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Abstract: The protection of side-chain arginine in solid-phase peptide synthesis requires attention
since current protecting groups have several drawbacks. Herein, the NO2 group, which is scarcely
used, has been revisited. This work shows that it prevents the formation of δ-lactam, the most severe
side-reaction during the incorporation of Arg. Moreover, it is stable in solution for long periods
and can be removed in an easy-to-understand manner. Thus, this protecting group can be removed
while the protected peptide is still anchored to the resin, with SnCl2 as reducing agent in mild acid
conditions using 2-MeTHF as solvent at 55 ◦C. Furthermore, we demonstrate that sonochemistry can
facilitate the removal of NO2 from multiple Arg-containing peptides.

Keywords: δ-lactam formation; microwave; NBP; orthogonal protection; protecting group;
sonochemistry; side-reaction; solid-phase peptide synthesis; ultrasounds

1. Introduction

Arginine (Arg) is a key natural amino acid that is found in many biologically active peptides [1].
Its characteristic structural feature is the presence of a guanidino group in its side-chain. This group
is strongly basic, with a pKa value of 12.5, which means the side-chain remains protonated under
physiological conditions [2,3]. This guanidino moiety is key for the biological activity of Arg-containing
peptides [4]. In this regard, several active pharmaceutical ingredients (APIs) contain one or even
several Arg residues.

For instance, this intriguing amino acid is found in desmopressin, leuprolide, and the
more recently approved abaloparatide, angiotensin II, bremelanotide and afamelanotide from the
α-melanocyte-stimulating hormone (α-MSH), semaglutide and other drugs approved earlier from the
glucagon-like peptide family (GLP) [5]. It is important to highlight the case of etelcalcetide, which was
approved by the FDA in 2017 for the treatment of secondary hyperparathyroidism in adults with
chronic kidney disease on hemodialysis. It is a simple octapeptide formed by a linear chain of seven
D-amino acids (one D-Cys, one D-Ala, and five D-Arg) linked to an L-Cys through a disulphide
bridge [6,7]. Multiple Arg residues are also very common in antimicrobial peptides (AMPs) and the
so-called cell-penetrating peptides (CPPs) [8–10]. In fact, the unique characteristic of most CPPs is
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the presence of several Arg residues, as exemplified in the fragment 48–60 of the transactivator of
transcription (TAT) of HIV and octa-Arg [11].

The majority of peptides used for research and industrial purposes are prepared by a chemical
process, the fluorenylmethoxycarbonyl (Fmoc)/tert-butyl (tBu) Solid-Phase Peptide Synthesis (SPPS)
approach being the most convenient [12]. Although the protonated guanidino group of Arg should
show poor reactivity in front of acylation, which is the key reaction in peptide synthesis, it has to
be protected to facilitate its solubility in the common solvents used in SPPS and, more importantly,
to avoid the two possible side-reactions. On one hand, some Orn can be formed during the stepwise
peptide chain elongation or during the cleavage [13,14], and on the other hand, the most important
side-reaction, the δ-lactam formation, is a process driven by the six-member ring formed [15]. δ-Lactam
formation takes place during the coupling step, when the carboxylic group of Arg is activated.
In contrast to other side-reactions, this cyclic amide is not directly converted into an impurity in the
target peptide. Instead, it causes an impractical consumption of the activated Arg, which in turn
can be indirectly translated into incomplete incorporation of the Arg and therefore the presence of a
deletion (des-Arg) peptide. To mitigate this, repetitive couplings of protected Arg are carried out, a
protocol that increases the cost of the whole synthetic process. This drawback is exacerbated during
the industrial preparation of Arg-containing peptides, where minimum excesses of reagents are used
and repetitive couplings imply high solvent and reagent consumption and a longer process time,
and therefore a greater overall production cost. Of note, in an industrial mode, the most currently
used Arg derivative (Fmoc-Arg(Pbf)-OH, Pbf for 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl,
see below) is the most expensive of all protected proteinogenic amino acids. Thus, in a 100-g scale,
the cost of Fmoc-Arg(Pbf)-OH is approximately 10 times more than Fmoc-Phe-OH (€360 vs. €36).
Furthermore, it is important to consider atom economy, which is 0.27 for the former and 0.40 for the
latter. These figures mean that the synthesis of a peptide containing Arg is approximately 15 times more
expensive in comparison with those containing Phe or other amino acids. In this scenario, approaches
to optimize Arg protection, coupling, and protecting group removal could have an important impact
in the industrial sector.

