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Abstract
Mosquitoes, which belong to diverse species, play a significant role in ecological sys-
tems and public health. The accurate identification (classification) of mosquito species
is essential for a comprehensive understanding of their ecological roles, behaviors, and
evolutionary patterns. While numerous studies have attempted to classify the mosquito
species based on images, the existing works still have limitations. Our research is
focused on vector mosquito classification based on deep ensemble transfer learning. Ini-
tially, we employed transfer learning via four pre-trained convolutional neural network
(CNN) models. Subsequently, we have proposed the TransembleNet (Transfer Learning-
based Ensemble Networks) approach, which is a novel method of generating ensem-
ble learning models using four different combinations of three transfer learning models.
All the experiments were done using the Nadam and Adam optimizers, and we have
also applied data augmentation techniques. Among the four ensemble models, Ensem-
ble Model 2 (composed of InceptionV3, VGG-16, and ResNet-50) performed the best.
It exhibits very high precision, recall, F1-score, and accuracy values on the “Mosquito
on Human Skin” dataset by Ong and Ahmed and the “Vector Mosquito” dataset by Park
et al. Our proposed method outperformed the state-of-the-art research works for both
datasets.

Introduction
Diptera, particularly mosquitoes, play a crucial role in transmitting different parasites
and pathogens, resulting in hundreds of millions of infections and around 750,000 deaths
globally annually [1]. Mosquitoes are regarded as the number one “animal killer” and are
among the multiple medically important insect taxa. Recognizing mosquitoes as transmit-
ters of serious diseases like Zika virus, Dengue, malaria, yellow fever, West Nile virus, and
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Chikungunya is fundamental because these insects pose a serious threat to public health.
For example, Anopheles mosquitoes are immediate carriers of malaria, generating 219 mil-
lion cases worldwide and over 400,000 deaths yearly [2]. Aedes mosquitoes, which transmit
Dengue, impact 3.9 billion in 129 countries, with 96 million cases yearly, along with Zika
and Chikungunya [3]. Culex mosquitoes are responsible for West Nile, Japanese encephali-
tis, and lymphatic filariasis. For most diseases spread by mosquitoes, the major preventive
measure is still mosquito control because there are no specific vaccinations or medications
available [4].

Proper identification of mosquito species is necessary for the effective prevention and
management of mosquito-borne diseases. It provides important insights into breeding char-
acteristics and behavioral habits, laying the foundation for targeted prevention techniques [5].
Vector surveillance plays a vital role in evaluating data on mosquito abundance, distribu-
tion, and species composition. Despite improvements in vector control, mosquito-borne
diseases persist, with aspects such as climate change, insecticide resistance, and the emer-
gence of drug-resistant pathogens responsible for the challenge [6]. According to WHO,
harmful mosquito species are commonly found within the genera Aedes, Anopheles, and
Culex.

Automatic classification of species is necessary not just for mosquitoes but also for insects,
reasonable for various purposes such as environment monitoring, insect diagnostics, foren-
sics, vector epidemiology, etc. [7]. Previous approaches have operated different properties
of mosquitoes and insects for automated species classification, including 3D images, sound,
genomic data, etc. Traditional methods depending on the morphological characteristics of
mosquitoes are time-consuming, labor-intensive, and sensitive to uncertainties deriving from
genetic variability. While molecular identification methods are useful, they are costly and
require high technical proficiency, making them less accessible for widespread usage. The
existing demand for quick and intelligent mosquito species identification exceeds the capabili-
ties of these traditional methods.

Image-based systems have appeared as a promising approach, surrounding three key steps:
acquisition of 2D color images, feature extraction, and classification. However, these steps
have several challenges. Mosquitoes and insects exhibit broad variations in pose and deforma-
tion, in addition to traditional image variations, including scale, rotation, lighting, and clut-
tered backgrounds. Capturing images of wings in a restrained pose, which is a critical step in
the recognition procedure, is time-consuming and laborious. Moreover, the procedure risks
damaging wings and further appendages like legs [8].

Identifying mosquitoes is challenging due to their morphological similarities; while some
studies identify specific species, most focus on distinct species accessible from laboratory
colonies rather than environmental samples. Notably, the current computer vision tech-
niques for mosquito classification have been restrained to closed-set classification scenarios,
generally containing at most 17 species [5]. Moreover, considerable genetically detected but
formally undescribed species also complicate the landscape.

