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Cell to cell communication in the central nervous system is encoded into transient and
local membrane potential changes (ΔV m). Deciphering the rules that govern synaptic trans-
mission and plasticity entails to be able to perform V m recordings throughout the entire
neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within
small and fragile neuronal subcompartments. Thus, optical techniques based on the use
of fluorescent voltage-sensitive dyes (VSDs) have been developed. However, reporting
spontaneous or small ΔV m from neuronal ramifications has been challenging, in part due
to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we
demonstrate the use of water soluble VSD, ANNINE-6plus, with laser-scanning microscopy
to optically record ΔV m in cultured neurons. We show that the sensitivity (>10% of flu-
orescence change for 100 mV depolarization) and time response (sub millisecond) of the
dye allows the robust detection of action potentials (APs) even without averaging, allowing
the measurement of spontaneous neuronal firing patterns. In addition, we show that back-
propagating APs can be recorded, along distinct dendritic sites and within dendritic spines.
Importantly, our approach does not induce any detectable phototoxic effect on cultured
neurons.This optophysiological approach provides a simple, minimally invasive, and versa-
tile optical method to measure electrical activity in cultured neurons with high temporal
(ms) resolution and high spatial (μm) resolution.
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Communication between neurons is mediated by local and tran-
sient modifications in membrane potential (V m). These variations
in V m are highly regulated in space, time, and amplitude through-
out neuronal arbors. Therefore, understanding the rules governing
neuronal communication entails to monitor electrical activity with
high spatial and temporal resolution. The task is not simple given
the speed and diversity of electrical signaling coupled to the com-
plexity, dimensions, and fragility of neuronal structures. The ideal
approach requires millisecond, micrometer, and millivolt resolu-
tions, without inducing damage to cells under investigation. Clas-
sical electrophysiological methods provide the necessary temporal
and amplitude resolutions, but lack sufficient spatial resolution,
due to limited access to small neuronal compartments, such as
fine dendrites and synapses. Optical methods based on fluorescent
voltage-sensitive dyes (VSDs) are being improved to achieve opti-
mal spatial, temporal, and amplitude resolutions of changes in V m

(ΔV m). However, the generally low sensitivity of available VSDs
has limited resolution of fast ΔV m in fine dendrites or dendritic
spines. Therefore, optical measurements with VSDs have largely
been exploited for monitoring activity at the circuit level (Peterka
et al., 2011). To circumvent sensitivity limitations for neuronal res-
olution of V m, optical measurements are generally averaged over

many trials. This averaging strategy can however exacerbate pho-
todamage, which is already a concern for several VSDs (Grinvald
et al., 1981; Antic and Zecevic, 1995; Wu et al., 1999; Zhou et al.,
2007). Similarly, second harmonic generation (SHG) microscopy,
which has been used to record membrane potentials (Dombeck
et al., 2004, 2005) at soma and in spines (Nuriya et al., 2006), has
been shown to induce significant photodamage (Sacconi et al.,
2006; Jiang and Yuste, 2008).

CCD camera-based approaches are generally ideal for circuit
level investigations. For neuronal and synaptic resolution of fast
ΔV m, the sufficiently fast cameras sacrifice on the spatial resolu-
tion (and vice-versa; Djurisic et al., 2004; Holthoff et al., 2010).
Laser-scanning systems are limited in speed for generating a full
neuron image, but are ideal, with the line-scanning mode, for
sampling small compartments at high speed and minimizing
photodamage by illuminating only a tiny fraction of the neuron
under investigation. This results in a point-recording technique for
which, in contrast to classical electrophysiology, the point can be
moved all across the dendritic or axonal arborization of neurons.
Optical approaches also ought to be minimally invasive and thus
should preferably not depend on intracellular perfusion of VSDs.
This can be achieved with genetically encoded V m sensors, which
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have been tremendously improved for circuit level measurements
(Akemann et al., 2010), but not yet for neuronal resolution of fast
ΔV m, such as an action potential (AP). The challenge of optical
imaging of ΔV m in brain slices is greater than in cultured neurons,
because of light scattering through thicker sample. While dissoci-
ated neurons do not provide a good model for specific circuitry,
they offer many advantages for linking molecular manipulations
with physiological properties of the neurons and synapses. We
therefore set out to develop a line-scanning optical approach aimed
at measuring spontaneous fast electrical activity at neuronal and
spine resolution with minimal invasiveness and photodamage, in
cultured hippocampal neurons. We examined the recently synthe-
sized water soluble fluorescent VSD, ANNINE-6plus (Fromherz
et al., 2008), as a suitable probe for this application. We show that
line-scanning measurements of ANNINE-6plus, passively intro-
duced into neuronal membranes via brief incubation, can readily
resolve individual APs in the soma, dendrites, and even spines,
without photodamage or any impact on the electrophysiological
properties of the investigated neuron. It can resolve low amplitude
depolarization (down to 4 mV) with averaging. Importantly, the
high signal to noise ratio observed allows APs to be resolved with
single measurements (no averaging) in the soma. These critical
features allowed us to optically record, for prolonged periods of
time, the spontaneous firing patterns of individual neurons before
and after pharmacological treatments. Our study thus provides a
simple approach to non-invasively study spontaneous ΔV m with
high spatial and temporal resolutions in cultured neurons.