The protection of Arg in the Fmoc strategy has its roots in tert-butoxycarbonyl (Boc)
chemistry, where Arg is protected with the tosyl (Tos) group, which is removed by anhydrous
HF, trifluoromethanesulfonic (TFMSA) or related acids [16]. Thus, Yajima’s group developed
mesityl-2-sulfonyl (Mts) [17], and later Masahiko et al., after the in-depth study of several
candidates, developed the more labile 4-methoxy-2,3,6-trimethylphenylsulfonyl (Mtr) [18], which is
removed with almost neat trifluoroacetic acid (TFA) in the presence of scavengers over a
prolonged period. An important breakthrough in this field was the development of the
2,2,5,7,8-pentamethylchroman-6-sulfonyl group (Pmc) by Ramage and co-workers [19,20]. The structure
of this group recasts the methoxy in position 4 on Mtr in a cyclic ether and keeps three methyl groups
on the aryl moiety. Pmc is more labile than Mtr. Carpino and co-workers went a step further when
they discovered that the five-member ring present in the Pbf makes this group more labile than the
six-member ring of the Pmc [21]. Verdini et al. [22] developed the bis-Boc protection, blocking both
Nω and Nω’ for the guanidino group of Arg. Both Boc groups are removed by TFA-H2O (95:5) at
room temperature (rt) in 1 h. Although our group has reported that 1,2-dimethylindole-3-sulfonyl
(MIS) is much more labile than the Pbf group [23], the latter continues to be the most widely used
protecting group for the side-chain of Arg. However, in addition to its high price, which is mainly
due to an extremely difficult production process, Pbf is not exempt from the side-reactions outlined
earlier, such as δ-lactam formation as has been recently reported by our group [24] (see Figure 1 for the
structures of these protecting groups).
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In the context of SPPS, little attention has been paid to the use of the NO2 group, which was
introduced by Bergmann et al. [25] at the beginning of the era of protecting groups and has been applied
mostly in solution chemistry. The strong electron-withdrawing character of the NO2 group reduces
the basic nature of the guanidino group, thereby modulating its reactivity. Catalytic hydrogenation
using a wide range of catalysts such Pd black, [26] SnCl2, [27] and TiCl3 [28] has been proposed for
the removal of the NO2 group. Catalytic hydrogenation is only friendly used in organic chemistry
laboratories, but not in those devoted to other biosciences. Furthermore, this reaction works relatively
without difficulty for shorter peptides containing a single Arg(NO2) residue. However, with multiple
Arg(NO2) residues, catalytic hydrogenation can lead to difficulties, which include a long reaction time
with the concomitant degradation of the target peptide [29]. Conversion of a Arg(NO2) residue into an
aminoguanidino-derivative [30] and reduction of the aromatic ring of a Trp and even Phe residue [31]
have been observed in some cases.

Here we revisit the use of the NO2 group for Arg protection in SPPS. In this regard, we
first compared the stability of the NO2 derivative of Arg with the Pbf and (Boc)2 derivatives in
N,N-dimethylformamide (DMF) and the green solvent N-butylpyrrolidone (NBP), as well as their
tendency to render δ-lactam formation in both solvents [32]. We then developed a method for removing
the NO2 group without the concourse of catalytic hydrogenation.

2. Results and Discussion

2.1. Stability of Fmoc-Arg(x)-OH in Solution

The stability of three Fmoc-Arg(X)-OH analogues [X = (Boc)2, NO2, and Pbf] was studied in
solution over a period of time. Solutions (0.2 M) of each analogue in both DMF and NBP were prepared
in closed high-performance liquid chromatography (HPLC) vials following the procedure described
previously by our group [24]. The reaction was monitored by reverse phase HPLC (Figures S1–S6).