Recent advancements in Deep Convolutional Neural Networks (DCNNs) have show-
cased outstanding classification performance in various recognition tasks, spanning docu-
ment recognition, age and gender classification, galaxy morphology prediction, and vehicle
type classification, neurological disease detection, among others [9–11]. DCNN architec-
ture, described by multiple layers of non-linear operations, excels at capturing hierarchical
features, addressing the limitations of premature image-based recognition techniques. The
confluence of improved computing power, the wave in big data availability, and the growth
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of machine learning (ML) algorithms have propelled the quick development and applica-
tion of deep learning techniques in image classification tasks. CNN models, including LeNet-
5, AlexNet, GoogLeNet, Visual Geometry Group Network (VGGNet), Residual Network
(ResNet), SqueezeNet, etc., have successively been operated for automatic mosquito recogni-
tion using images. Consequently, these methods help capture the complicated relationships
between pixel points effectively.

However, the existing work on image-based mosquito species classification has some
limitations, such as the fact that most authors used limited image samples. There are 3,500
mosquito species, and 90 species are responsible for transmitting diseases [12]. Regardless,
most of the previous research worked on a very limited number of classes, and although there
are few works done on multiple species, they need to be paid attention to improve. Addressing
these challenges is essential for raising the accuracy and dependability of mosquito classifica-
tion through deep learning methodologies.

Motivation, objective, and contributions
Mosquitoes cause serious illness, and a large number of people are affected by them. These ill-
nesses are more common in areas with poor hygiene, high population density, and restricted
access to medical facilities. To fully comprehend the diverse ecological roles, behaviors, and—
most importantly—the potential for mosquito species to transmit disease, one must possess a
thorough understanding of these species. Scientific advancement, ecological understanding,
and efficient disease control all depend on the classification of mosquitoes. It is essential for
identifying specific interventions, keeping an eye on disease vectors, and eventually defending
public health against illnesses spread by mosquitoes.

To our knowledge, the CNN models and the pre-trained CNNmodels have been applied
more to this area of image-based mosquito species classification [7,13–17]. However, the use
of transfer learning-based ensemble learning has not been explored much. The application of
data augmentation is also rare. By increasing the dataset’s diversity, this data augmentation
reduces overfitting and strengthens the capacity of models to generalize. The ensemble learn-
ing model incorporates the discriminative information from all the constituent base learn-
ers, allowing it to make superior predictions. To address the issue of limited data availability,
transfer learning models [18,19], also known as pre-trained models, are strong candidates for
use as base learners.

Here, the exact problem we are trying to solve is that of automated classification of
mosquito species for adult (i.e., post-larvae) mosquitoes by means of computer vision. Our
research objective is to develop an accurate and robust classification system using a novel
transfer learning-based ensemble learning approach. We limit the scope of our research
to using only the still images of different mosquito species in two conditions (landing and
smashed) as input data.

Derived by the above objective, the main contributions of this research are as follows.

1. To overcome the problem of small sample sizes in the available dataset, we carefully
used data augmentation methods. This method increases the size of the dataset. It adds
variability by means of clever transformations, which improves the model’s ability to
generalize and extract significant patterns from the augmented samples. Data augmen-
tation plays a vital role in supporting the robustness and performance of the model by
creatively addressing the lack of data.

2. We utilized the TransembleNet (Transfer Learning-based Ensemble Networks)
approach, which is a novel ensemble learning strategy in our study. Three base learn-
ers were used in one ensemble model. We applied four pre-trained CNNmodels, and
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when making the ensemble model, we picked three as base learners using a mathemat-
ical combination formula. Four distinct ensemble models were produced as a result of
this process. To our knowledge, our proposed method is the first to use an ensemble
of transfer learning (i.e., pre-trained) models to tackle the problem of mosquito image
classification.

3. A thorough assessment of the ensemble models was conducted using a variety of per-
formance metrics and statistical standards. The best ensemble model, which stood
out for its exceptional performance, was then evaluated using two publicly available
datasets [7,16]. Our proposed ensemble method outperformed the other state-of-the-art
methods.

4. Limited attention has been directed towards the simultaneous exploration of smashed
conditions in mosquito images and the identification of vector mosquitoes. This study
addresses this gap by comprehensively examining smashed mosquito conditions while
concurrently classifying vector mosquitoes.

Background and related work
Detecting mosquito species is an important scholarly concern. Researchers are delving care-
fully into a number of aspects related to mosquito identification, such as species detection and
classification according to developmental stages, such as larvae and eggs.

