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Abstract: Donkeys (Equus asinus) are in decline in Europe. Occupational exposure to farm ani-
mals has been associated with increased staphylococci carriage. We aimed to isolate S. aureus and
coagulase-negative staphylococci (CoNS) from donkeys and handlers and characterize the antimicro-
bial resistance profiles and genetic lineages of S. aureus strains. Oral and nasal swab samples were
collected from 49 Miranda donkeys and 23 handlers from 15 different farms. Staphylococci species
were identified by MALDI-TOF MS. The presence of antimicrobial resistance genes and virulence
factors was investigated by PCR. Molecular typing was performed in S. aureus isolates. From the
49 donkey samples, 4 S. aureus (8.2%) and 21 CoNS (42.9%) were isolated. Ten handlers (43.5%) were
carriers of S. aureus and 4 (17.4%) carried CoNS. The CoNS isolates showed resistance to several
classes of antimicrobials encoded by the mecA, aph (3′)-IIIa, ant (4′)-Ia, tetM, tetK, lnuA, ermB, ermC,
dfrA and dfrG genes. S. aureus isolates were resistant to penicillin, aminoglicosides and tetracycline
harboring the blaZ, aph (3′)-IIIa, tetL, tetM and tetK genes. All S. aureus isolates from donkeys belonged
to ST49 and spa-type t208 while the strains isolated from the handlers were ascribed to 3 STs and
7 spa-types. However, human isolates were from different STs than the donkey isolates. Donkeys are
mainly colonized by methicillin-resistant S. sciuri. S. aureus transmission between donkeys and their
handlers appears not to have occurred since the isolates belonged to different genetic lineages.
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1. Introduction

Staphylococcus spp. are widely disseminated worldwide and have been isolated from
human infections, community humans, pets, livestock, wild animals and the natural envi-
ronment [1]. Both Staphylococcus aureus and coagulase-negative staphylococci (CoNS) are
commensal bacteria that colonize the skin and mucosa of humans and animals [2]. Never-
theless, staphylococci are opportunist pathogens that are responsible for a wide-range of
infections, including skin and soft-tissue infection, septicemia and endocarditis [3]. Staphy-
lococci, particularly S. aureus, have the ability to easily acquire antimicrobial resistance
determinants [4]. Methicillin resistance in staphylococci is conferred by the acquisition
of the mec genes (mecA, mecB or mecC), which are carried by the staphylococcal cassette
chromosome mec (SCCmec) [5]. Methicillin-resistant S. aureus (MRSA) are usually associated
with complicated infections representing a public health concern [6]. It is considered that
the mecA gene may have originated from some species of CoNS since homologues of this
gene have been found in the S. sciuri group species [4]. CoNS carrying the mecA gene may
act as potential donors leading to the emergence of methicillin-resistant S. aureus (MRSA)
clones [7].

Animals can be a source of staphylococci zoonotic infections, particularly the clones
that possess no host specificity [2]. It has also been demonstrated that the close contact
between animals and humans can facilitate the transmission of pathogens. Staphylococci
transmission events have been documented mainly between pets and owners and livestock
and their handlers [8,9]. Molecular typing techniques, such as multilocus sequence typing
(MLST), have provided information on the evolution of human and animal strains and
shown that humans were the main hosts of S. aureus, but due to the occurrence of trans-
mission it had acquired the ability to infect animals [10]. The frequent human-to-animal
transmission eventually led to specific strain lineages adapting to new animal hosts [10,11].
MLST analysis showed that some sequence types (STs) and clonal complexes (CCs) are
predominant in animal S. aureus, such as CC398, CC9, CC1, CC97, CC133 and CC121, and
others are prevalent in human S. aureus (CC1, CC5, CC8, CC12, CC15, CC22, CC25, CC30,
CC45 and CC51) [10]. The emergence of S. aureus and CoNS in equines, including horses,
donkeys and mules, has been demonstrated [12–14]. The frequency of S. aureus colonization
in horses ranges from 4% to 39% in Europe and CC8, CC22 or CC398 are the most common
lineages identified [12,15,16]. Nevertheless, although studies reporting staphylococci in
horses are common, studies in healthy donkeys are still very scarce [13].