Fmoc-Arg(Boc)2-OH slowly degraded in both solvents over time, rendering mainly the mono
protected Fmoc-Arg(Boc)2-OH, which was already present in the commercial sample (Table 1).
Nevertheless, solutions of Fmoc-Arg(Boc)2-OH in the two solvents could be kept up to one week,
thereby making it compatible with peptide synthesizers and also for industrial manufacturing where
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the solution is prepared at the time of coupling. For longer periods, the degradation was slightly
higher in NBP. In contrast, the NO2 and Pbf analogues were totally stable.

Table 1. Stability of Fmoc-Arg(X)-OH in DMF (N,N-dimethylformamide) and NBP (N-butylpyrrolidone)
at room temperature.

0 h 1 h 24 h 48 h 10 d 15 d 20 d 30 d

Fmoc-Arg(Boc)2-OH, DMF 88.8 88.6 86.9 85.0 77.6 65.1 58.5 51.2

Fmoc-Arg(Boc)2-OH, NBP 88.8 88.4 85.8 83.5 71.8 62.0 52.2 37.7

Fmoc-Arg(NO2)-OH
(DMF or NBP) 1 100 100 100 100 100

Fmoc-Arg(Pbf)-OH
(DMF or NBP) 1 100 100 100 100 100

1 The study was stopped after 10 days, no changes were observed during this period.

Stability was examined again at 45 ◦C in DMF and NBP, in the presence of OxymaPure,
which are conditions commonly used in SPPS. Again, Pbf and NO2 analogues showed total stability
(Figures S7–S10), while the bis Boc derivative degraded slightly faster than in the previous experiment,
but could still be considered compatible with the standard reaction times for coupling (up to 4 h). As
in the previous case, the degree of degradation was higher in NBP than DMF over a longer period
(Figure 2).
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Figure 2. Stability of the mixture of Fmoc-Arg(Boc)2-OH/OxymaPure 1:1 in DMF (A) and NBP (B) at
45 ◦C. Elution: 30-95% of B into A in 15 min.

2.2. δ-Lactam Formation

The formation of δ-lactam was studied following Scheme 1. The carboxylic groups of the three
protected Arg derivatives were activated using N,N’-diisopropylcarbodiimide (DIC) and OxymaPure
as additive in an equimolar mixture (1:1:1) in DMF or NBP at 45 ◦C. The mixture (1.5 equiv.) was then
added onto the peptide H-Gly-Phe-Leu-NH-Rink-amide-polystyrene-resin. Aliquots of the supernatant
were taken at different times and analyzed by HPLC. After 120 min of coupling, the resin was filtered,
washed and Fmoc removed before cleavage and total deprotection (except in case of the NO2 group)
using high TFA-triisopropylsilane (TIS)-H2O (95:2.5:2.5). The crude peptides were then analyzed by
HPLC [24].
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Scheme 1. Activation of protected Arg derivatives and incorporation on a tripeptidyl resin.