RESULTS
ANNINE-6PLUS LABELING AND IMAGING
To label dissociated hippocampal neurons with ANNINE-6plus,
we incubated a coverslip for only 5 min with 14 μM of the
dye, followed by a brief washing period of 10 min. Examples of
ANNINE-6plus labeling of hippocampal neurons, obtained by
laser-scanning microscopy with a Zeiss LSM510, are presented
in Figure 1. Excitation at 458 nm, with low illumination power
(∼15 μW at the sample) leads to a strong fluorescent signal
(Figure 1A). The insertion of the dye specifically into the plasma
membrane results in highly contrasted images with dark cytosols
and bright membranes. Two hours after the initial labeling, we did
not observe any internalization of the dye (Figure 1B). Thus, this
rapid, simple, and robust bath labeling approach is straightforward
with dissociated neurons in culture. To resolve better the processes
of a single neuron, we tested whether it was possible to label indi-
vidual neurons. We first tried via patch clamping, with the dye in
the patch pipette. Surprisingly, the dye did not penetrate into the
cell, even though other dyes, such as Alexa594 filled the neurons
normally (not shown). We reasoned that the solubility of the dye
in the intracellular solution was not sufficient, leading to small
crystals that plugged the patch pipette. We therefore tested “puff-
ing” the dye from a patch pipette (of slightly larger hole, i.e., low
resistance of 2–3 MΩ) brought close to the soma. Within seconds
after a few puffs, the soma of the neuron was brightly labeled. The
lipophilic nature of the dye allowed it to diffuse along the dendritic
tree (Figure 1C), revealing fine distal structures including den-
dritic spines (Figure 1C inset). This single-cell labeling method,
which is less invasive than through whole-cell patch pipette, should

be advantageous for making measurements in subcellular regions.
For the remainder of this study however, we used the bath incu-
bation method, in order to assess the potentials and limits of this
dye for optical measurements of ΔV m.

To select the optimal wavelengths for ΔV m measurements, we
measured ANNINE-6plus absorbance between 200 and 650 nm
in a spectrophotometer in vitro. The normalized absorption spec-
trum of the dye, measured in water (Figure 1D, left) shows a
strong absorption band centered at 295 nm (S0–S2 electronic
transition) and a less intense one (intensity ratio 3:1) around
436 nm (S0–S1 transition; Fromherz et al., 2008). We next mea-
sured the emission spectrum of the dye in neurons using a META
spectral detector on the Zeiss LSM510. The fluorescence inten-
sity peaked around 550–580 nm (Figure 1D right). Kuhn and
Fromherz (2003) showed that the voltage sensitivity of the dye
is based on a voltage-dependent spectral change (blue shift of
absorption and emission spectra upon depolarization) due to mol-
ecular Stark effect. In addition, they showed that excitation in the
red part of the absorption spectrum results in a dramatic increase
in the sensitivity of measurements (Kuhn et al., 2004). Accord-
ingly, the dye was excited at 514 nm for ΔV m measurements,
while fluorescence was detected through a long pass emission
filter (LP 560). Meanwhile, to generate images of labeled cells,
we used a 458-nm laser line for excitation and a LP560 emission
filter.

OPTICAL RECORDING OF MEMBRANE POTENTIALS
To test the sensitivity of ANNINE-6plus for ΔV m optical record-
ings, we imposed membrane potential steps to patch-clamped
neurons and recorded synchronously changes in fluorescence
(ΔF) along a single line positioned onto the plasma membrane
(Figure 2A inset, red line). As illustrated in the upper part of
Figure 2A, the stimulation protocol consisted in a ramp of 14
voltage steps ranging from −40 to +100 mV. Each step, of 10 mV
increments, lasted 30 ms while the time interval between each step
was set to 20 ms. The total duration of a single sweep was 1 s and
the line was scanned at a frequency of 2 kHz. A typical image
from 20 averaged sweeps is presented in Figure 2A middle. Bright
stripes stand for gain in fluorescence due to hyperpolarization of
the membrane, while dark stripes represent the loss of ANNINE-
6plus fluorescent signal due to induced depolarization. From this
image, the fluorescence time profile was extracted (Figure 2A lower
part). Traces were not corrected for photobleaching. Figure 2B
shows the relationship between the amplitude of ANNINE-6plus
fluorescence decrease and the amplitude of imposed membrane
potential. The VSD fluorescence intensity decreases exponentially
with increasing voltage steps (plain line in Figure 2B). Fitting an
exponential function to the sensitivity curve leads to a voltage sen-
sitivity of 10.1% for 100 mV depolarization (n = 5 cells). These
results indicate that ANNINE-6plus fluorescence can report rapid
ΔV m with sensitivity comparable to the most prevalent VSDs
(Dombeck et al., 2005).

To examine whether ANNINE-6plus can report smaller ampli-
tude ΔV m, we generated a ramp of five voltage steps (10 ms
duration −2 mV increments) resulting in a depolarization ranging
from 2 to 10 mV. Lower trace in Figure 2C illustrates the stimula-
tion protocol while the upper trace is the optical readout (30 and
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FIGURE 1 | Labeling and imaging ANNINE-6plus voltage-sensitive

dye in cultured hippocampal neurons. (A) Extracellular
labeling (14 μM ANNINE-6plus in regular extracellular solution for
5 min) leads to a strong fluorescence signal (excitation at 458 nm).
Scale bar 10 μm. (B) Two hours after the initial labeling, there is no
internalization of the dye allowing performing experiments over long
periods of time. Scale bar 10 μm. (C) Unicellular labeling by direct application
(puffing from 2 MΩ patch pipette) of ANNINE-6plus dye to the plasma

membrane. The lipophilic dye diffuses in the membrane throughout the
neuron to label its processes. Image taken 10 min after puffing the dye. Scale
bar 10 μm. Inset, the contrast is sufficient to detect a single dendritic spine.
Scale bar 2 μm. (D) Normalized absorption spectrum (left) of the dye
dissolved in water (1 mM; the arrow points to 458 nm, wavelength used for
morphological imaging, while arrowhead points to 514 nm, wavelength used
for voltage measurements), and emission spectrum (right) of ANNINE-6plus
in neurons. Scale bar 10 μm.