The donkey population has been decreasing since 1970 but lately this trend has
reversed, and it is estimated that the donkey population is 4.3 million globally [17]. In
Europe, donkeys are mainly found in Portugal, Spain, Italy and Greece. Miranda donkey
is a native Portuguese donkey breed that originated from the Trás-os-Montes region [18].
Donkeys played an important role in maintaining rural communities and sustainable
farming practices. However, more recently, these animals began to be used as companion
animals and in therapeutic activities and ecotourism [11]. Therefore, we aimed to study
the prevalence of S. aureus and CoNS in healthy donkeys and their handlers as well as
the antimicrobial resistance and genetic lineages of the isolates in order to investigate a
possible human-to-animal transmission or vice-versa.

2. Results
2.1. Characterization of S. aureus Isolates

In this study, 49 and 23 swab samples were collected from Miranda donkeys and
handlers, respectively. Staphylococci were recovered from all 15 farms sampled. S. aureus
were isolated from 10 farms while CoNS were isolated from 8 farms. From the 49 donkey
samples, 4 S. aureus were identified while 10 S. aureus were isolated from handlers’ samples.
However, no MRSA has been identified. Three donkeys colonized by S. aureus were
from the same farm and their ages ranged from 3 to 8 years (Supplementary Materials
Table S1). However, none of these donkeys’ handlers were S. aureus carriers. All S. aureus
from donkeys belonging to the same farm (isolates VS3111, VS3113 and VS3114) had
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resistance to penicillin and kanamycin conferred by the blaZ and aph (3′)-IIIa genes (Table 1).
Furthermore, all 3 isolates were ascribed to ST49, spa-type t208 and agr type II. The S. aureus
isolated from the remaining donkey showed resistance to aminoglycosides and tetracycline
and carried the aph (3′)-IIIa and tetK genes. Yet, these isolates also belonged to ST49, t208
and agr II. Regarding the virulence genes, all four isolates harbored the hla, hlb and hld
genes with the exception of isolate VS3111, which also carried the tst gene.

Table 1. Genetic characterization and molecular typing of S. aureus strains recovered from donkeys
and their handlers.

Isolate Source
Antimicrobial Resistance Virulence Factors Molecular Typing

Phenotype Genotype IEC Type Other Genes ST (CC) spa agr

VS3101 Human PEN, CN, TOB, KAN blaZ, aph (3′)-IIIa E hla, hld, eta 1290 (1) t131 I
VS3102 Human PEN, CN, TOB, KAN blaZ, aph (3′)-IIIa E hla, hld, eta 1290 (1) t131 I
VS3103 Human PEN, CN, TOB, KAN blaZ, aph (3′)-IIIa hla, hlb, hld, tst 30 (30) t021 III
VS3104 Human PEN, FD blaZ hla, hlb, hld, tst 30 (30) t338 III
VS3105 Human PEN, CN, KAN blaZ, aph (3′)-IIIa hla, hlb, hld, tst 30 (30) t012 III
VS3106 Human PEN, CN, KAN blaZ, aph (3′)-IIIa hla, hlb, hld, tst 30 (30) t012 III
VS3107 Human PEN, FD blaZ hla, hld 30 (30) t1642 III
VS3108 Human PEN, CN, KAN blaZ, aph (3′)-IIIa hla, hlb, hld 30 (30) t1642 III
VS3109 Human Susceptible hla, hlb, hld, eta 398 (398) t571 I

VS3110 Human PEN, CN, TOB,
KAN, TET

blaZ, aph (3′)-IIIa,
tetL, tetM hla, hlb, hld 398 (398) t011 I

VS3111 Donkey PEN, KAN blaZ, aph (3′)-IIIa hla, hlb, hld, tst 49 t208 II
VS3112 Donkey CN, KAN, TET aph (3′)-IIIa, tetK hla, hlb, hld 49 t208 II
VS3113 Donkey PEN, KAN blaZ, aph (3′)-IIIa hla, hlb, hld 49 t208 II
VS3114 Donkey PEN, KAN blaZ, aph (3′)-IIIa hla, hlb, hld 49 t208 II

Abbreviations. PEN: penicillin; CN: gentamicin; TOB: tobramycin; KAN: kamaycin; TET: tetracycline; FD: fusidic
acid; ST: sequence type; CC: clonal complex.

