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Abstract: Diabetic and anemia-associated diabetic wounds increase the considerable morbidity
and mortality in people, as reported by clinical studies. However, no anemia-associated diabetic
wound dressing materials have been developed until now. Hence, this study aimed to develop
a nanocomposite scaffold composed of chitosan (CS), poly (vinyl alcohol) (PVA), and phytogenic
iron oxide nanoparticles (FeO NPs), for accelerated anemia-associated diabetic wound healing.
The aqueous leaves extract of Pinus densiflora (PD) was utilized for the synthesis of iron oxide
nanoparticles (FeO NPs). TEM and elemental analysis confirmed smaller size PD-FeO NPs (<50 nm)
synthesis with the combination of iron and oxide. In addition, in vitro biological studies displayed the
moderate antioxidant, antidiabetic activities, and considerable antibacterial activity of PD-FeO NPs.
Further, the different concentrations of PD-FeO NPs (0.01, 0.03, and 0.05%) incorporated CS/PVA
nanocomposites sponges were developed by the freeze-drying method. The porous structured
morphology and the presence of PD-FeO NPs were observed under FE-SEM. Among nanocomposite
sponges, PD-FeO NPs (0.01%) incorporated CS/PVA sponges were further chosen for the in vitro
wound-healing assay, based on the porous and water sorption nature. Furthermore, the in vitro
wound-healing assay revealed that PD-FeO NPs (0.01%) incorporated CS/PVA has significantly
increased the cell proliferation in HEK293 cells. In conclusion, the CS/PVA-PD-FeO NPs (0.01%)
sponge would be recommended for diabetic wound dressing after a detailed in vivo evaluation.

Keywords: FeO NPs; chitosan; PVA; scaffold; diabetic wound dressing

1. Introduction

Diabetes mellitus (DM) is a class of metabolic disorders caused by the impairment of
metabolism in insulin secretion or resistance. In general, diabetes and its associated compli-
cations are rising eternally due to the modern lifestyle, including nutrition imbalance, less
physical activity, and mental stress [1]. The diabetes condition alters the metabolic function
of the kidney, which potentially causes anemia (iron deficiency) [2]. One of the clinical
studies reports that iron deficiency can be caused even without anemia [3]. Iron is a major
mineral that regulates the key metabolism, such as oxygen supply and energy through
iron-containing proteins (myoglobin, hemoglobin, ferritin, and cytochromes), in the human
body. Moreover, iron-containing proteins are involved in collagen metabolism through
procollagen-proline dioxygenase [4]. Concurrently, iron overload (hemochromatosis), and
chronic venous disease (CVD) causes severe complication through specific organ damage
in liver, heart, kidney, leg veins, and skin [5]. Diabetes, anemia, and iron deficiency are
intently correlated with diabetic wound healing [6–8]. Diabetic wound healing is a detri-
mental impediment in the management of wound healing because of the pathogenic macro
and microvascular complications [9,10]. A recent pilot study revealed that 88% of patients’
wounds had not healed completely, due to anemic and/or iron defects [11]. Hence, iron
supplementation can improve the wound healing of patients who are affected with chronic
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ulceration through iron deficiency [12]. Furthermore, it has been reported that iron has
moderate α-glucosidase inhibition activity [13].

Wound healing is a complex process which consists of four major phases, including
haemostasis, inflammation, proliferation, and remodeling. However, there is a pathophysi-
ological environment and molecular impairment in the diabetic wound healing process,
which may delay the healing process that causes acute to chronic condition. Alongside
this, nanocomposite material (multicomponent materials which have at least one dimen-
sion in the nanoscale) provides multiple preferences to formulate the drug carrier system
to increase targeted delivery in the pathological site. In this context, the biodegradable
polymer-based (alginates, collagen, chitosan, polyurethane, hyaluronic acid, and pectin)
nanocomposites are employed to deliver the drugs to the wound at various conditions
and augment the wound healing process [14]. Among the polymers, chitosan (CS) is a
unique and cationic linear polysaccharide (deacetylated forms of chitin) used in various
biomedical systems [15–17]. In addition, several reports have evidenced that chitosan and
chitosan-based materials would promote the wound healing process through mucoadhe-
sive and antimicrobial activities [18–20]. Furthermore, chitosan-based wound dressing
materials have been available commercially, such as QuikClot, HemCon, Celox, and Chito-
Gauze [21]. However, chitosan scaffold materials are poor in mechanical strength, which
leads to limitations in regard to applications. To overcome these difficulties, an earlier study
has reported that poly (vinyl alcohol) (PVA) blended CS improved mechanical strength,
solubility, and wound healing activity [22,23].

PVA is a hydrophilic synthetic polymer used in several biomedical applications, es-
pecially in cartilage and orthopedic treatment because of its chemical resistance, water
solubility, and biocompatibility [24]. A recent study reported that CS/PVA hydrogel in-
corporated cerium oxide nanoparticles improved wound healing efficiency [25]. The iron
oxide nanoparticles (FeO NPs) are promising in the treatment of various medical complica-
tions, such as anemia, neurodegenerative, cancer, blood contamination, Parkinson’s, and
Alzheimer’s disease due to its high surface area, magnetic, photothermal, theragnostic,
and biocompatibility properties [26]. Several studies have reported the biosynthesis of
FeO NPs with enhanced biological properties (antibacterial, antifungal, antitumor, and
immunotherapy) [27,28].