100 single trials were averaged). The results indicate that the dye
can report changes in the range of 4 mV.

We next examined whether the response time in ANNINE-
6plus ΔF was sufficiently rapid to resolve an AP. We elicited three
APs, separated by 70 ms, via current injection (1 nA, 2 ms) into
a current-clamped neuron while scanning a line on the soma.
Figure 2D shows that the ANNINE-6plus ΔF followed the elec-
trophysiological profile (upper trace) of ∼100 mV APs, even with
single trials (S/N ∼3, middle trace), though the S/N was better
(∼5) with averaging of five trials (bottom trace). These results
represent one of the few reported examples of single AP resolution
with a VSD without averaging.

EVALUATING PHOTOTOXICITY INDUCED BY ANNINE-6PLUS-BASED
ΔV M OPTICAL MEASUREMENTS
While the results above are very encouraging with respect to the
potential of ANNINE-6plus to optically report rapid and small
ΔV m with moderate to no need for averaging for AP measure-
ments, it was important to assess whether any phototoxicity could
be induced in the process. We therefore monitored several elec-
trophysiological parameters from neurons in which optical mea-
surements were performed. These parameters were the membrane
input resistance (Rinput), the pipette access resistance (Raccess), and
the membrane resting potential (V rm). Between each single sweep
of the stimulation protocol illustrated in Figure 2A, a test pulse
was imposed to the investigated neuron, resulting in a series of 21

test pulses (30 ms, 10 mV) separated by a time interval of 5 s. No
distortion in the current dynamics appeared throughout the 21
consecutive stimuli, suggesting that both the electrical properties
of the investigated neuron and the quality of the patch did not
suffer from repetitive laser illumination (Figure 3A1). To further
quantify this observation, we extracted Rinput and Raccess from
these current traces as described in (Sakman and Neher, 1995).
Raccess and Rinput were averaged over the first and last seven test
pulses. Resulting means were averaged over five different experi-
ments and are presented in Figures 3A2,A3 (first third in black,
last in gray). Between the first seven traces (first third) and last
seven traces (last third), we found no statistically significant dif-
ferences in the input resistance nor in the pipette access resistance.
In addition, we did not observe morphological changes upon V m

optical measurements. Yet, to evaluate the impact of ΔV m imaging
on resting membrane potential, we measured this latter parame-
ter throughout the stimulation protocol used in Figure 2D. Cells
were patch-clamped in current clamp mode and V rm was aver-
aged over the first 10 ms of each single sweep (i.e., during resting
state). For each cell, the complete stimulation protocol consisted
in the repetition of five single sweeps with a 5-s time interval. No
change in V rm time course is a reliable indication of the absence
of photodamage during ΔV m optical detection (Figure 3B).

These results suggest minimal, if any, photodamage during the
optical measurements of V m with ANNINE-6plus. However, we
also wanted to verify whether the prior illumination at 458 nm
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FIGURE 2 | Optical recordings with ANNINE-6plus of action potentials

and low amplitude depolarizations. (A) Top Inset a typical line scanned
along the soma is illustrated in red. Scale bar 10 μm. Top: The stimulation
protocol consists in a ramp of 14 steps (30 ms) ranging from −40 to +100 mV
imposed in voltage clamp mode. Middle: Fluorescence detected in line scan
mode at the soma synchronously with stimulation protocol. Bottom: From this
image, the ANNINE-6plus fluorescent time profile is extracted. (B)

ANNINE-6plus fluorescence intensity changes upon amplitude of membrane
depolarization. (C) Low amplitude depolarizations (voltage ramps, 5
steps/10 ms, ranging from −60 to −50 mV) optically detected at the soma by
averaging 30 (top trace) and 100 (middle trace) single trials. (D) Top: APs
induced upon injection of 2 ms pulses of 1 nA in current-clamped neurons.
Middle: Optical detection of APs with single trial measurement (S/N ∼3).
Bottom: increased S/N (∼5) with averaging of five trials.

with the laser (for generating images) could cause any photodam-
age. We thus monitored V rm while illuminating the neurons con-
tinuously for 30 s at 458 nm (Figure 3C; pixel time of 3 μs, image
was 512 × 512 pixels). The resting membrane potential remained
constant for all neurons indicating no photodamage under these
illumination conditions. Then, to evaluate the impact of label-
ing on neuronal physiology, we compared the cell capacitance of
neurons labeled or not with ANNINE-6plus. Figure 3D indicates
no statistically significant difference between both groups. Finally,
we assessed whether the ANNINE-6plus imaging sessions had any
impact on the amplitude and time course of closely spaced APs.
Neurons were current-clamped and their electrical activities were
monitored during 30 s of continuous line scan imaging. Exam-
ples of V m recordings from three different neurons are presented
in Figure 3E1. For each AP detected in Figure 3E1, we extracted
the time decay τDecay (Figure 3E2 upper panel) and the ampli-
tude (Figure 3E2 lower panel). In Figure 3E3, we show that τDecay

and amplitude averaged over the first, second, and third period
of the total recording time show no statistically significant differ-
ence. We conclude from these experiments that ANNINE-6plus

has remarkably low, if any, phototoxicity, making it a very suitable
dye for measuring ΔV m in neurons.