The 10 S. aureus isolated from handlers had similar resistance patterns, showing
resistance to penicillin, aminoglycosides, tetracycline and fusidic acid. The isolates carried
the blaZ, aph (3′)-IIIa, tetL and tetM genes. S. aureus isolated from handlers carried the
hla (n = 10), hlb (n = 7), hld (n = 10), eta (n = 3) and tst (n = 4) virulence genes. Isolates
VS3101 and VS3102 also carried the scn and sak genes of the immune evasion cluster (IEC)
system and were ascribed to type E. Both isolates were ascribed to ST1290 (CC1), spa-type
t131 and agr I. Moreover, these isolates belonged to two handlers working at the same
farm. Six isolates were ascribed to ST30 (CC30) and agr III. However, these isolates were
distributed over four different spa-types. Finally, two isolates belonged to ST398 (CC398)
and spa-types t571 and t011.

2.2. Characterization of CoNS Isolates

Donkey and handler samples were also screened for the presence of methicillin-
resistant CoNS (MRCoNS). Only four (17.4%) handlers carried MRCoNS, these being
3 S. epidermidis and one S. sciuri (Table 2). Out of the 49 donkeys, 21 (42.9%) were col-
onized by CoNS including S. sciuri (n = 17), S. lentus (n = 2), S. xylosus and S. vitulinus.
Two S. epidermidis were multidrug-resistant since they were resistant to four classes of
antimicrobials. They were resistant to penicillin, aminoglycosides, erythromycin, tetracy-
cline and trimethoprim/sulfamethoxazole and harbored the blaZ, aac (6′)-Ie-aph (2”)-Ia, aph
(3′)-IIIa, ermC, dfrA and dfrG genes. The only S. sciuri isolated from one handler showed
resistance penicillin, cefoxitin and clindamycin and harbored the mecA and lnuA genes.
Even though all CoNS were isolated from ORSAB medium supplemented with 2.5 mg/L
of oxacillin, two S. epidermidis, one S. lentus and one S. xylosus isolates lacked the mecA
gene. All the remaining isolates caried the mecA gene even those showing phenotypic
susceptibility to all antimicrobials tested (n = 7). One S. lentus isolate also displayed a
multidrug-resistant phenotype with resistances to penicillin, ciprofloxacin, macrolides and
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licosamides conferred by the mecA, blaZ and lnuA genes. S. sciuri isolates showed a variety
of resistances encoded by optrA, aph (3′)-IIIa, ant (4′)-Ia, str, ermB, tetK and tetM. Finally,
only four CoNS carried virulence genes: two eta, one tst and one hla.

Table 2. Diversity, antimicrobial resistance and virulence of CoNS isolated from donkeys and handlers.

Isolate Source/Species
Antimicrobial Resistance Virulence

FactorsPhenotype Genotype

VS3115 Human/S. epidermidis PEN, CN, TOB, KAN, TET, SXT blaZ, aac (6′)-Ie-aph(2”)-Ia, aph
(3′)-IIIa, dfrA

VS3116 Human/S. epidermidis PEN, CN, KAN, ERY, SXT mecA, ermC, aac (6′)-Ie-aph (2”)-Ia,
aph (3′)-IIIa, dfrA, dfrG tst

VS3117 Human/S. epidermidis PEN, FD - eta
VS3118 Human/S. sciuri PEN, FOX, CD, FD mecA, lnuA
VS3119 Donkey/S. lentus FD -
VS3120 Donkey/S. lentus PEN, CIP, ERY, CD, TET, FD mecA, blaZ, lnuA
VS3121 Donkey/S. xylosus TET -
VS3122 Donkey/S. vitulinus PEN, TET mecA
VS3123 Donkey/S. sciuri PEN, CD, FD mecA
VS3124 Donkey/S. sciuri PEN, FD mecA
VS3125 Donkey/S. sciuri PEN, FOX, TOB, KAN mecA, aph (3′)-IIIa
VS3126 Donkey/S. sciuri PEN, FOX, LNZ, ERY, CN, TOB, KAN mecA, optrA, ermB, aph (3′)-IIIa eta
VS3127 Donkey/S. sciuri PEN, FOX, CD, FD mecA
VS3128 Donkey/S. sciuri PEN, CN, FD mecA, aph (3′)-IIIa
VS3129 Donkey/S. sciuri PEN, CN, TOB, KAN, FD mecA, aph (3′)-IIIa, ant (4′)-Ia, str
VS3130 Donkey/S. sciuri PEN mecA
VS3131 Donkey/S. sciuri PEN mecA
VS3132 Donkey/S. sciuri PEN mecA
VS3133 Donkey/S. sciuri PEN mecA
VS3134 Donkey/S. sciuri PEN mecA
VS3135 Donkey/S. sciuri PEN mecA hla
VS3136 Donkey/S. sciuri PEN, TET mecA, tetK
VS3137 Donkey/S. sciuri PEN mecA

