functional predictions were inferred from the analysis of OTU abundance and was per-
formed using the Piphillin platform to detect enriched KEGG pathways in fecal microbes.
From this analysis, we extracted twelve pathways enriched in the DSS/AOM-exposed
group (Figure 5A). Notable among these pathways were steroid synthesis, the lipoarabino-
mannan biosynthetic pathway and the sphingolipid-signaling pathway. These microbial
metabolic pathways can influence host regulation of hypoxia, fatty acid metabolism, ox-
idative phosphorylation and PI3K/Akt signaling, which were all enriched in DSS/AOM
mice (Figure 5B) [29–32]. Collectively, our data provides evidence to support the notion
that the early inflammatory and carcinogenic effects of DSS and AOM treatments drive
carcinogenesis and induce dysbiosis by altering gut microbial structure, which, in turn,
may act to further promote cancer progression through bacteria-host interactions.

3.5. Immunohistochemical Staining of Phosphorylated-S6 Ribosomal Protein

GSEA analyses revealed enrichment of genes associated with the PI3K-Akt-mTOR
pathway. To confirm the finding, we examined activation of the PI3K-Akt-mTOR signal-
ing pathway in the distal colonic mucosa by measuring the expression levels of phos-
phorylated S6 ribosomal (p-S6) protein, a downstream molecule of the PI3K-Akt-mTOR
signaling pathway, using quantitative immunohistochemistry. We examined expression
levels in the epithelial and stromal compartments of the distal colons of control, DSS, AOM
and non-cancer regions of DSS/AOM mice. Levels of p-S6 were significantly higher in
both the epithelium and stroma of the DSS/AOM group compared with other groups
(Figure 6). The drastic increase in p-S6 in the colonic mucosa of DSS/AOM-treated mice is
in agreement with our previous result and confirms DSS/AOM-induced induction of the
PI3K-Akt-mTOR pathway at the functional level.
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Figure 6. Immunohistochemical analysis of phosphorylated S6 ribosomal protein. (A) Representative photomicrographs
of phosphorylated S6 immunostaining in the distal colons of control, DSS-, AOM-, and DSS/AOM-treated mice showing
low magnification and high magnification fields. Low magnification scale bar = 500 µm and high magnification scale
bar = 100 µm. (B) H-scores of p-S6 in the epithelium (upper) and stroma (lower) of the distal colonic mucosa. ANOVA
p value < 0.001 and post hoc statistical analysis was performed using Student-Newman-Keuls Method; *** p < 0.001, DSS,
dextran sodium sulfate; AOM, azoxymethane, DSS/AOM; dextran sodium sulfate + azoxymethane, ANOVA; analysis
of variance.
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4. Discussion

Several studies have shown that chronic inflammation in organs can greatly increase
the risk of developing cancer [3–5]. An inflammatory component is also present in the mi-
croenvironments of tumors, and recent studies have begun to unravel molecular pathways
linking inflammation and cancer [33,34]. In the tumor microenvironment, inflammation
contributes to the proliferation and survival of malignant cells, angiogenesis, metastasis,
the subversion of adaptive immunity, and reduced responses to hormones and chemother-
apeutic agents. Recent data also suggest that an additional mechanism involved in cancer-
related inflammation is the induction of genetic instability perpetrated by inflammatory
mediators [35]. While natural flora is essential for maintaining homeostasis in a healthy
immune system, opportunistic bacteria hijack commensal bacteria, promote dysbiosis and
weakening the immune system. While a bounty of information is being gained on how
bacterial dysbiosis influences cancer, much remains unknown due to the complex nature of
the disease, its heterogeneity and context-specific characteristics. Ultimately, how bacterial
flora affects host tissues functionally remains unclear.

Here, we have shown that inflammatory and carcinogenic effects of DSS and AOM co-
operate to induce carcinogenesis in mice. Moreover, our gene expression and metagenomic
studies revealed altered transcriptomic signatures in tumor normal adjacent colonic mucosa
and dysbiosis of fecal microbes. While our study is exploratory and a causal relationship
has not been established, our findings suggest that structural compositional changes of gut
microbes promulgated by the development colonic tumors may have further altered the
normal adjacent mucosa, possibly increasing the risk of malignant transformation or further
promoting cancer progression of established tumors. Changes in microbial composition,
such as the Firmicutes/Bacteroides ratio, termed dysbiosis, and disruption of the immuno-
logical homeostasis has been associated with inflammatory diseases [36,37]. We identified
taxa most likely to be associated with DSS/AOM-induced carcinogenesis. Enriched abun-
dances of Clostridiales and Staphylococcus aureus were observed (Figure 3E). Clostridiales
have been reported to be less abundant in human patients with IBD but enriched specific
Bacteroides were also reported [38,39]. Increased abundance of Staphylococcus aureus was
also observed in DSS/AOM samples (Figure 3E). Toxin produced by Staphylococcus aureus
influences the microenvironment, possibly lipoteichoic acid and peptidoglycan produced
by Staphylococcus aureus, as Toll-like receptor 2 ligands, such as lipoarabinomannan (LAM),
stimulates mature mast cells to cysteinyl leukotriene synthesis and causes inflammation
and immune response [40]. Staphylococcus aureus might influence the sphingolipid path-
way; Alpha-toxin produced by Staphylococcus aureus induces inflammatory cytokines
via lysosomal acid sphingomyelinase and ceramides and disrupts endothelial-cell tight
junctions [40,41].