OPTICAL MEASUREMENTS OF ACTIVE BACK-PROPAGATION OF ACTION
POTENTIALS ALONG DENDRITES
The superiority of optical techniques over classical electrophysiol-
ogy for recording membrane potentials lies in their ability to report
local V m transients. As an illustration of this capability, we used
ANNINE-6plus to image the back-propagation of APs along den-
drites. After labeling, two positions of interest were chosen along
a dendrite: position 1 in blue and 2 in red in Figure 4A (100 μm
apart in this example). We recorded ΔV m at each position subse-
quently during the injection of a 100 pA/50 ms pulse followed by a
300 pA/500 ms hyperpolarizing pulse. Figures 4B1,B2, upper pan-
els show the membrane potential recorded via the patch pipette.
Each trace is an average of 15 consecutive single trials for which two
APs are triggered with a millisecond time scale jitter between them
(Figures 4B1,B2 insets). Optical readouts of these stimulations are
presented in Figures 4B1,B2 lower panels. Blue traces correspond
to recordings from position 1 while red traces are from position 2.
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FIGURE 3 | Absence of detectable ANNINE-6plus-induced phototoxicity

during optical measurements of ΔVm. (A1) Series of 21 current recordings,
evoked by 21 test pulses (30 ms/10 mV) recorded between each single sweep
of the stimulation protocol illustrated in Figure 2A. The time interval between
each trace is 5 s on average and each line scan lasts for 1 s. (A2) Comparison
of R input and (A3) Raccess averaged over the first (black) and last (gray) third of
the total length of the stimulation protocol (n = 5 cells; Mann Whitney test:
p > 0.1 for R input and Raccess). (B) V rm time evolution during optical detection of
APs illustrated in Figure 2D (n = 6 cells). (C) Time course of V rm during 30 s of
continuous illumination at 458 nm laser excitation (n = 7 cells). (D) Cell
capacitance of cells labeled or not with ANNINE-6plus (n = 10 cells for each

group; Mann Whitney test: p > 0.1). Data show mean ± SEM. n.s.: p > 0.1. (E)

Characterization of AP time courses and amplitudes during V m optical
measurements. (E1) Examples of electrical recordings of spontaneous activity
during V m optical measurements in line scan mode from three neurons. (E2)

Quantification of time constant τDecay (upper panel) and amplitude (lower
panel) for each AP detected in (E1). (E3) Decay time constant and amplitude
averaged over the first, second, and third third of the total recording time
show no statistically significant difference (n = 3 cells and between 50 and 60
APs for each group; ANOVA test: p > 0.1). Data show mean ± SEM. n.s.:
p > 0.1. These results indicate no detectable impact of ANNINE-6plus-based
V m optical measurements on the neuronal health.

As membrane potentials recorded via the patch pipette at the cell
body are not dependent on the position of optical recordings, both
traces in Figures 4B1,B2 upper panels are similar. By contrast,
local optical measurements are different between position 1 and 2
(Figures 4B1,B2 lower panels). Indeed, the difference between the
optically measured baseline V m (empty arrows in Figures 4B1,B2

lower panels) and the V m at the AP threshold (filled arrows in
Figures 4B1,B2 lower panels) as well as the hyperpolarizing pulse
amplitude are both attenuated with distance from the soma. To
quantify this attenuation, we subtracted the averaged time pro-
file optically detected at the position 2 (Figure 4B2 lower panel)
from the one measured at position 1 (Figure 4B1 lower panel)
resulting in the gray trace presented in Figure 4C upper panel.
By superimposing the optical measurement with the difference
between the two (Figure 4C lower panel), it reveals that the AP
itself did not attenuate between the two positions (AP is indicated

with arrowhead) consistent with an active mode of propagation for
the AP, but not for the propagation of the patch pipette imposed
potential.

OPTICAL MEASUREMENT OF BACK-PROPAGATED ACTION POTENTIALS
INVADING A DENDRITIC SPINE
Line-scanning with LSM should provide the advantage of measur-
ing ΔV m in small compartments such as dendritic spines. With
dissociated neuronal cultures, two labeling methods are possible
for spine measurements: (i) the single-cell labeling described in
Figure 1 or (ii) the same bath application used in this study, but
with the prior transfection of a fluorescent protein highlighting
the morphology of the cell. Because the transfection efficiency is
very low in cultured neurons, the latter approach permits the dis-
crimination of the entire arborization of single neurons, sparsely
distributed in the culture. In Figure 5, we transfected neurons
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FIGURE 4 | Optical measurements of back-propagating action

potentials along a dendrite. (A) Fluorescence image of
ANNINE-6plus labeled neuron. Somatic optical recording is performed
along line 1 (blue) while dendritic one is performed along the line 2 (red).
Scale bar is 10 μm. (B) Electrophysiological (top) and optophysiological
(bottom) recordings at the soma (blue) and along a dendrite (red). (B1,B2) Top:
Membrane potential time course recorded via patch pipette upon injection of
a depolarizing pulse (+100 pA/50 ms) followed by a hyperpolarizing one
(−300 pA for 500 ms). Traces result from an average of 15 single trials. The

amplitude of potential between arrowheads represents the charge needed to
reach the spiking threshold. Inset shows each one of the 15 trials. (B1,B2)

bottom: Optical measurement of V m at positions 1 and 2. Empty arrows
indicate the optical readout of the resting membrane potential while filled
arrows point to the optical readout of the initial charge of the plasma
membrane. (C) Top: Difference time profile in gray obtained from the
subtraction of dendritic optical recording [red (B2)] from somatic one [blue
(B1)]. Bottom: Difference time profile (gray) superimposed with somatic
optical recording (blue).