Pinus densiflora (PD), generally called Korean red pine tree, is widely distributed in
Asian countries, and used as a food ingredient in Korea [29]. PD exhibited significant
antioxidant, antitumor, antidiabetic, and antimutagenic properties due to the presence of
rich phytocompounds, including proanthocyanidins and catechins [30,31]. Antioxidants
protect the cells from hyperglycemia-induced auto-oxidation. They also minimize the
micro and macrovascular complications in diabetic conditions. Moreover, there are no
studies that have reported on iron oxide nanoparticle incorporated nanocomposite sponges
for treatment of anemia-associated diabetic wound healing. Therefore, this work is aimed
to the first time to prepare a wound dressing material composed of FeO NPs, CS, and
PVA (Scheme 1). Firstly, the FeO NPs were synthesized using PD aqueous leaves extract,
and then CS/PVA-PD-FeO NPs nanocomposite sponges were prepared and characterized
using various analytical techniques and evaluated for in vitro biocompatibility, cellular
glucose uptake, antibacterial antioxidant, and wound healing activity.
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aggregation/agglomeration in PD-FeO NPs might be due to the capping of the bioactive 
molecules, such as polyphenols on the surface of particles, which form the strong bonding 
between the nanoparticles [32,33]. Similarly, an earlier study has reported that aqueous 
solution and neutral pH can increase the aggregation in FeO NPs [34,35]. Moreover, the 
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Scheme 1. Schematic representation of CS/PVA-PD-FeO NPs composite sponge preparation.

2. Results and Discussion

The present work reports the green synthesis of multifunctional FeO NPs using
the Pinus densiflora (PD). We also analyze the PD-FeO NPs incorporated chitosan/PVA
nanocomposite wound dressing sponge for anemia-associated diabetic wound healing. The
detailed characterization and biological applications of PD-FeO NPs and CS/PVA-PD-FeO
NPs sponges are discussed in the below sections.

2.1. Characterization
2.1.1. TEM Analysis of PD-FeO NPs

TEM micrograph of PD-FeO NPs showed that the uniform size and spherical shape
particles surrounded the organic layer, with sizes ranging from 20–50 nm (Figure 1). The
aggregation/agglomeration in PD-FeO NPs might be due to the capping of the bioactive
molecules, such as polyphenols on the surface of particles, which form the strong bonding
between the nanoparticles [32,33]. Similarly, an earlier study has reported that aqueous
solution and neutral pH can increase the aggregation in FeO NPs [34,35]. Moreover, the
elemental mapping analysis demonstrated the presence of iron and oxygen (Figure 1c–e),
which is in accordance with an earlier report [36]. Furthermore, the presence of nitrogen
and oxygen in PD-FeO NPs indicates the successful capping of phytomolecules.

2.1.2. Zeta Potential and Particle Size Analysis

Zeta potential and particle size analysis revealed an average size of 136.6 ± 0.36 nm,
with a polydispersity index (PDI) of 0.122 ± 0.01 for PD-FeO NPs (Figure 2A). The size
differences between TEM and the particle size analyzer depend on the analysis condition.
Particle size analysis exhibited the hydrodynamic particle size because the analysis was
done in the aqueous medium [37]. Further, PD-FeO NPs exhibited the zeta potential of
−29.6 ± 1.0 mV (Figure 2B), which indicated its good stability. The good zeta potential
and smaller particles could induce the cell receptor binding and cellular uptake ability [38].
Moreover, the size and zeta potential of the FeO NPs core was influenced by the capping of
phytomolecules [39,40].
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Figure 1. TEM micrograph of PD-FeO NPs. Different magnification of PD-FeO NPs (a,b), elemental
mapping of Fe and O (c,d), and elemental analysis—(e).
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2.1.3. ATR-FTIR Spectroscopy Analysis

The functional properties and the interaction of PD aqueous extracts, PD-FeO NPs,
CS, CS/PVA, and CS/PVA-PD-FeO NPs (0.01%), were studied through the ATR-FTIR spec-
troscopy method (Figure 3). PD aqueous extract showed strong broad peaks at 3290 cm−1,
corresponding to O-H stretching, and medium peaks at 2921 cm−1, due to C-H stretch-
ing. The medium band at 1604 cm−1 is attributable to C=C stretching. The peaks at
1391 cm−1 are a result of the O-H bending, and medium peaks at 1248 cm−1 are a result
of C-N stretching. The strong peaks at 1040 cm−1 can be attributed to the C-O stretching
of primary alcohol. PD-FeO NPs exhibited strong and broad peaks at 3214 cm−1 and
1599 cm−1, corresponding to O-H stretching and C=C stretching, respectively. The peaks at
1360 cm−1 and 1023 cm−1 are responsible for the O-H bending and medium C-N stretching
of amine, respectively. The CS exhibited strong and broad peaks at 3262 cm−1, which
can be attributed to intermolecular O-H stretching, and the medium peaks observed at
2877 cm−1 are a result of C-H stretching. Amide I and amide II were observed at 1637 cm−1

and 1546 cm−1, corresponding to C=O stretching and N-H bending of chitosan [19,41].
Further, the deformation of the CH3 band was observed at 1406 cm−1 and 1373 cm−1 [42].
The PVA exhibited strong broad peaks at 3435 cm−1 and 2949 cm−1, corresponding to the
O-H intermolecular, intramolecular hydrogen bond, and C-H stretching of alkyl groups,
respectively. The peaks at 1653 cm−1 are a result of C=C stretching, and 1421 cm−1 can be
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attributed to the CH2 group [43]. The intermolecular hydrogen bond O-H and C-H stretch-
ing at 3275 cm−1 and 2910 cm−1 was formed respectively in the CS/PVA composites. The
shifting of the major peaks was noted when compared to CS alone. Further, the minor shift
was observed in the amide I and amide II bands of chitosan at 1639 cm−1 and 1553 cm−1.
The uses of poly(vinyl alcohol) in the scaffold would help to improve the mechanical
strength. Moreover, the fabrication of PD-FeO NPs did not exhibit significant changes on
CS/PVA composites, because PD-FeO NPs was encapsulated by CS/PVA. Alongside this,
the concentration of PD-FeO NPs was lower (0.01%).
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Chitosan (CS), CS/Poly vinyl alchocol(PVA), CS/PVA-PD-FeO NPs (0.01%).