This notion is supported by our finding, whereby enrichment of microbial metabolic
pathways with tumor promoting roles, such as sphingolipid-signaling and lipoarabi-
nomannan biosynthesis pathways, were enriched in fecal samples from tumor bearing
DSS/AOM-treated mice. Concomitantly, GSEA of the whole transcriptome of colonic
normal appearing mucosal adjacent to tumors revealed enrichments of pathways involved
in fatty acid metabolism, oxidative phosphorylation, and the PI3K-Akt-mTOR, TGF-β, and
hypoxia pathways. These diverse changes in host-signaling pathways can be attributed to
changes in the host microenvironment. Hypoxia due to rapid tumor growth with impaired
neovascularization and inflammation resulting from immune cell activation are hallmarks
of cancer. Hypoxia-inducible factors control transcriptional adaptation in response to low
oxygen conditions, both in tumor and immune cells [42].

Considering the interactions between the gut microbes and host-signaling pathways,
sphingosine 1-phosphate, a sphingolipid mediator, regulates various cellular functions via
high-affinity G protein-coupled receptors, sphingosine 1-phosphate 1-5. The sphingosine
1-phosphate-sphingosine 1-phosphate receptor-signaling system plays important roles in
the regulation of complex inflammatory processes [43]. In addition, sphingolipids have
become increasingly recognized as important cell mediators in tumor and inflammatory
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hypoxia. Recent studies have identified acid sphingomyelinase, a central enzyme in the
sphingolipid metabolism, as a regulator of several types of stress stimuli pathways and
an important player in the tumor microenvironment. Lipoarabinomannan, on the other
hand, is a glycolipid that is a toxic factor associated with Mycobacterium tuberculosis [44].
Arabinan polymers are major components of the cell wall in Mycobacterium tuberculosis
and are involved in maintaining its structure, as well as playing a role in host-pathogen
interactions. In particular, LAM has multiple immunomodulatory effects [45]. LAM has
been shown to scavenge oxidative radicals in macrophages, and it is also known to act on
the PI3K-Akt-mTOR pathway in various cells [32]. This response is initiated through the
interaction between Mycobacterium tuberculosis cell wall surface components, mostly glycol-
ipids, with cells of the innate immune system, particularly macrophages and dendritic cells.
The way macrophages and dendritic cells alter their cytokine secretome, activate or inhibit
different microbicidal mechanisms and present antigens and, consequently, trigger the
T cell-mediated immune response impacts the host immune response [46]. Taken together,
the enrichment of the sphingolipid-signaling and LAM biosynthetic pathways found in the
bacterial flora of DSS/AOM mice can affect the host hypoxia related microenvironment
and immune systems through fatty acid metabolism and the PI3K-Akt-mTOR pathways. In
addition, interactions between the sphingolipid-signaling pathway of microbiota and the
host oxidative phosphorylation pathway have been discussed; sphingosine 1-phosphate is
produced by submembrane sphingosine kinase type I and is suggested to be a key compo-
nent of the sphingolipid-signaling pathway. In the nucleus or mitochondria, sphingosine
1-phosphate is produced by sphingosine kinase type II, but mitochondrial sphingosine
kinase type II affects mitochondrial oxidative phosphorylation. Therefore, we speculated
that enrichment of the sphingolipid pathway in the bacterial flora could thereby affect host
oxidative phosphorylation.

With regards to changes observed in DSS- and AOM-treated mice, it was interesting to
note that similar expression patterns of differentially expressed genes and OTU microbial
composition were observed and differed from both untreated control and DSS/AOM-
treated mice. Based functional profiles of differentially expressed genes, various pathways
associated with GPCRs were enriched in mucosal samples from these mice. Addition-
ally, pathways associated with type II interferons and chemokine signaling, as well as
macrophage signaling were enriched, indicating persistent inflammation instigated by the
early exposure to DSS and AOM. It is very likely that the treatments altered the microbial
composition of the gut and along with the initial erosion or damage led to long lasting
alterations of the colon in these mice. Consistent with this notion is the increased number of
lymphoid aggregates still present in the colons of DSS- and AOM-treated mice even weeks
after the last treatment. Moreover, type II interferons are usually produced by CD8+ T cells,
natural killer cells and natural kill T cells and may be related to enriched type II interferon
signature. Nevertheless, while both may be capable of inducing inflammatory changes,
neither treatment was able to induce tumor formation, which was the primary focus of
our study. 16S rDNA sequencing has been a mainstay for bacterial composition analysis;
however, there may be some limitations when it comes to functional profiling. Functional
profiles derived from 16S rDNA amplicon sequencing are inferred and are not as robust as
those from shotgun metagenomics, thus additional studies may be needed to fully evaluate
the biological significance of these findings [47].

5. Conclusions

In summary, we have shown that the early inflammatory and carcinogenic effects of
DSS and AOM drive inflammation-induced carcinogenesis, disrupting the gut microbiome
that, in turn, may act to further promote cancer progression through bacteria-host inter-
actions (Figure 7). Namely, we have revealed enriched sphingolipid signaling and LAM
biosynthesis as altered metabolic pathways in DSS/AOM-induced colon cancer. Our find-
ings also suggest an interaction between the PI3K-Akt-mTOR pathway and LAM synthesis
in colitis-induced carcinogenesis. Through a comprehensive analysis of the gut microbiota
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and host tissues we have inferred this interaction. Thus, regulation of gut microbiota could
be a potential breakthrough for the prevention and treatment of colorectal cancer.
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