with the cytosolic fluorescent protein Cerulean (Figure 5A). The
following day, these neurons were labeled with ANNINE-6plus
through bath application as described above. Individual spines
detected with Cerulean fluorescence (Figure 5A) could then be
scanned at 514 nm to measure ANNINE-6plus ΔF, during a stim-
ulation protocol (two pulses, 1 nA, 2 ms) leading to the invasion of
two APs in the spine (Figure 5). The average of 10 single trials were
sufficient to report optically the APs invading the spine with S/N of
∼3. One of the advantages of transfecting Cerulean to reveal spines
is that it allowed us to ensure that deflections in the fluorescence
time profile (blue trace) were indeed caused by transient ΔV m in
the spine, by monitoring also Cerulean fluorescence (Figure 5B
black trace). These results indicate that optical ΔV m measure-
ments with ANNINE-6plus and line-scanning microscopy can
report AP invasion in spines with low averaging.

OPTICAL MEASUREMENTS OF SPONTANEOUS ACTION POTENTIALS
AND ASSESSMENT OF FIRING PATTERNS UPON GABAERGIC
DISINHIBITION
As demonstrated in Figure 2, the sensitivity of our approach is
such that a single sweep is sufficient to detect an AP with S/N
ratio around 3. This has two major consequences: (1) little or
no averaging is needed to monitor ΔV m, preventing phototox-
icity, and limiting the duration of the measurements and (2) it
should be possible to monitor spontaneous electrical activity of
the neurons. To demonstrate the latter advantage, we performed

long-lasting line-scanning over the soma of neurons (upper pan-
els in Figures 6A–C shows an example of such measurement)
before and after inhibition of GABAergic and glycinergic trans-
mission, with simultaneous patch-clamp recording (lower panels
in Figures 6A–C). The optical measurement faithfully reported
AP discharges (Figure 6A). Next, neurons were exposed to Ringer
supplemented with bicuculline (20 μM) and strychnine (2 μM)
triggering disinhibition in the neuronal network and leading to a
robust increase of the spiking frequency, which the optical record-
ing could also report (Figure 6B). After 5 min of disinhibition,
hippocampal neurons began to fire APs in burst mode (Figure 6C),
which are optically reported according to the electrical activity.
To quantify the faithfulness of the optical measure, we present
two different analyses. The first one is intended to evaluate the
proportion of events that are indeed optically detected, using a
cumulative probability plot of inter-events intervals for popula-
tion of events during initial disinhibition (Figure 6B lower panel),
recorded either via the patch pipette or optically (Figure 6D,
compare “electrophysiology” vs. “optophysiology” traces). A two-
sample Kolmogorov–Smirnov statistical test indicates that both
populations are similar at a 96% confidence interval suggesting a
high reliability of the optical approach to detect spontaneous APs.
In the second analysis, we address the reliability of the amplitudes
of optically detected events during the initial phase of disinhibi-
tion (Figure 6B lower panel) with a correlation plot between event
amplitudes detected with light vs. with the pipette (Figure 6E
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FIGURE 5 | Optical monitoring of back-propagating action

potentials invading a dendritic spine. (A) Cultured hippocampal
neuron expressing cytosolic Cerulean (black) as a morphological
dye and labeled with ANNINE-6plus (green). Scale bar 10 μm. Inset
magnified image of the spine labeled with ANNINE-6plus (top)
and Cerulean (bottom). Scale bars 1 μm. Lines placed on the spine

indicate the position of the line scanned. (B) Top: Two APs elicited by injection
of 2 ms 1 nA currents. Bottom optical recordings of the subsequent
back-propagated APs in the spine. The green trace is the ANNINE-6plus
fluorescence time profile while the black one is for Cerulean. 10 trials were
averaged. Representative example from measurements in nine
different spines.

left). The amplitude baseline was determined as the amplitude
averaged over 2 ms preceding the event. A linear fitting on the
ensemble of points yielded a slope of 12% for 100 mV depolar-
ization (Figure 6E left plain line – Pearson’s coefficient R = 0.47).
Interestingly, this parameter is in excellent agreement with the sen-
sitivity measured in a different way and presented in Figure 2B.
However, as seen in Figure 6E, the variance of the distribution of
amplitudes is large and in order to further characterize the spread
of optically detected amplitudes, we plotted, for each point in
Figure 6E the residual of the linear fit. The SD of this population
of residuals is 1.3% (Figure 6E right). This suggests that this single
trial approach is more appropriate for measuring firing frequen-
cies (i.e., to count the number of APs over time) than to resolve
precisely AP amplitudes and time courses.

DISCUSSION
To decipher the rules governing neuronal communication via
changes in membrane potentials throughout neuronal arbors,
we need a tool capable of measuring ΔV m locally (down to a
single dendritic spine), with a millisecond time scale temporal
resolution and sufficiently sensitive to monitor spontaneous activ-
ity (with no averaging) or low amplitude synaptic potentials. In
addition, the capacity to make local ΔV m measurements should
ideally be on time scales expanding over three orders of magni-
tude: millisecond time scale to resolve a single AP and second
to minute time scale to record spontaneous activity. Finally, the
approach should be minimally invasive. During the last decades,
many different optical approaches have been developed to address
this issue (for review see Peterka et al., 2011). However, none of
these approaches are versatile enough to fulfill all the pre-cited
requirements. First, concerning the ability to record membrane
potentials in small compartments, there are, to our knowledge,
only three studies reporting optical detection of ΔV m in dendritic
spines. The first is by Nuriya et al. (2006) using SHG microscopy.
This approach is based on two-photon voltage-dependent light