2.1.4. XRD Spectrum of CS/PVA-PD-FeO NPs

The crystalline properties of CS, PVA, CS/PVA, PD-FeO NPs, and PD-FeO NPs (0.01%)
incorporated CS/PVA, were studied through XRD analysis, as shown in Figure 4A,B. The
XRD pattern of PD-mediated synthesized FeO NPs was agreed to standard Fe3O4 (JCPDS:
65-3107). The diffraction peaks of PD-FeO NPs were exhibited at 30.09◦, 35.25◦, 42.95◦,
56.70◦, 62.38◦, and 74.12◦, which corresponds to the 220, 311, 400, 511, 440, and 533 crystal
planes of Fe3O4, which are coherent with earlier reports [44,45]. The CS showed its
respective crystalline peaks at 2θ angle 10.32◦ and 19.94◦. Similarly, sigma chitosan was
reported as the two crystalline peaks at 10.1◦ and 19.8◦ [46]. We also found that sigma
chitosan showed major crystalline peaks at 10.0◦ and 20.1◦ [47]. Another polymer, PVA,
also exhibited the two major crystalline peaks at 2θ angle 11.6◦ and 19.7◦, and the obtained
crystal peaks were consistent with earlier reports [48]. The CS blended PVA exhibited the
two crystalline peaks at 8.87◦ and 19.83◦, this indicates the conformational transition within
the two polymers [49]. Moreover, CS/PVA-PD-FeO NPs (0.01%) composites showed all
the crystalline peaks and plane of PD-FeO NPs at 30.09◦ (220), 35.50◦ (311), 43.09◦ (400),
53.55◦ (422), 57.20◦ (511), 62.75◦ (440), and 74.41◦ (533), while the peak intensity was
lowered without any crystalline phase change of PD-FeO NPs (Figure 4B). In addition,
earlier reports found that Fe3O4 nanoparticle crystallinity was not changed by the chitosan
coating [50].
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2.1.5. SEM

The structural morphology of CS, CS/PVA, and PD-FeO NPs (0.01% and 0.03%)
incorporated CS/PVA sponges are shown in Figure 5A–D. SEM analysis displayed that CS
sponges have a well-interconnected, honey-comb structure, with thin-walled morphology,
compared to CS/PVA and CS/PVA-PD-FeO NPs. A dense inter-walled, microporous
structure was observed in CS/PVA sponges, which is attributable to the strong hydrogen
bonding between the polymer [51]. The 0.01% of PD-FeO NPs incorporated CS/PVA
sponges displayed significant dense microporous structured morphology, but this was not
observed in CS and CS/PVA sponges. Further, the presence of PD-FeO NPs on the surface
was observed under higher magnification (Figure 5(Ciii)). However, when increasing the
concentration of PD-FeO NPs to more than 0.01%, the interconnected porous structure
of sponges was highly interrupted (Figure 5(Di–iii)). Moreover, the higher concentration
of PD-FeO NPs may influence the physical nature of CS/PVA sponges through cross-
linking. Accordingly, an earlier study evidenced that the topology and pore size of CS/PVA
hydrogel were significantly changed while loading cerium oxide nanoparticles [25].
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2.1.6. Porosity

The porosity of CS, CS/PVA, and different concentrations of PD-FeO NPs (0.01,
0.03, and 0.05%) incorporated CS/PVA sponges are shown in Figure 6A. The porosity of
various sponges is demonstrated, including CS at 90.57 ± 1.42%, CS/PVA at 82.6 ± 1.61%,
CS/PVA FeO NPs (0.01%) at 81.78 ± 0.77%, CS/PVA FeO NPs (0.03%) at 62.72 ± 1.71%,
and CS/PVA FeO NPs (0.05%) at 54.88 ± 2.22%. Among them, CS sponges showed the
highest porosity, followed by CS/PVA, and 0.01% of PD-FeO NPs incorporated CS/PVA
sponges (p < 0.001). However, the higher concentration of PD-FeO NPs (0.03 and 0.05%)
incorporated sponges exhibited a decreased porosity when compared to CS/PVA-PD-
FeO NPs (0.01%) (p < 0.05). In our previous study, we found that direct incorporation of
silver nanoparticles inhibited a well inter-connected porous structure in fungal chitosan
sponges [18]. Highly porous material in wound dressing would help gaseous exchange,
excess wound exudate absorption, and maintenance of moist environments [52]. Moreover,
moist wound healing supports re-epithelialization and inhibits secondary infections like
diabetic condition [53].
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2.1.7. Water Absorption

The water absorption behavior of CS, CS/PVA, and the different concentrations of
PD-FeO NPs incorporated CS/PVA sponges were determined from 0 to 6 h (Figure 6B).
The Chitosan (CS) sponge alone showed a higher water absorption (%) in the 1st h at
2318.28 ± 65.05%, and the water absorption was increased up to 2511 ± 51.71% at 6th h.
CS blended PVA sponges demonstrated water absorption at 2163.04 ± 56.56% (1st h), and
3358.91 ± 21.21% (6th h) which is higher than the CS sponge alone, while showing lesser
porosity compared to CS. Although the incorporation of PD-FeO NPs (0.03% and 0.05%)
in CS/PVA sponges significantly decreased the water absorption after 1 h interval, the
0.01% of PD-FeO NPs incorporation maintained the water absorption capacity constantly.
The maximum % of water absorption was found in CS/PVA-PD-FeO NPs (0.01%) at
2855.55 ± 83.80% (6th h). However, 0.03% and 0.05% of PD-FeO NPs incorporated CS/PVA
sponges were considerably degraded at the 4th h of the experiment. The water absorption
nature highly depends on the properties of the material in composite sponges [54].