VS3138 Donkey/S. sciuri PEN, KAN, TOB, TET mecA, aph (3′)-IIIa, ant (4′)-Ia,
str, tetM

VS3139 Donkey/S. sciuri PEN, CD, FD mecA

Abbreviations. PEN: penicillin; FOX: cefoxitin; LNZ: linezolid; CIP: ciprofloxacin; CN: gentamycin; TOB: to-
bramycin; KAN: kanamycin; ERY: erythromycin; CD: clindamycin; TET: tetracycline; FD, fusidic acid;
SXT: trimethoprim-sulfamethoxazole.

3. Discussion

In this study we collected oral and nasal swab samples from 49 Miranda donkeys
and 23 handlers to investigate the frequency of staphylococci in donkeys and a possible
transmission between animals and humans due to the close proximity. It has been shown
that the close contact between pets and humans offers favorable conditions for transmission
by direct contact [19]. In our study, S. aureus were isolated from 4 (8.2%) donkeys and
10 (43.5%) handlers among the 49 and 23 donkeys and handlers’ samples, respectively,
and were further characterized by molecular typing in order to investigate a possible
transmission. Studies reporting the infection or colonization of donkeys by S. aureus are
very scarce. Nevertheless, one study conducted with nasal samples of healthy donkeys
and another with conjunctival swabs reported a frequency of S. aureus of 50% and 47.8%,
respectively [13,20]. Another study investigated the occurrence of S. aureus in healthy
donkeys and donkeys with respiratory tract disease and reported an incidence of 13.2% [21].
As for handlers, the proportion of samples that were positive for S. aureus is in line with the
normal frequency of human colonization, which is approximately 30% [22]. S. aureus from
donkeys were ascribed to the same clonal lineage while S. aureus isolates from handlers
belonged to several different lineages. All S. aureus isolated from donkeys belonged to
ST49, spa-type t208 and agr II, which was a clonal lineage distinct from those found in
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humans. Furthermore, no S. aureus was isolated from handlers of those donkeys. In fact,
isolates from humans were from different STs than the ones from donkeys. Three donkeys
were from the same farm and all isolates presented the same resistance phenotype and
genotype, which suggests a possible animal-to-animal transmission. One S. aureus was
isolated from a donkey living in a different farm. Gharsa et al. conducted a study on
S. aureus from donkeys destined to food consumption in Tunisia and reported a wider
diversity of clones with ST133 as the main lineage (present in 44% of the isolates) which
is frequently found in ruminants [13]. Little et al. studied the occurrence of S. aureus
in diseased equines, including six donkeys, and isolated two S. aureus from donkeys
which were ascribed to ST8-t064 and ST398-t011 [12]. S. aureus ST49-t208 has been widely
reported as a cause of infection in European red squirrels [23–25] and it has also been
found in wild rodents [26] and in pigs [27]. In Portugal, this particular clonal lineage has
been reported in surface waters and as the dominant clone in wild night raptors [28,29].
Therefore, it seems that S. aureus ST49-t208 lacks host specificity, but it is associated with
animals. Although studies reporting S. aureus in donkeys are rare, studies conducted
with horses showed that the most common lineages in Europe are ST1, ST254, ST22 and
ST398 [30]. Regarding the human S. aureus strains isolated from donkey handlers, two
isolates were ascribed to ST1290, t131 and agr I and carried the same antimicrobial and
virulence genes. Both strains were isolated from handlers from the same farm, which may
suggest a possible human-to-human transmission. Furthermore, both isolates carried the
IEC system genes (ascribed to type E), which indicates a human origin since the adaptation
of human strains to animals required genome alterations including the loss of elements
that contain the IEC [31]. S. aureus ST1290-t131 was first reported to be associated with
community-acquired MRSA and it has also been reported among vancomycin-intermediate
S. aureus from bloodstream infection and wild rodents from Portugal [32–34]. Most S. aureus
isolates from handlers were ascribed to ST30 and agr III which, in turn, belonged to four
different spa-types (t021, t338, t012 and t1642). S. aureus ST30 is primarily associated with
human colonization and infection but it has spread to pets and farm animals [35]. S. aureus
CC30 is associated with the carriage of the virulence genes PVL and tst [36,37]. In our study,
four of the six ST30 S. aureus carried the tst gene but all were negative for the gene encoding
PVL. Finally, two handlers’ S. aureus isolates belonged to ST398 (CC398) and spa-types
t571 and t011. S. aureus ST398 is a lineage initially described as colonizing livestock pigs
and later other farm animals, such as poultry, horses, cows and veal calves, and it has
also been described as colonizing humans [38–41]. Most ST398 found among humans
are associated with methicillin-susceptible S. aureus, whereas in animals ST398 is more
often found linked to MRSA strains [42,43]. Furthermore, most ST398 S. aureus isolated
from humans belong to spa-type t571 while t011 is more predominant in animals [43]. In
fact, in our study, the ST398-t011 isolate was resistant to tetracycline carrying the tetL and
tetM genes and according to other studies tetracycline-resistance may be a phenotypic
marker of animal-associated ST398 [44]. By contrast, the ST398-t571 isolate not only lacked
tetracycline resistance but it was also susceptible to all antimicrobials tested. Some of the
donkey handlers tested in this study live off agriculture and it is very likely that they have
more farm animals; the detection of a tetracycline-resistant ST398-t011 S. aureus may thus
have actually resulted from an animal-to-human transmission.