scattering properties of an SHG reporter (FM4-64) bound to
plasma membrane. This imaging technique involves high intensity
two-photon illumination. Although the sensitivity of recordings is
relatively high (−10%/100 mV), the efficiency of this non-linear
process is weak resulting in a low flux of scattered photons which,
in turn, leads to a poor S/N ratio. As a consequence, a large number
of single trials are needed to be able to detect a back-propagating
AP invading a dendritic spine (160 to 280 single trials need to be
averaged). The large number of single trials, the high power of laser
illumination (ranging from 10 to 50 mW at the sample) together
with the fact that SHG always comes with two-photon absorption
makes this technical approach highly phototoxic for investigated
cells (Sacconi et al., 2006; Jiang and Yuste, 2008). Palmer and Stu-
art (2009) reported the optical detection of ΔV m in dendritic
spines from brain slice using the fluorescent VSD JPW3028. How-
ever, due to the low sensitivity of the dye [1–6%/100 mV (Djurisic
et al., 2004)], and the slice configuration, a large number of single
trials (>120 per spine) had to be averaged to reach a sufficient S/N
ratio for voltage measurements. The fact that many single trials
are needed to detect local V m implies more illumination time that
may results in more phototoxic effects. In addition, repetitive stim-
ulations can occasionally induce plasticity, which can complicate
measurements that require much averaging. Finally, Holthoff et al.
(2010) were able, for the first time, to image a back-propagated APs
invading a dendritic spine in a single trial. The high sensitivity of
measurements they performed is due to technical improvements
of their microscope and to the use of the voltage-sensitive dye
JPW3028. Yet, major drawbacks of this technique are the complex-
ity of the imaging setup and the fact that JPW3028 is known to
induce phototoxicity when illuminated for more than 50–100 ms
(Djurisic et al., 2004), preventing its use for monitoring neuronal
spontaneous activity occurring in the second to minute time scale.

Concerning this latter point, many examples of neuronal spon-
taneous activity optical recordings exist in the literature (Petersen
et al., 2003; Kuhn et al., 2008; Brown et al., 2009; Ayzenshtat
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FIGURE 6 | Optical recording of spontaneous neuronal firing patterns.

(A–C) Upper traces: optical recordings, lower traces: electrical
recordings. (A) Electrical activity under regular extracellular solution (B) after
inhibition of inhibitory inputs for 5 min (Bicuculline 10 μM) (C) after inhibition
of inhibitory inputs for 15 min. Neuronal discharges are synchronized and
show bursting pattern. (D) Cumulative probability plot of inter-events intervals
[AP from (B)] detected either optically (optophysiology) or with the patch

pipette (electrophysiology). Both populations are equally distributed.
(Two-sample Kolmogorov−Smirnov: test p > 0.96). (E) Left Correlation plot
between amplitudes of APs from (B) detected via the pipette and
corresponding change in ANNINE-6plus fluorescence. A linear function (black
trace) is fitted to the ensemble of point and yields a slope of 12.2% for
100 mV depolarization. Right: the distribution of residuals coming from the fit
shows a SD of 1.3%.

et al., 2010; Vignali et al., 2010). In these examples, an exogenous
fluorescent voltage reporter is used to label the preparation. A dif-
ferent approach, based on the use of voltage-sensitive fluorescent
proteins has recently been demonstrated to be able to report faith-
fully for neuronal activity in vivo (Akemann et al., 2010; Knopfel
et al., 2010). Although, all of these approaches have been extremely
useful in reporting global activity of neuronal networks, particu-
larly in live animals, none of them afford single-cell resolution
together with a sufficiently high temporal resolution to resolve
APs.

Here we demonstrated an optical approach based on the use of
the fluorescent voltage-sensitive dye ANNINE-6plus that is able to
report local (e.g., dendritic spines), fast (millisecond time scale),
and low amplitude (few millivolts) membrane potential variations
in mammalian cultured neurons without inducing photodamage.
The sensitivity of ΔV m optical measurements (∼−10%/100 mV)
is amongst the largest reported for VSDs used in mammalian
neurons (Fromherz et al., 2008; Bradley et al., 2009). Then, it
was possible to record APs in a single trial with a S/N of about
3. In addition, we could monitor optically low amplitude depo-
larization (ΔV m = 10 mV) without extensive averaging (n = 30;
S/N = 3) making this approach potentially suitable for recording
physiological post-synaptic potentials. In fact, the low averaging
necessary for optical recordings contributes to lower the intensity
and duration of laser illumination. As a result, cellular physio-
logical parameters (membrane resistance and resting membrane
potential) of cultured neurons, whose ΔV m was measured, did
not change significantly during experiments suggesting that no
photodamage was induced during the optical recordings. Next,
we demonstrated that our optical approach allows for monitor-
ing membrane potentials in small neuronal compartments, i.e.,
along dendrites and within dendritic spines. Since the pioneering
work of Stuart and Sakmann (1994) it is generally accepted that