2.2. Iron Release of CS/PVA-PD-FeO NPs Sponge

Figure 7 shows the estimated iron release (%) from CS/PVA-PD-FeO NPs (0.01%) at
different time intervals (0 to 24 h). The rate of PD-FeO NPs release was significantly in-
creased with the increase in time (p < 0.05). The rate of PD-FeO NPs release was 6.5 ± 0.49%
at the 1st h and 14.25 ± 0.26% at the 24th h. Overall, the in vitro release pattern indicates
the sustained release of iron with a lower percentage until 24 h. It was demonstrated that
CS/PVA-PD-FeO NPs negatively impacted the iron release at the pH of 7.4, due to the
gelling property of PVA blended chitosan. The lower iron release from nanocomposites is
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an advantage for the anemia-associated diabetic wound healing process because it avoids
iron overload mediated toxicity. However, in vitro iron release may not precisely define
the in vivo conditions.
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2.3. Biological Activities

Biological activities of PD-FeO NPs were determined through antioxidant, antidiabetic,
and antibacterial assays. Further, antibacterial, cell viability, and cellular internalization of
CS/PVA-PD-FeO NPs composites were evaluated using standard in vitro assays. Moreover,
the in vitro wound healing potential of CS/PVA-PD-FeO NPs composites was evaluated in
HEK-293 cells. The detailed results and discussions are presented in the following sections.

2.3.1. Antioxidant Properties

The antioxidant potential of PD aqueous extract and PD-FeO NPs was evaluated by
DPPH and ABTS+ radical scavenging antioxidant assays (Figures S1 and S2). The PD
aqueous extract exhibited significant radical scavenging activity in both DPPH and ABTS+

radicals, compared to PD-FeO NPs. The maximum tested concentration of 1 mg/mL of
PD aqueous extract and PD-FeO NPs showed the percentage of DPPH radical scavenging
activity at 75.86 ± 1.3 and 49.11 ± 2.5, respectively. Similarly, the percentage of ABTS radical
scavenging activity of PD aqueous extract (1 mg/mL) and PD-FeO NPs (1 mg/mL) was
found at 94.86 ± 0.11 and 48.51 ± 0.98, respectively. Ascorbic acid has shown substantial
radical scavenging activity against both DPPH and ABTS radicals. The earlier studies have
shown that Fe NPs exhibited lower antioxidant activity than Rhus and safflower aqueous
extract [55] which supports the present results. Moreover, these extracts augment wound
healing in the diabetic condition through inhibition of oxidative stress [56].

2.3.2. Antidiabetic Activity

The inhibition of digestive enzymes, such as α-glucosidase and α-amylase, has con-
siderably attenuated the higher blood glucose level in diabetic conditions [57,58], hence
the PD aqueous extract and PD-FeO NPs evaluated in vitro α-amylase and α-glucosidase
enzyme inhibitory activity (Figures S3 and S4). Like the antioxidant activity, PD aqueous
extract (1 mg/mL) exhibited higher digestive enzyme inhibitory activity than the PD-FeO
NPs (1 mg/mL). The percentages of α-amylase inhibitory activity of PD aqueous extract
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and PD-FeO NPs were found at 20.71 ± 4.8 and 18.78 ± 3.14, respectively. In addition,
PD aqueous extract and PD-FeO NPs exhibited the percentage of α-glucosidase activity at
79.29 ± 0.48 and 27.01 ± 5.01, respectively. However, PD aqueous extract and PD-FeO NPs
significantly inhibit α-glucosidase activity, compared to αamylase. Accordingly, Sesamum
indicum seeds extract mediated synthesis of iron nanoparticles significantly inhibits the
α-amylase comparatively less than acarbose [59].

2.3.3. Antibacterial Activity

Microbial population is common in open wounds, but infective conditions have a
detrimental effect on the normal healing process [60]. PD-FeO NPs showed moderate
antibacterial activity against tested pathogens, such as B. cereus, S. aureus, E. coli, and S. en-
terica. The minimum inhibitory concentration (MIC) was observed in S. aureus (250 µg/mL)
while not detected in other tested bacteria (Table 1). Accordingly, earlier studies indicated
that FeNPs and FeO NPs have moderately inhibited bacterial growth [61–63]. But, CS/PVA
incorporated PD-FeO NPs (0.01%) composite sponges showed significant inhibitory ac-
tivity against all the tested pathogens with MIC (Table 1). Furthermore, the significant
zone of inhibition was observed in CS/PVA-PD-FeO NPs (0.01%) composite sponges
treated B. cereus (22 ± 2 mm), S. aureus (21 ± 1 mm), E. coli (20 ± 2 mm), and S. enterica
(22 ± 1.5 mm) (Table 1; Figure S5). However, moderate inhibitory activity was observed in
CS/PVA-PD-FeO NPs and compared to the standard antibiotic tetracycline hydrochloride.

Table 1. Minimum inhibitory activity of PD-FeO NPs and PD-FeO NPs incorporated CS/PVA nanocomposites. Values
represent the mean ± SD of three replicates. Values share the common superscript alphabets not significant between the
samples (p < 0.05). TCH-Tetracycline hydrochloride; ND-Not detectable.