MRCoNS were detected in almost half of the donkeys (42.9%) and in four (17.4%)
handlers. Although studies showing the frequency of S. aureus in donkeys are scarce, studies
of CoNS are even rarer. Moreover, the few studies conducted with donkeys focused on non-
S. aureus staphylococci and determined only one species, mainly S. pseudintermedius [45,46].
Foti et al. described the bacterial flora present in the normal conjunctiva of donkeys and
detected four species of CoNS species including S. xylosus (n = 22), S. chromogenes (n = 4),
S. cohnii (n = 2) and S. lentus (n = 2) [20]. In the same study, CoNS were more frequent
than S. aureus, which is in accordance with our results [20]. In a study by Gutema et al.,
CoNS were isolated from 9.2% of healthy donkeys and 10.6% of donkeys with respiratory
problems [21]. However, in that study, the CoNS species were not identified. S. sciuri was
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the most prevalent species among donkeys. S. sciuri and S. lentus were also among the most
frequently detected CoNS species in horses [47–51]. However, other studies report other
species of CoNS as the most common in horses such as S. capitis and S. equorum [14,52].
S. lentus is commonly detected among farm animals [53]. Staphylococci from the S. sciuri
group (S. sciuri, S. lentus, S. xylosus) are commensal bacteria of the skin and mucous
membranes of different animal species and are known to have a broad host range [48].
Nevertheless, they are occasionally responsible for opportunistic infections both in animals
and humans [54–56]. All S. sciuri isolates carried the mecA gene, including the strain isolated
from one handler, as previously reported among equine staphylococcal isolates, which was
not a surprise since it had been hypothesized that S. sciuri may be the evolutionary precursor
of the mecA gene [4,52,57]. One handler was colonized by S. sciuri and one of their donkeys
(VS3127) was also a carrier of S. sciuri. Transmission of S. sciuri strains between horses
and their handlers have been previously documented [58]. Three handlers were colonized
by S. epidermidis, which are one of the most common members of the healthy cutaneous
microbiome both in humans and animals [59,60]. However, two S. epidermidis isolates were
multidrug-resistant. Furthermore, although S. epidermidis possesses fewer virulence factors
than S. aureus, two of the isolates carried virulence genes [61]. eta is an exfoliative toxin
and was detected in two CoNS isolates—one S. epidermidis and one multidrug-resistant
S. sciuri—and it has been previously reported in different staphylococcal species [62,63].
The S. sciuri isolate carrying the eta gene was also the only isolate showing resistance to
linezolid conferred by the optrA gene. This gene was first found in enterococci in China,
and later in S. sciuri isolated from pigs [64–66]. By contrast to cfr, which also confers
resistance to linezolid and other antimicrobial classes, optrA only confers resistance to
oxazolidinones [64].