APs can propagate actively along a dendritic tree. This phenom-
enon, although highly heterogeneous within different neuronal
populations and even within a single neuron, is thought to play
a central role in spike-timing-dependent plasticity (Caporale and
Dan, 2008; Froemke et al., 2010a,b; Grewe et al., 2010; Lisman and
Spruston, 2010). The optical detection of back-propagated APs
with ANNINE-6plus allowed us to observe such an active prop-
agation, demonstrating the potential of our approach to address
physiological questions for which classical electrophysiology is not
ideal. In addition, we show that it is possible to record a back-
propagated AP invading a spine without extensive averaging (10
trials required to reach a S/N ratio of about 3). This ability to mea-
sure a voltage change within a single dendritic spine (micrometer
scale) opens the doors to the recording of post-synaptic poten-
tials. Finally, our ability to record APs in a single trial has allowed
recording of neuronal spontaneous activity of single cells for min-
utes with a millisecond time scale resolution. We were able, for the
first time to our knowledge, to monitor the modulation of spiking
frequency under normal and disinhibiting conditions. It has to be
noted that the implementation of this technique in a lab is particu-
larly straightforward, as it only requires a standard laser-scanning
microscope, with a 514-nm laser line. It should also be possible
to use CCD-based wide-field imaging with ANNINE-6plus, pro-
viding a sufficiently fast camera to resolve APs. Our preliminary
results (Figure A1 in Appendix) indicate that it is indeed possible,
however our lack of a sufficiently fast camera (sampling ≥2 kHz)
could not permit AP resolution.

It is important to reiterate that all our experiments have been
performed in dissociated cultured neurons, which provides signif-
icant advantages over brain slice in term of S/N, thereby reducing
the need for averaging and phototoxicity. As we showed, this
approach can be easily combined with transfection methods,
which can be used to introduce shRNAs, dominant-negative or
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positive mutations, or CFP-tagged proteins for trafficking assays,
thereby affording a useful model to link molecular changes with
neuronal function. On the other hand, this preparation suffers
from having a meaningful circuitry, as present in brain slice prepa-
ration. Could ANNINE-6plus be used in a brain slice? Our results
in culture should encourage others to try it. One major limitation
is the fact that we have not been able to load it via whole-cell patch
pipette, the approach of choice for obtaining contrast in thicker tis-
sue. Single-cell labeling might be possible via the puffing of the dye
on exposed somata, as we were able to do in dissociated neurons. A
similar approach has been used for DiI/DiO labeling in slices (Gan
et al., 2000; O’brien and Lummis, 2006). This approach would
have the benefit of not labeling the intracellular membranes (i.e.,
membranes not implicated in electrical conduction), hence favor-
ing S/N. The next requirement for the slice configuration would
be two-photon absorption. Fromherz et al. (2008) in fact showed
high voltage sensitivity of ANNINE-6plus under two-photon exci-
tation (Fromherz et al., 2008). Future work is therefore needed to
determine whether this label will be usable in brain slice.

The simple optical approach to record membrane potentials in
dendritic spines with the VSD ANNINE-6plus in cultured neurons
might contribute to address long-standing questions of neuro-
science concerning neuronal communication and plasticity with
minimal photodamage. It might even allow direct observation
of synaptic potentials in dendritic spines. The ease with which
spiking frequencies with single AP resolution in single cultured
neuron could be measured without the need of a patch pipette
should stimulate studies on the cellular and molecular regulation
of neuronal excitability. As this new approach is simple to imple-
ment, it may become a standard and widely used technique by
neuroscientists.

MATERIALS AND METHODS
NEURONAL CULTURES AND TRANSFECTION
Details of the preparation of rat hippocampal cultures have already
been described (Hudmon et al., 2005). Briefly, rat hippocampi
were dissected out of postnatal day 1 (P1) rats and cells were
dissociated both enzymatically and mechanically. After dissocia-
tion cells were washed, centrifuged and plated on poly-d-lysine-
coated Aclar coverslips at low density (50000 cells/ml). Growth
media (1 ml/well) consisted of Neurobasal and B27, supplemented
with penicillin/streptomycin (50 U/ml; 50 μg/ml), and 0.5 mM
l-glutamax (Invitrogen). Cytosine arabinofuranoside (ARA-C;
5 μM; sigma) was added 48 h after plating to reduce the number of
glial cells. After 4 days in culture and twice a week thereon, half of
the growth medium was replaced with medium without ARA-C.
Neurons were cultured between 11 and 14 DIV before use. For
voltage measurements in spines, neurons were transfected with
cerulean plasmid using Lipofectamine 2000 (Invitrogen) for 5 h
(as described in Hudmon et al., 2005).

ANNINE-6PLUS LABELING
ANNINE-6plus was purchased from Sensitive Farbstoffe GBR
(Münich, Germany). The labeling solution consisted of standard
extracellular solution as described thereafter, supplemented with
the dye at a final concentration of 14 μM. It was prepared from
stock solutions of ANNINE-6plus concentrated at 700 μM in pure

water and stocked at −30˚C. Labeling was achieved by immersing
neurons in the labeling solution for 5 min, followed by a washing
period of 10 min, prior to imaging. Labeling and imaging were
performed at room temperature.

ELECTROPHYSIOLOGY
Coverslips were then transferred to the recording chamber and
continually superfused with regular extracellular solution contain-
ing (in mM):130 NaCl, 10 Na-HEPES, 10 d-Glucose, 1.2 CaCl2,
1 MgCl2, 3 KCl. The pH was adjusted to 7.4 with HCl and the
osmolarity was around 260 mOsmol/l. Whole-cell patch-clamp
recordings were obtained using an EPC 9 amplifier (HEKA) and
7–8 MΩ pipettes filled with intracellular solution containing (in
mM) 130 K-Gluconate, 10 K-HEPES, 3 NaCl, 4 Mg-ATP, 0.4 Na-
GTP, 10 phosphocreatine disodium salt. The pH was adjusted to
7.4 with KOH and the osmolarity was around 240 mOsmol/l. The
software PULSE from HEKA was used for acquisition.