Samples
B. Cereus S. Aureus E. Coli S. Enterica

Minimum Inhibitory Concentration (µg/mL)

PD-FeO NPs ND 250 d ND ND
CS 62.5 c 62.5 c 125 c 62.5 c

CS/PVA-PD-FeO NPs 31.2 b 31.2 b 62.5 b 62.5 b

TCH 7.8 a 7.8 a 15.6 a 15.6 a

Zone of inhibition (mm)
CS/PVA-PD-FeO NPs 22 ± 2 21 ± 1 20 ± 2 22 ± 1.5

The antimicrobial activity of chitosan is highly dependent on the degree of deacety-
lation, molecular weight, and solubility [64]. The blending of PVA in the nanocomposite
turns the chitosan into hydrophilic nature, which exerts antimicrobial properties [65]. To un-
derstand the detailed mechanism of the PD-FeO NPs incorporated CS/PVA nanocomposite
treated, control bacterial cells was observed in HR-TEM analysis (Figure 8). The untreated
S. aureus and E. coli control bacterial samples maintained the cocci and rod morphology
with intact cytoplasm, which seemed to be normal. In contrast, the CS/PVA-PD-FeO NPs
treated S. aureus cell wall significantly damaged and cytoplasmic leakages were observed,
indicated by yellow arrows (Figure 8). Clear morphological changes were observed in
the nanocomposite treated E. coli cells. The yellow arrows indicate the nanoparticle accu-
mulation and internalization on/onto the cell wall of E. coli. The nanocomposites were
initiated by the bacterial cell death through structural destabilization and a cytoplasmic
leakage mechanism, identified in HR-TEM analysis. Further, the flow cytometry analysis
confirmed the considerable bacterial death in nanocomposite treated S. aureus (78.6%)
and E. coli (76.17%), compared to non-treated control cells (Figure 9). Both Syto-9 and
PI are referred to as the nuclear stain. Syto-9 could stain both live and dead cells, but PI
stained only the cells with damaged membranes [66]. Based on the antibacterial results,
CS/PVA-PD-FeO NPs could be the potent antibacterial dressing material that helps to heal
wounds by preventing microbial growth.
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2.3.4. Cell Viability

Biocompatible and less toxic materials can be considered as an ideal wound dressing.
Hence, the cell viability of CS, PD-FeO NPs, and CS/PVA-PD-FeO NPs treated HEK-293
cells were evaluated by WST assay (Figure S6) and fluorescent microscopy-based assays
(Figure 10). According to the results, the tested samples do not show significant cytotoxicity
in HEK-293 cells up to the tested concentration (1 mg/mL). PD-FeO NPs treated cells
showed an IC50 concentration at 780 ± 20 µg/mL. An earlier study indicates that any tested
concentration of iron oxide nanoparticle did not cause toxicity in HUVEC cells up to 24 h
incubation, but toxicity was found at 48 h incubation [67]. In the case of CS and CS/PVA-PD-
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FeO NPs (0.01%), treated samples were not observed to have half of the minimum inhibitory
concentration (IC50). Several studies reported that chitosan and polyvinyl alcohol showed
substantial cell proliferation and a biocompatible nature, which suggests the existence of
primary hydroxyl, acetyl, and amine functionalities and its ratio [68–72]. Further, AO/EB
fluorescence staining showed a greater number of viable cells in various samples treatment,
but in PD-FeO NPs alone, treatment showed fewer apoptotic cells (Figure 10). Similarly,
fewer dead cells were observed in PI staining. The CS, CS/PVA, and CS/PVA-PD-FeO NPs
treated cells have shown considerable mitochondrial membrane potential (∆Ψm) when
compared to the control cells. Then, reactive oxygen species (ROS) production was not
observed in the treatment and control cells, which means that the samples did not induce
the oxidative stress (Figure 10). Hence, our results conclude that CS/PVA incorporated
PD-FeO NPs did not cause any cytotoxicity, and they improve cell viability. Moreover, it
can be hypothesized that the fabricated composite decreases the inflammatory cytokines
and oxidative enzymes and increases the anti-inflammatory cytokines.
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Figure 10. Morphological observation of various fluorescent dye stained HEK 293 cells observed
under the fluorescence microscope. Control cells—(A); PD-FeO NPs treated cells—(B); CS treated
cells—(C); CS/PVA-PD-FeO NPs treated cells—(D).

2.3.5. Cellular Glucose Uptake

The cell viability and regulation of cellular glucose uptake behavior of PD-FeO NPs,
CS, CS/PVA-PD-FeO NPs (0.01%) treated IR-HepG2 cells are shown in Figure 11A,B. The
cell viability showed that treatment did not induce any cell toxicity when compared to
control observed in AO/EB staining. Further, cellular glucose uptake results showed that
CS/PVA-PD-FeO NPs treatment attenuated the insulin resistance, thereby increasing the
cellular glucose uptake (78.75 ± 1.7%) in IR-HepG2 cells, when compared to the non-treated
IR-HepG2 cells (glucose uptake at 42.52 ± 1.2%). The positive control metformin-treated
cells showed a cellular glucose uptake of 72.46 ± 2.4%, which is lesser than CS/PVA-
PD-FeO NPs. Similarly, earlier work has reported that superparamagnetic iron oxide
nanoparticles (SPION) significantly reduce the blood glucose level in diabetic rats more so
than metformin [73]. In addition, SPION was found to regulate the expression of obesity
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and type-2 diabetic-related genes in human preadipocyte cells [74]. In the present study, the
individual treatment of CS and PD-FeO NPs have induced the cellular glucose uptake at
69.07 ± 1.8% and 61.83 ± 3.81%, respectively (Figure 11B). The earlier studies supported the
fact that chitosan oligosaccharides and Korean red pine (Pinus densiflora) show substantial
antidiabetic activity through reduction of blood glucose level [29,75].
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2.3.6. Cellular Internalization of PD-FeO NPs

PD-FeO NPs cellular internalization was evaluated in HEK-293 cells by Prussian
blue staining counterstained with safranin (Figure 12A–F). For the comparative analysis,
HEK293 cells were treated by CS, PVA, CS/PVA, PD-FeO NPs, and CS/PVA-PD-FeO NPs
(0.01%). The cellular iron content was only found in PD-FeO NPs and CS/PVA-PD-FeO
NPs treated cells (Figure 12E,F), while other treatments and control did not observe any
iron content (Figure 12A–D). An early study reports that iron oxide and doxorubicin-loaded
chitosan nanoparticles successfully internalized in glioblastoma cells, where iron oxide
nanoparticles internalized depending on the concentration observed by Prussian blue
staining [37]. The cellular iron oxide nanoparticle uptake significantly enhanced the neurite
outgrowth in PC12 cells [76].