The analysis of the supernatants of each derivative revealed that DMF and NBP showed a
similar behavior in the three protecting groups. More importantly, the same analysis showed that
Fmoc-Arg(NO2)-OH had the least tendency to form δ-lactam. There was a good fertile consumption
(the decrease in protected Arg was not translated into the formation of δ-lactam), (In the context of this
manuscript, “fertile consumption” refers to the decrease in the presence of the protected Arg derivative
when it remains as an active ester after activation or acylates the peptide resin) because at 30 min the 75%
decrease in Fmoc-Arg(NO2)-OH (It is also important to consider that part of the protected Arg shown
after 30 min could derive from the hydrolysis of the corresponding active ester and therefore would be
part of the “fertile consumption”.) was translated into only 3% of δ-lactam, having approximately 15%
of active ester (Figure 3A). This finding implies that the rest of the monomer was incorporated into
the peptidyl resin, which was corroborated by high coupling (>99% yield). For Fmoc-Arg(Pbf)-OH,
the kinetics was slower, except for δ-lactam formation (Figure 3B). Thus, at 30 min, the formation of
δ-lactam was greater (12%, four times more) than for the NO2 derivative. Furthermore, although the
fertile consumption of the initial Fmoc-Arg(Pbf)-OH (40% decrease of the initial protected Arg2 and 8%
formation of the active ester) was less than that achieved by the NO2 analogue, the result was that after
120 min it yielded same coupling efficiency (>99%). Finally, Fmoc-Arg(Boc)2-OH showed the fastest
kinetics of δ-lactam formation (60%) (Figure 3C), which translated into low coupling efficiency (28%)
as a result of the side-reaction. Overall, the lower tendency of the NO2 analogue vs. the (Boc)2 and
Pbf analogues to render δ-lactam is reflected by the observation that the important increment of the
side-product occurred after 60 min in NO2, when presumably the coupling had been completed and
therefore the active ester could no longer be fertile. Even at 120 min, a ratio of almost 1:1 of δ-lactam
and active ester was present. In the case of Pbf analogue at 120 min, almost all the active ester had
been converted to the side-product. Finally, in the case of the (Boc)2 analogue, the active ester was not
present at any time, only the δ-lactam was found.
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after the protected Arg derivatives [A, NO2; B, Pbf; C, (Boc)2] were activated with DIC
(N,N’-diisopropylcarbodiimide) and OxymaPure and then added to the peptidyl resin. Elution:
30–95% of B into A in 15 min.

2.3. On-Resin Removal of NO2 from the Arg Side-Chain

Once the suitability of the NO2 derivative of the Arg had been demonstrated in terms of stability
and the low tendency of δ-lactam formation, our attention turned to the development of a new removal
method with broad applicability and easy handling. Inspired by our previous work on the removal
of p-nitrobenzyloxycarbonyl (pNZ) as protecting group of amines in SPPS [33], the capacity of SnCl2
in a slightly acid medium to remove the NO2 group was investigated. A similar method has been
extensively used in the early times of combinatorial chemistry to reduce polymer-supported nitro
aromatic compounds [34,35]. Taking the tripeptide H-Leu-Arg(NO2)-Phe-NH-Rink-amide-resin as a
model, an initial fine-tune of the removal strategy was carried out. The conditions were then further
adjusted with the peptidyl resins shown in Figure 4. The list included the lineal precursor of Cilengitide
and bradykinin, two peptides of biological interest, and also two peptides containing the Arg-Trp
sequence repeated twice and three times. These molecules thus allowed us to study the effect of an
increasing number of NO2 groups to be removed, as well as the effect of the removal conditions on a
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fragile residue like Trp. As references, the same peptides were synthesized using Fmoc-Arg(Pbf)-OH.
All peptides synthesized with NO2- or Pbf-protecting groups were cleaved from the resin using
TFA-TIS-H2O (95:2.5:2.5) for 1 h at r.t.
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As a starting point, using the H-Leu-Arg(NO2)-Phe-NH-Rink-amide-resin as substrate and
the conditions developed by our group to remove pNZ (solutions of 6–8 M SnCl2, 0.4 M phenol,
either 0.064 M HCl-dioxane or 0.0016 M AcOH in DMF at 55 ◦C), the following parameters were
studied: concentration of SnCl2 (taking into consideration that 8 M SnCl2 is a supersaturate
solution of difficult handling), the need of phenol, the best acid rectifier and its concentration,
the temperature, and the solvent (SI, Table 1). The results can be summarized as follows: (i) after
assaying DMF, DCM/DMF, and the green solvents MeOH, EtOH, NBP, cyclopentylmethyl ether (CPME),
and 2-methyltetrahydrofurane (2Me-THF), the best results were found with the latter. While DMF
gave acceptable results, NBP was, on this occasion, less suitable. The use of EtOH gave slower kinetics
and MeOH and CPME yielded the poorest results, probably due to its poor capacity to swell the resin;
(ii) 2 M SnCl2 rendered similar (or even better) performance than 6-8 M solutions and therefore is the
concentration preferred; (iii) the absence of phenol gave slightly poorer results; and (iv) the use of 0.2 M
aq HCl, which is easier to use, proved to be good substitute for HCl-dioxane. This final concentration
of acid is compatible with the presence of acid-labile protecting groups and it does not cause cleavage
from the resin since it represents only 0.64% of the solution. Additionally, in some of these experiments,
it was observed that the kinetics during the first hour were very slow, and that the reaction was faster
after addition of fresh solution. Therefore, a previous washing with a solution of 0.2 M aq HCl in
2-MeTHF was carried out before the removal treatment. This approach greatly enhanced the removal.
This acidic washing can neutralize traces of the piperidine used to remove the Fmoc group at the end of
the peptide chain elongation. As a result of this preliminary set of experiments, washings with 0.2 M aq
HCl in 2-MeTHF (3 × 1 min) followed by 2 M SnCl2-0.04 M phenol-0.2 M aq HCl in 2-MeTHF (2–3 × 1 h)
at 55 ◦C were considered optimal conditions for the LRF model sequence (Figure 5A). These conditions
were then applied successfully to the RGD peptides (Figure 5B). Interestingly, the removal kinetics
for the RGD pentapeptide were much faster than for the LRF tripeptide. After a single treatment of
30 min, the RGD peptide showed more than 97% deprotection whilst only 30% was observed in case of
LRF. This finding prompted us to do a new assay for this peptide reducing the amount of SnCl2 to a
concentration of 1M, in which the total deprotection was achieved after 3 × 30 min treatment (Figure
S11). This result suggested that the removal of the NO2 group could be sequence-dependent, thus
potentially facilitating the use of even milder conditions than those generally proposed in some cases.