4. Materials and Methods
4.1. Sample Collection and Bacterial Isolates

Oral and nasal swab samples (one swab per animal/handler) were collected from
49 Miranda donkeys (Equus asinus) and 23 handlers from October 2019 to January 2020
in collaboration with the Association for the Study and Protection of Donkey Cattle (As-
sociação para o Estudo e Proteção do Gado Asinino—AEPGA). Donkeys were housed in
15 different farms. The number of samples collected in each farm are shown in Table S1.
The 49 donkeys consisted of 12 males and 37 females and ranging in age from 4 months to
21 years, with a median age of 8 years (Table S1). The handlers consisted of 13 men and
10 women with a median age of 54 years. All samples were correctly identified and sent to
the laboratory within a maximum of 2 days after being collected. The swabs were inserted
into tubes containing brain heart infusion (BHI) broth with 6.5% of NaCl and incubated at
37 ◦C for 24 h. Then, 100 µL of inoculum was seeded onto Baird–Parker agar and oxacillin
resistance screening agar base (ORSAB) plates for the isolation of S. aureus and methicillin-
resistant staphylococci. Baird–Parker plates were incubated at 37 ◦C for 24 h whereas
ORSAB plates were incubated for 24 to 48 h. One colony was recovered from each plate.
The isolate species were identified by matrix-assisted laser desorption/ionisation–time of
flight mass spectrometry (MALDI-TOF MS).

4.2. Phenotypic Antimicrobial Resistance and Susceptibility

The resistance phenotype of each of the isolates was established by the Kirby–Bauer
disk diffusion method. The susceptibility of the isolates was tested against 14 antimicrobial
agents according to the standards of the European Committee on Antimicrobial Suscepti-
bility Testing (EUCAST, 2018) [67] with the exception of kanamycin, which followed the
American Guidelines of the Clinical & Laboratory Standards Institute (CLSI 2017) [68] at
the following concentrations per disk: penicillin 1 U, cefoxitin 30 µg, tetracycline 30 µg, line-
zolid 10 µg, timetroprim/sulfamethoxazole 1.25/23.75 µg, ciprofloxacin 5 µg, erythromycin
15 µg, clindamycin 5 µg, gentamicin 10 µg, tobramycin 10 µg, chloramphenicol, 30 µg,
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fusidic acid 10 µg, kanamycin 30 µg and mupirocin 200 µg. S. aureus strain ATCC 25,923
was used as quality control in the susceptibility assays.

4.3. Detection of Antimicrobial and Virulence Genes

According to the phenotypic resistance of each isolate, the following antimicrobial resis-
tance genes were studied by PCR: ß-lactams (blaZ and mecA), macrolides and lincosamides
(ermA, ermB, ermC, ermT, msr (A/B), mphC, lnuA, lnuB, vgaA and vgaB), tetracycline (tetM,
tetK, tetL and tetO), aminoglycosides (aac (6′)-Ie-aph (2”)-Ia, ant (4′)-Ia, aph (3′)-IIIa and str),
trimethoprim/sulfamethoxazole (dfrA, dfrG, dfrK and dfrD) and fusidic acid (fusA, fusB,
fusC and fusD) [69].

The presence of hla, hlb, hld, lukF/lukS-PV, eta, etb and tst genes encoding for viru-
lence factors such as hemolysins, Panton–Valentine leucocidin, exfoliatins and toxic shock
syndrome toxin were investigated by PCR [69]. In addition, the presence of the IEC was
also evaluated, first by investigating the presence of scn gene and then, in positive isolates,
the presence of the other IEC genes (chp, sak, sea and sep) to determine the IEC group [70].
Positive and negative controls used in all experiments belonged to the strain collection of
the University of Trás-os-Montes and Alto Douro.

4.4. Molecular Typing

All S. aureus isolates were typed by multilocus sequence typing (MLST) based on
seven housekeeping genes (arcC, aroE, glpF, gmK, pta, tpiA and yqiL) as described by
Enright et al. [71]. Each isolate was assigned to a ST and then to a CC according to the
MLST database (http://www.mlst.net/, accessed on 14 December 2021). The isolates
were also typed by spa-typing described by Harmsen et al. [72]. PCR products were
subjected to DNA sequencing and the isolates were assigned to the specific spa types
according to the Ridom SpaServer database (http://www.spaserver.ridom.de, accessed
on 13 December 2021). Finally, agr typing was also performed in all S. aureus strains as
previously described [73].

5. Conclusions

S. aureus was detected in 8% of the donkeys screened. However, colonization with
different species of MRCoNS isolates with multidrug resistance were detected. S. aureus
transmission between donkeys and their handlers appears not to have occurred since the
clonal types of S. aureus isolates were distinct from each other. Furthermore, most S. aureus
clones isolated from handlers were associated with human origin except for one CC398
isolate harboring resistance to tetracycline.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11030374/s1, Table S1: Description of donkeys and
handlers’ samples, farms, sampling locations and staphylococci recovery.
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