2.3.7. In Vitro Wound Healing Assay

In the in vitro wound-healing assay, we evaluated cell migration and proliferation of
mechanically created wounds with and without sample treatment. The different intervals,
(0, 12, 24, 48 h) versus sample treatment, (PD-FeO NPs, CS, and CS/PVA-PD-FeO NPs),
and control, are shown in Figure 13A. To evaluate the effects of CS/PVA-PD-FeO NPs,
the wound area (%) was calculated after 48 h (Figure 13B). The cell migration was seen
in 24 h treatment of PD-FeO NPS, CS, CS/PVA-PD-FeO NPs, when compared to control,
which had lesser cell migration. Among them, CS/PVA-PD-FeO NPs showed maximum
wound area contraction at 48 h (Figure 13(Aiv)), followed by CS, PD-FeO NPs, and control
(Figure 13(Ai–iii)). The biocompatible chitosan and PVA provide sustained drug release
and metal nanoparticle delivery thereby enhanced cell proliferation and augmented angio-
genesis, leading to wound contraction and reduction in cytotoxicity. For example, thrombin
conjugated iron oxide nanoparticles enhanced incisional wound healing [77]. Moreover,
FeO NPs were found to promote the macrophage autophagy and inflammatory response
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in cell and animal models [78]. In addition, curcumin-loaded chitosan-based polymeric
micelles considerably improve the in vivo wound healing and anti-diabetic effect [79].
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FeO NPs—(F).

Antibiotics 2021, 10, 524 14 of 21 
 

2.3.7. In Vitro Wound Healing Assay 
In the in vitro wound-healing assay, we evaluated cell migration and proliferation of 

mechanically created wounds with and without sample treatment. The different intervals, 
(0, 12, 24, 48 h) versus sample treatment, (PD-FeO NPs, CS, and CS/PVA-PD-FeO NPs), 
and control, are shown in Figure 13A. To evaluate the effects of CS/PVA-PD-FeO NPs, the 
wound area (%) was calculated after 48 h (Figure 13B). The cell migration was seen in 24 
h treatment of PD-FeO NPS, CS, CS/PVA-PD-FeO NPs, when compared to control, which 
had lesser cell migration. Among them, CS/PVA-PD-FeO NPs showed maximum wound 
area contraction at 48 h (Figure 13(Aiv)), followed by CS, PD-FeO NPs, and control (Figure 
13(Ai–iii)). The biocompatible chitosan and PVA provide sustained drug release and 
metal nanoparticle delivery thereby enhanced cell proliferation and augmented angiogen-
esis, leading to wound contraction and reduction in cytotoxicity. For example, thrombin 
conjugated iron oxide nanoparticles enhanced incisional wound healing [77]. Moreover, 
FeO NPs were found to promote the macrophage autophagy and inflammatory response 
in cell and animal models [78]. In addition, curcumin-loaded chitosan-based polymeric 
micelles considerably improve the in vivo wound healing and anti-diabetic effect [79]. 

 
Figure 13. In vitro wound-healing assay. Wound healing efficiency of HEK-123 cells treated with 
different samples observed under Light microscope—(A); Control cells—i; PD-FeO NPs treated 
cells—ii; CS treated cells—iii; CS/PVA-PD-FeO NPs treated cells—iv. The percentage of wound 
healing with different treatment—(B). ** (p < 0.01). 

3. Materials and Methods 
3.1. Materials 

Chitosan (DDA: 75–85%; Mw: 50–190 kDa), ferric chloride hexahydrate (FeCl3·6H2O), 
poly(vinyl alcohol) (PVA), sodium hydroxide (NaOH), α-glucosidase (Saccharomyces 
cerevisiae), α-amylase (porcine pancreas), acarbose, 4-nitrophenyl α-D-glucopyranoside 
(PNPG), antioxidant (DPPH and ABTS), and starch were procured from Sigma-Aldrich, 
Republic of Korea. Cell viability assay kit (Cellomax™) was purchased from MediFab, 
Republic of Korea. L7012 LIVE/DEAD BacLight Bacterial viability kits from Ther-
moFisher. Acetic acid was procured from the Daejung chemicals & metals co., Ltd., Si-
heung-si, South Korea. The manufacturer’s information of all the fluorescent staining and 
culture medium used in the present study is mentioned in our earlier paper. Pinus densi-
flora leaves were collected from Kangwon National University campus, Chuncheon, Re-
public of Korea. 

  

Figure 13. In vitro wound-healing assay. Wound healing efficiency of HEK-123 cells treated with
different samples observed under Light microscope—(A); Control cells—i; PD-FeO NPs treated
cells—ii; CS treated cells—iii; CS/PVA-PD-FeO NPs treated cells—iv. The percentage of wound
healing with different treatment—(B). ** (p < 0.01).