Int. J. Mol. Sci. 2020, 21, 4464 8 of 12
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 12 

 

 

Figure 5. HPLC of the removal of the NO2 group from H-Leu-Arg(NO2)-Phe-NH-Rinkamide-resin (A) 
and H-Asp(OtBu)-Phe-Gly-Arg(NO2)-Gly-NH-Rink-amide-resin (B) using 2 M SnCl2-0.04 M phenol-
0.2 M aq HCl in 2-MeTHF at 55 °C. a: protected peptide; b: unprotected peptide. Elution: 10-25% of B 
into A for (A) and 5-95% of B into A for (B) in 15 min. 

Next, these conditions were applied to remove the two NO2 groups of bradykinin. On this 
occasion, the kinetics was slower than in the preceding cases. In the search for alternatives to 
accelerate the reaction, two new assays were then run, one in an ultrasonic bath (Figure S12) and the 
other under microwave (MW) (Figure 6). Both rendered the expected results, namely a faster reaction, 
with ultrasound leading to total deprotection in 3 x 1 h treatments (as in the case of the LRF peptide) 
and MW in 3 x 30 min treatments. Although MW was faster, the ultrasonic bath may be a more 
accessible device. 

 

Figure 6. HPLC of the removal of the NO2 groups from protected bradykinin-NH-Rink-amide-resin 
using 2 M SnCl2-0.04 M phenol-0.2 M aq HCl in 2-MeTHF at 55 °C (MW). a: protected peptide; b: 
unprotected peptide. Elution: 5–95% of B into A in 15 min. 

Finally, to continue studying the removal of multiple NO2 groups, (RW)nP-NH2 (n = 2 or 3) were 
synthesized. The conditions applied were the general ones used previously under sonication. For 
both peptides, the results obtained after 3 x 1 h treatments were highly satisfactory and more than 
acceptable (Figure 7). 

Figure 5. HPLC of the removal of the NO2 group from H-Leu-Arg(NO2)-Phe-NH-Rinkamide-resin
(A) and H-Asp(OtBu)-Phe-Gly-Arg(NO2)-Gly-NH-Rink-amide-resin (B) using 2 M SnCl2-0.04 M
phenol-0.2 M aq HCl in 2-MeTHF at 55 ◦C. a: protected peptide; b: unprotected peptide. Elution:
10-25% of B into A for (A) and 5-95% of B into A for (B) in 15 min.