MEASUREMENTS OF MEMBRANE POTENTIAL VARIATIONS
Measurements were performed using a Zeiss LSM510 META-
Axioskop FS2 Plus confocal microscope using a 63× water immer-
sion objective (Plan-APOCHROMAT 63× W NA = 1 IR) with a
working distance of 2.1 mm. Under depolarizing conditions, the
absorption and emission spectra of ANNINE-6plus (Kuhn et al.,
2004; Zhou et al., 2007; Fromherz et al., 2008) are blue shifted.
Thus, to maximize detection of membrane voltage change, we
excited the dye with a laser line in the red tail of the absorption
spectrum (514 nm, argon laser), where the absorption coefficient
is reduced. Because the number of fluorescence photons is low,
we collected as much photons as possible using a long pass filter
(LP 560 nm) and fully opened the pinhole. In contrast, to generate
images of the ANNINE-6plus labeled neurons, we excited the dye
at 458 nm (Fromherz et al., 2008). The average power of the exci-
tation beam at the sample either at 458 or 514 nm never exceeded
70 μW. For visualization of the morphological dye Cerulean, exci-
tation was set at 458 nm while fluorescence was collected between
480 and 520 nm. In this spectral window, there is no contamination
from ANNINE-6plus fluorescence. Measurements of ANNINE-
6plus fluorescence during membrane voltage fluctuations were
carried out in line-scanning mode, with a pixel dwell time of 4.5 μs
and ∼3 μm long lines, composed of 128 pixels, totaling 0.576 ms
of acquisition time per line. Thus, a 500-ms sampling time (single
trial) consisted in 800 lines recorded in fly-back mode. Except for
Figure 6, each sampling trial was synchronized with a stimulation
protocol: either current injection in current clamp mode (1 nA for
2 ms) for AP elicitation or voltage ramp in voltage clamp mode
(30 ms steps ranging from −40 to +100 mV with 10 mV incre-
ments) for ΔF vs. ΔV quantification. The synchronization was
achieved thanks to a TTL pulse triggered from the LSM 510 soft-
ware to the HEKA amplifier. Each sampling trial was separated by
a 5-s interval.

In order to create fluorescence time profile from line scans,
the intensity of the 128 pixels forming a single line were averaged
resulting in an effective temporal resolution of the experiments
around 0.5 ms. Fluorescence time profiles are expressed as the
ΔF /F ratio vs. time; where ΔF /F = (F(t )–F)/F, F(t ) is the emit-
ted fluorescence at time t while F is the fluorescence under basal
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conditions (i.e., recorded at V m = −60 mV). Images were ana-
lyzed with ImageJ (National Institutes of Health, Bethesda, MD,
USA; http://rsb.info.nih.gov/ij) while data analysis and graphics
were performed with Igor Pro (WaveMetrics). Data were filtered
using a Savitzky–Golay smoothing filter (Order 5). This filter was
preferred to more conventional binomial smoothing because it is
known to preserve high frequencies.

ABSORPTION AND FLUORESCENCE SPECTRA
The absorption spectrum of ANNINE-6plus (1 mM in water) was
measured in vitro with a spectrophotometer HP model 8452A.
Emission spectrum of ANNINE-6plus was measured in hip-
pocampal neurons with the META spectral detector of the Zeiss
LSM510 confocal microscope with excitation at 458 nm (detection
ranges from 511 to 671 nm with ∼10 nm steps).

MEMBRANE INPUT RESISTANCE AND PIPETTE ACCESS RESISTANCE
MEASUREMENTS
We imposed a pulse test (30 ms, 10 mV) to voltage-clamped neu-
rons and recorded the induced current time profile. The ratio
between the amplitude of the voltage pulse and the recorded peak
current gives the access resistance of the patch pipette whereas the
ratio between the amplitude of the voltage pulse and the current
at the plateau gives the membrane input resistance of the neuron
under investigation.

CELL CAPACITANCE MEASUREMENTS
We imposed a pulse test (10 ms, 10 mV) to voltage-clamped
neurons, recorded the induced current time profile and fit a
bi-exponential function to it. This allows extracting two time con-
stants (t 1 and t 2) each one having its own amplitude (A1 and
A2). Then we defined an effective time constant τeff as the linear
combination of t 1 and t 2:

τeff = A1 × t1 + A2 × t2

Cell capacitance is defined as the ratio of τeff over the input
resistance Rin.

Capacitance = τeff
/

Rin
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APPENDIX

FIGURE A1 | Wide-field imaging of ANNINE-6plus labeled neurons.

(A) Cultured hippocampal neurons labeled with ANNINE-6plus and
captured with CCD camera (Photometrics, Cascade 512B, Roper
Scientific) on a Zeiss Axioskop FS2 Plus microscope using a 63×
water immersion objective (Plan-APOCHROMAT 63× W NA = 1 IR)
with a working distance of 2.1 mm (excitation filter: band pass
BP460/50, dichroic: FT510, emission filter: long pass LP515)
(B) Patch-clamped neuron from field in (A) imaged during a 100 mV
depolarizing pulse (band pass excitation filter: FF02-510/10-25; dichroic filter:

FF520-Di02-25 × 36; emission filter: BLP01-532R-25, SEMROCK), yielding a
decrease of ANNINE-6plus fluorescence on the neuronal membranes. Seven
ROIs are drawn [see plots in (C)]. Scale bars 10 μm. (C) Top: Stimulation
protocol of three pulses (50 ms, 100 mV) imposed in voltage clamp
configuration. Bottom: ANNINE-6plus fluorescence intensity changes over
time, measured in seven different ROIs identified in (B). The integration time
for each image was 5 ms with up to 100 consecutive frames and a 2 × 2
binning. Time series of images were synchronized with electrophysiology
setup through a TTL pulse.
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