3. Materials and Methods
3.1. Materials

Chitosan (DDA: 75–85%; Mw: 50–190 kDa), ferric chloride hexahydrate (FeCl3·6H2O),
poly(vinyl alcohol) (PVA), sodium hydroxide (NaOH), α-glucosidase (Saccharomyces
cerevisiae), α-amylase (porcine pancreas), acarbose, 4-nitrophenyl α-D-glucopyranoside
(PNPG), antioxidant (DPPH and ABTS), and starch were procured from Sigma-Aldrich,
Republic of Korea. Cell viability assay kit (Cellomax™) was purchased from MediFab,
Republic of Korea. L7012 LIVE/DEAD BacLight Bacterial viability kits from ThermoFisher.
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Acetic acid was procured from the Daejung chemicals & metals co., Ltd., Siheung-si, South
Korea. The manufacturer’s information of all the fluorescent staining and culture medium
used in the present study is mentioned in our earlier paper. Pinus densiflora leaves were
collected from Kangwon National University campus, Chuncheon, Republic of Korea.

3.2. Synthesis of FeO NPs

Roughly 10 g of fresh leaves of PD were thoroughly washed with distilled water and
boiled with 100 mL of distilled water at 80 ◦C for 20 min. The aqueous PD leaves extract
was collected using Whatman filter paper (No. 1) for the synthesis of FeO NPs. Further,
the different ratios (1:9, 2:8, 3:7, 4:7, and 5:5) of FeCl3 (5 mM) and aqueous PD leaves
extract were mixed. Subsequently, NaOH (1 M) was added to the mixture and kept under
magnetic stirring for 30 min at 80 ◦C. The formation of an intense block-colored solution
indicated the synthesis of FeO NPs. This was collected by centrifugation at 15,000 rpm,
then washed with distilled water, dried at 80 ◦C, and stored in an airtight container.

3.3. Preparation of FeO NPs Fabricated CS/PVA Sponges

The CS, CS/PVA, PVA/CS-PD-FeO NPs composite scaffold was fabricated by the
freeze-drying method. For the preparation of the PVA/CS-PD-FeO NPs nanocomposite
sponge, 0.5 g of CS was initially dissolved in 100 mL of acetic acid solution (0.5%). Then,
an equal volume of water solubilized PVA (5 mg/mL) and CS solution (0.5%) were mixed
using magnetic stirring at room temperature for 1 h. The various concentrations of PD-FeO
NPs (0.01, 0.03, and 0.05%) were slowly added to the CS/PVA solution under magnetic
stirring for 30 min. Finally, well-blended CS, CS/PVA, CS/PVA-PD-FeO NPs (0.01, 0.03,
and 0.05%) were freeze-dried. All the developed scaffolds were stored at 4 ◦C for further
characterization and biological assays.

3.4. Characterization

The synthesized PD-FeO NPs were initially analyzed using a UV-Visible spectropho-
tometer (SpectraMax® Plus 384 Microplate Reader from Molecular Devices). The particle
size of PD-FeO NPs was observed under a field emission transmission electron microscope
(FE-TEM, JEOL-JSM 1200EX Japan). This was followed by particle size distribution, and
zeta potential was determined through a particle size Analyzer (Malvern PANalytical
Netherland). The presence of phytochemicals, such as total phenol and flavonoids content
in PD-FeO NPs, was determined according to the earlier reports [80]. The functional
characteristics of PD-FeO NPs, CS, CS/PVA, and CS/PVA-PD-FeO NPs were characterized
through FT-IR spectrophotometer (PerkinElmer Paragon 500 USA), and X-ray diffraction
analysis (XRD, X’pert-pro MPD-PANalytical Netherland). The surface morphology of CS,
CS/PVA, CS/PVA-PD-FeO NPs sponges was observed under an ultra-high-resolution
scanning electron microscope (UHR-SEM, Hitachi Japan). The porosity of CS, CS/PVA,
CS/PVA-PD-FeO NPs sponges was evaluated by the liquid displacement method, and
water sorption capacity was measured according to the earlier report [18].

3.5. In Vitro Iron Release

The amount of iron release from the CS/PVA-PD-FeO NPs (0.01%) was determined by
ICP-OES (inductively coupled plasm optical emission spectrometer, Agilent 5900) analysis.
Firstly, the previously described weight of composite sponges was placed in the 20 mL of
phosphate buffer (pH 7.4), in a dissolution bath at 37 ◦C under shaker (150 rpm). 2 mL of
the sample was collected from the dissolution bath at each predetermined time interval
(1, 3, 6, 12, and 24 h) and an equal amount buffer solution was replaced to maintain the
equal volume. Next, collected samples were diluted to ten-fold for iron quantification,
using ICP-OES analysis. The content of iron release was calculated with the known
concentration of iron (Correlation coefficient: 0.999) using Agilent Technologies software
(Version 7.5.1.11869).
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3.6. Biological Applications
3.6.1. Antioxidant, Antidiabetic and Antibacterial Assays

The antioxidant (DPPH and ABTS+) radical scavenging ability of PD aqueous extract
and PD-FeO NPs was determined according to the earlier reports [81]. The antidiabetic
potential of PD aqueous extract and PD-FeO NPs was determined in terms of digestive
enzyme (α-glucosidase and α-amylase) inhibition, as described earlier [82]. The antibac-
terial activity of PD-FeO NPs, and CS/PVA-FeO NPs was evaluated against bacterial
pathogens, such as Bacillus cereus (ATCC 14579), Staphylococcus aureus (ATCC 19095), Es-
cherichia coli (ATCC 43888), and Salmonella enterica (ATCC 14028). The minimum inhibitory
concentration of PD-FeO NPs and CS/PVA-PD-FeO NPs were determined by the broth
dilution method, according to the earlier report [83]. Furthermore, the antibacterial poten-
tial of PD-FeO NPs incorporated CS/PVA composite sponges confirmed in terms of zone
of inhibition.