Next, these conditions were applied to remove the two NO2 groups of bradykinin. On this
occasion, the kinetics was slower than in the preceding cases. In the search for alternatives to accelerate
the reaction, two new assays were then run, one in an ultrasonic bath (Figure S12) and the other
under microwave (MW) (Figure 6). Both rendered the expected results, namely a faster reaction,
with ultrasound leading to total deprotection in 3 × 1 h treatments (as in the case of the LRF peptide)
and MW in 3 × 30 min treatments. Although MW was faster, the ultrasonic bath may be a more
accessible device.
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Figure 6. HPLC of the removal of the NO2 groups from protected bradykinin-NH-Rink-amide-resin
using 2 M SnCl2-0.04 M phenol-0.2 M aq HCl in 2-MeTHF at 55 ◦C (MW). a: protected peptide;
b: unprotected peptide. Elution: 5–95% of B into A in 15 min.

Finally, to continue studying the removal of multiple NO2 groups, (RW)nP-NH2 (n = 2 or 3)
were synthesized. The conditions applied were the general ones used previously under sonication.
For both peptides, the results obtained after 3 × 1 h treatments were highly satisfactory and more than
acceptable (Figure 7).



Int. J. Mol. Sci. 2020, 21, 4464 9 of 12
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  9 of 12 

 

 

Figure 7. HPLC of the removal of the NO2 groups from H-[Trp(Boc)-Arg(NO2)]2-Pro-NH-Rink-amide 
resin (A) and H-[Trp(Boc)-Arg(NO2)]3-Pro-NH-Rink-amide resin (B) using 2 M SnCl2-0.04 M phenol-
0.2 M aq HCl in 2-MeTHF at 55 °C. a: protected peptide; b: unprotected peptide. elution: 5-95% of B 
into A in 15 min. 

Conclusion 

Arg is a key amino acid for the construction of peptides with relevant biological activity. Its 
guanidino side-chain requires protection to avoid side-reactions and to facilitate its solubility. Pbf, 
which is the most widely used protecting group, shows some drawbacks, mainly δ-lactam formation, 
stability to the TFA-based global deprotection conditions, and a high price, the latter due mainly to 
the preparation of the 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl chloride intermediate and 
its posterior incorporation into the guanidino group. 

The NO2 group, which was first described by Bergmann, has been scarcely used in SPPS mainly 
because it has to be removed by catalytic hydrogenation in a post-cleavage step and this does not 
always provide satisfactory results. Furthermore, there has been some discrepancy in the literature 
regarding the potential of the NO2 group to suppress δ-lactam. Herein, we demonstrated that the 
electron-withdrawing effect of the NO2 group minimizes its nucleophilicity, which is translated into 
a reduction of the side-reaction when compared with Pbf protection. In contrast, bis-Boc protection 
is highly prone to δ-lactam formation. Furthermore, this group showed limited stability in DMF and 
in OxymaPure containing DMF, while the NO2 and the Pbf were stable. 

Importantly, here we report on the development of a new and straightforward method for 
removing the NO2 group from Arg side chain while the protected peptide is still on the resin. This 
removal strategy is based on the use of SnCl2 as reducing agent in mild acid conditions using aq HCl 
as acid rectifier in a solution of 2-MeTHF, which is a green solvent, at 55 °C. As commonly found in 
peptide chemistry, we observed that the removal reaction could be sequence-dependent. However, 
in the cases in which the removal is not efficient, the concourse of sonochemistry significantly 
accelerates the removal reactions. The use of microwave heating also gave positive results. However, 
accessibility to this type of heating is limited in bioscience laboratories and therefore ultrasound baths 
emerge as the method of choice. In some demanding sequences involving the unstable Trp residue, 
the appearance of small satellite peaks could be attributable to side-reactions, which should be further 
studied for each case. Although currently the price of the Fmoc-Arg(NO2)-OH is, in a 25-g scale, 
slightly more expensive than Fmoc-Arg(Pbf)-OH, in large-scale production the former should be 
more economical due to it using less expensive raw materials. 

Overall, in terms of effectiveness and handling, Fmoc-Arg(NO2)-OH emerges as an interesting 
alternative to the existing Arg derivatives. 

3. Materials and Methods 

3.1. Materials 

All reagents and solvents were from commercial suppliers and were used without further 
purification. Fmoc amino acids and Fmoc-Rink-amide AM PS resin (loading 0.74 mmol/g) were 

Figure 7. HPLC of the removal of the NO2 groups from H-[Trp(Boc)-Arg(NO2)]2-Pro-NH-Rink-amide
resin (A) and H-[Trp(Boc)-Arg(NO2)]3-Pro-NH-Rink-amide resin (B) using 2 M SnCl2-0.04 M phenol-0.2
M aq HCl in 2-MeTHF at 55 ◦C. a: protected peptide; b: unprotected peptide. elution: 5-95% of B into
A in 15 min.

3. Conclusions

Arg is a key amino acid for the construction of peptides with relevant biological activity.
Its guanidino side-chain requires protection to avoid side-reactions and to facilitate its solubility.
Pbf, which is the most widely used protecting group, shows some drawbacks, mainly δ-lactam
formation, stability to the TFA-based global deprotection conditions, and a high price, the latter
due mainly to the preparation of the 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl chloride
intermediate and its posterior incorporation into the guanidino group.

The NO2 group, which was first described by Bergmann, has been scarcely used in SPPS mainly
because it has to be removed by catalytic hydrogenation in a post-cleavage step and this does not
always provide satisfactory results. Furthermore, there has been some discrepancy in the literature
regarding the potential of the NO2 group to suppress δ-lactam. Herein, we demonstrated that the
electron-withdrawing effect of the NO2 group minimizes its nucleophilicity, which is translated into a
reduction of the side-reaction when compared with Pbf protection. In contrast, bis-Boc protection is
highly prone to δ-lactam formation. Furthermore, this group showed limited stability in DMF and in
OxymaPure containing DMF, while the NO2 and the Pbf were stable.

Importantly, here we report on the development of a new and straightforward method for removing
the NO2 group from Arg side chain while the protected peptide is still on the resin. This removal
strategy is based on the use of SnCl2 as reducing agent in mild acid conditions using aq HCl as acid
rectifier in a solution of 2-MeTHF, which is a green solvent, at 55 ◦C. As commonly found in peptide
chemistry, we observed that the removal reaction could be sequence-dependent. However, in the
cases in which the removal is not efficient, the concourse of sonochemistry significantly accelerates the
removal reactions. The use of microwave heating also gave positive results. However, accessibility to
this type of heating is limited in bioscience laboratories and therefore ultrasound baths emerge as the
method of choice. In some demanding sequences involving the unstable Trp residue, the appearance
of small satellite peaks could be attributable to side-reactions, which should be further studied for
each case. Although currently the price of the Fmoc-Arg(NO2)-OH is, in a 25-g scale, slightly more
expensive than Fmoc-Arg(Pbf)-OH, in large-scale production the former should be more economical
due to it using less expensive raw materials.

Overall, in terms of effectiveness and handling, Fmoc-Arg(NO2)-OH emerges as an interesting
alternative to the existing Arg derivatives.
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4. Materials and Methods