High-Resolution Transmission Electron Microscopy (HR-TEM)

The antibacterial effect of CS/PVA-PD-FeO NPs treated each Gram-positive (S. aureus)
and Gram-negative (E. coli) bacteria was determined using HR-TEM (JEOL-JSM 1200EX
Japan). To prepare bacteria for HR-TEM analysis, control and treated bacterial cells were
initially centrifuged (5000 rpm for 10 min), and the pellet was washed with phosphate
buffer (pH 7.4). Further, the pellet was fixed with glutaraldehyde (2.5%) for 4 h, and then
samples were dehydrated by 30, 50, 80, and 100% ethanol for 2 h at each step [80]. Finally,
air-dried samples were observed under HR-TEM.

Flow Cytometry Analysis

The CS/PVA-PD-FeO NPs treated bacterial cells were further evaluated by flow
cytometry (FACSCalibur, USA) analysis. For flow cytometry analysis, the bacterial sample
and staining (Syto-9 and propidium iodide (PI)) solution were prepared according to the
manufacture’s protocol [66].

3.6.2. Cell Viability

The cytotoxicity of PD-FeO NPs, CS, CS/PVA-PD-FeO NPs were evaluated in the
human embryonic kidney cell line (HEK-293 cells). The HEK-293 cells were obtained
from the Korean cell line bank and cultured in DMEM medium supplemented with FBS
(10%) and antibiotics (1%) in a 5% CO2 incubator at 37 ◦C. For the cell viability assay, HEK
293 cells were cultured in 96 well plates for 24 h. After reaching the 70% of confluence,
10 µL of various concentration (3.9, 7.81, 15.62, 31.25, 62.5, 125, 250, 500, 1000 µg/mL) of
respective samples were treated to each well and incubated for 24 h in CO2 (5%) incubator.
After the treatment, 10 µL of WST reagent was added to each well and incubated for
1 h, and then absorbance was measured at 450 nm. The percentage of cell viability was
calculated using the following Equation (1).

% of cell viability = (Treated cells absorbance @ 450 nm)/(Control cells absorbance @ 450 nm) × 100 (1)

Further, cytotoxicity of PD-FeO NPs, CS, CS/PVA-PD-FeO NPs treated HEK 293 cells
was evaluated under a fluorescence microscope using various fluorescence staining (AO/EB,
PI, RH123, and DCFH-DA).

3.6.3. In Vitro Glucose Uptake

Cellular glucose uptake efficiency of PD-FeO NPs, CS, and CS/PVA-PD-FeO NPs was
determined in insulin-resistant hepatocellular carcinoma (IR-HepG2) cells according to the
earlier report [84,85].

3.6.4. In Vitro Wound Healing Activity

The effect of PD-FeO NPs (0.01%), CS (0.5%), and CS/PVA-PD-FeO NPs (0.01%)
treatments on wound healing activity was evaluated by in vitro scratch assay [86]. HEK-



Antibiotics 2021, 10, 524 16 of 20

293 cells were cultured in six-well plates in a CO2 incubator at 37 ◦C, and we allowed
cells to reach the proper monolayer confluence. Then, the artificial wound was created
by scarping the cell monolayer in a straight line, using a pipette tip (200 µL), and cell
debris was washed with PBS. The wounded cell monolayer was treated with each sample
incorporated DMEM medium, while the control cells received the DMEM medium alone
and were incubated in a CO2 incubator. This was followed by the wound healing being
observed under a light microscope at each predetermined time interval (0 h, 6 h, 12 h, 24 h,
and 48 h). The wound area was measured by ImageJ software. Further, the percentage of
wound healing was calculated by the following Equation (2).

% of wound healing = (wound area on the initial day − wound area on the final day)/(wound area on the initial day) × 100 (2)

3.6.5. PD-FeO NPs Cellular Internalization

The cellular internalization of FeO NPs was observed by Prussian blue staining assay
according to an earlier report [87], with some modifications. In brief, CS, CS/PVA, PD-FeO
NPs (0.01%) and CS/PVA-PD-FeO NPs (0.01%) treated HEK-293 cells were incubated for
24 h at a 5% CO2 incubator. After incubation, cells were washed with PBS twice, to remove
the excess amount of FeO NPs. Then cells were stained with a 1:1 ratio of K4Fe(CN)6
(10%) and HCl (20%) for 20 min in the incubator. Further cells were counterstained with
safranin and washed with 0.02% of acetic acid three times and then observed under a light
microscope at 10× magnification.

3.7. Statistical Analysis

All of the experimental data were presented as mean ± standard deviation. The one-
way analysis of variance (ANOVA) was used for the statistical analysis. The p-value < 0.05
was considered statistically significant.

4. Conclusions

The results reveal that PD aqueous extracts have a higher amount of total phenol and
flavonoid resulting in significant antioxidant and antidiabetic activity. The PD aqueous
extract-mediated iron oxide NPs exhibited good biological activity. Further, the bioactive
potential of iron oxide NPs (0.01%) loaded CS/PVA nanocomposite sponge displayed
highly porous properties, and potential water sorption properties. The sustained and
lower iron release (%) was observed from nanocomposite sponges. CS/PVA-PD-FeO NPs
(0.01%) exhibited a substantial antibacterial activity against tested bacterial pathogens.
Further, CS/PVA-PD-FeO NPs (0.01%) augmenting cell proliferation in HEK-293 cells
observed in in vitro wound healing scratch assay. The plant-mediated synthesized iron
oxide nanoparticles, chitosan, and poly (vinyl alcohol) consisted of nanocomposite sponges
(CS/PVA-PD-FeO NPs) which supported gaseous exchange, wound exudated absorption,
and microbial inhibition in the diabetic wound. Hence, we conclude that the existence
of antioxidant, antidiabetic, and antibacterial properties of CS/PVA-PD-FeO NPs would
aid diabetic wound healing. However, further in vivo studies are required to evaluate the
molecular mechanism of diabetic wound healing of developed sponges.
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