4.1. Materials

All reagents and solvents were from commercial suppliers and were used without further
purification. Fmoc amino acids and Fmoc-Rink-amide AM PS resin (loading 0.74 mmol/g) were
purchased from Iris Biotech GMBH (Marktredwitz, Germany). DIC and OxymaPure were a gift
from Luxembourg Biotech. (Ness Ziona, Israel) and N,N-diidsopropylethylamine (DIEA), SnCl2,
and piperidine were supplied by Sigma-Aldrich (St. Louis, MO, USA). Organic solvents (DMF, CH2Cl2
(DCM)) and HPLC quality acetonitrile (CH3CN) were purchased from Merck (Kenilworth, NJ, USA).
Milli-Q water was used for RP-HPLC analyses. Microwave treatments were carried using a Discover
SP (CEM, Matthews, NC, USA). Scientech Ultrasonic Cleaner (Labotec, Durban, South Africa) was
used for the ultrasound treatment. Analytical HPLC was performed on an Agilent 1100 system using
a Phenomenex AerisTMC18 (3.6 µm, 4.6 × 150 mm) column, with flow rate of 1.0 mL/min and UV
detection at 220 nm. Chemstation software was used for data processing. Buffer A: 0.1% TFA in H2O;
buffer B: 0.1% TFA in CH3CN. LC-MS was performed on Ultimate™ 3000, AerisTM 3.6 µm Wide pore
column, Phenomenex C18 (150 × 4.6 mm) column.

4.2. Peptide Synthesis

The peptides used in this study were synthesized manually using a syringe fitted with a porous
polyethylene disc and attached to a vacuum trap for easy filtration. Synthesis were carried out 0.1
or 0.2 mmol scale Rink-amide-PS resin (loading = 0.74 mmol/g) using Fmoc/tBu protocols. For Fmoc
removal, 20% of piperidine in DMF was used. Couplings were performed by 1.5 eq. of an equimolar
mixture of Fmoc-amino acid derivative, DIC and Oxyma in DMF or NBP, which was allowed to
react for 1 h. Global deprotection and cleavage was performed by adding TFA-TIS-H2O (95:2.5:2.5)
to the peptidyl-resin for 1 h at rt. Then, chilled ether was added to precipitate the peptides and
after centrifugation and decantation, the peptides were taken up in water. The crudes obtained were
analyzed by HPLC and finally were lyophilized. The peptide identities were confirmed by LC-MS.

4.3. Stability Study Procedure

Solutions (0.2 M) of each protected Arg analogue in the absence or presence of OxymaPure (0.2 M)
were prepared and kept in sealed vials. Aliquots (10 µL) at different times of each one were taken and
diluted with CH3CN (490 µL), and 1µL of this mixture was injected in the HPLC.

4.4. δ-Lactam Formation

An equimolar solution of Fmoc-Arg(X)-OH/DIC/OxymaPure (1.5 equiv.) in DMF or NBP was
added to the tripeptidyl resin (H-GFL-resin) at 45 ◦C and kept reacting for 2 h. A 10-µL aliquot of
the supernatant was taken from the mixture at 0, 30, 60, and 120 min and diluted to 0.5 mL with
CH3CN. From this solution, 1 µL was injected and analyzed by RP-HPLC (30–95% B into A in 15 min).
After 120 min, Fmoc was removed using 20% piperidine in DMF, and peptides were cleaved from the
resin as described before. Amino acid coupling was quantified by integration of the peaks obtained in
their HPLC (10–25% B into A in 15 min).

4.5. Removal of the NO2 Group

The removal solution was prepared by taking SnCl2 (1.8 g), phenol (4 mg) in 2-MeTHF (2 mL),
then aqHCl (98 µL) was added and the mixture was sonicated until total solubility of SnCl2. The final
volume was then made up to 5 mL using 2-MeTHF, which gave a 0.2 N concentration of HCl.

Peptide resin (50 mg) was washed with a solution of 2-MeTHF-HClaq (0.1%) (1.5 mL, 2 × 1 min).
After filtration, the SnCl2 solution was added (1.5 mL) and the syringe was sealed. The reaction was
then left for 30 min at 55 ◦C with sporadic stirring. The solution was filtered off and the resin was
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washed with 2-MeTHF. An aliquot was then taken for mini cleavage using TFA-TIS-H2O (95:2.5:2.5)
(60 µL) as before. Fresh removal solution was added to the peptide resin and the process was repeated.

Supplementary Materials: The supplementary information is available online at http://www.mdpi.com/1422-
0067/21/12/4464/s1.
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