For the Aedes Larvae Classification and Detection (ALCD) system, the author in [20]
employed deep learning (DL) technologies for the pattern of the larva and organized it
according to its type. They proposed the CNNmodel that training the images can result in an
accuracy of 73%. However, the accuracy is not sufficient.

In another work, Arista-Jalife et al. [21] presented an automated approach for classifying
larva images, particularly those of Aedes aegypti and Aedes albopictus. The proposed method
achieved 92.85% accuracy. The method not only identifies the region of interest (ROI) in the
images but also performs a dual classification, distinguishing between Aedes’ positive and
Aedes’ negative instances. To achieve this, the dual algorithm, namely, Single Shot Detec-
tor with Deep Neural Network (SSD-DNN), is employed to crop the ROI and categorize the
image into a binary outcome with a precision rate of 94.19%. Although the segmentation and
detection stages were initially implemented separately, there is potential for process optimiza-
tion by integrating these stages into a unified framework.

Silvia et al. [22] proposed a pre-trained CNNmodel, namely ResNet-50, that can also iden-
tify the mosquito larvae, and the average accuracy is 98.76%. The major drawback of their
work is that the proposed model could not identify the larva image if the image is not in the
upside body part, and they have used a small dataset containing 160 samples.

Another study [23] worked on mosquito eggs in the pre-stage of the larva. They found sim-
ilar pixels and used the slice color method for training purposes using learning with CNN to
achieve 90% accuracy from mosquito eggs in the pre-stage of the larva. However, they failed
in high density of eggs or appeared black elements present in samples.

Detecting mosquito species from images can be critical for different reasons, mainly in
the field of public health. Adhane et al. [13] used DL and ML methods to classify Aedes
Albopictus mosquitoes as Tiger or non-Tiger by using the pre-trained VGG-16 model on the
Mosquito alert image dataset, and the proposed model achieved a 94% accuracy. They used an
explainable Grad-CAM algorithm to visualize the most discriminant regions of the classified
images. The mosquito samples of the dataset are not mentioned in detail.

Another study [24] showed that the dual algorithm works better than DL methods to clas-
sify mosquito images by species and sex (male vs. female). Gray Level Co-occurrence Matrix
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(GLCM) with Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbor
(KNN) classifiers were employed. RF with GLCM performed the best and achieved 95.26%
accuracy.

Scholars in [15] also presented an Android application to detect the Aedes mosquito
species, and their proposed CNNmodel was able to classify up to 84.87% images accurately.
However, the major drawback was that the model only accepts very similar samples as train-
ing sets, and accuracy could still be improved by utilizing proper libraries and settings. Also,
the model cannot classify multiple classes.

A data augmentation method was used to increase mosquito images [25] and showed a
comparison with the CNNmodel and other ML models. The proposed CNNmodel achieved
93% accuracy for Aedes, anopheles and Culex mosquito classification. However, the original
dataset size was quite small, and the accuracy was poor (70%). Augmentation was essential to
achieve a better performance.

Scholars in [14] implemented transfer learning to classify mosquitoes into the correspond-
ing species using Faster R-CNN with InceptionV2 and MobileNet. They reported an average
accuracy of 95.19%. The verification needs to be improved since the dataset size is small, and
the image quality could be improved. Additionally, the researchers implemented their system
with the help of IoT-based devices. But, the major drawback was that they worked on only
two classifications of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse).

In addition to the classification of mosquito species, considerable efforts have been ded-
icated to the identification of vector mosquitoes, the primary agents responsible for trans-
mitting diseases. Recognizing and categorizing vector mosquitoes is of paramount impor-
tance for public health initiatives, as it plays a crucial role in understanding and mitigating
the spread of diseases. ML and DL models such as VGG-16 and Extra Tree Classifier (ETC)
were applied to identify vector mosquitoes [26]. Two feature selection methods, the ROI-
based image filtering and Randomly re-started Incremental Feature Selection (RIFS) methods,
have proven helpful in identifying vector mosquitoes. They achieved 99% accuracy. The major
drawback of this work is that the system can only detect the presence of two disease classes of
mosquitoes, such as the Aedes and Culex.

Scholars in [27] proposed a method to classify Aedes Aegypti using image texture-based
feature extraction and SVM, with an accuracy of 80%. Since the system is a manual focus,
some improvements can be made, such as extracting better features and adding higher mag-
nification.

Zhao et al. [5] introduced a high-definition mosquito dataset with 9,900 images of 17
species and suggested the Swin Transformer-based mosquito species identification model
(Swin MSI), which performed with 99.04% accuracy and 99.16% F1-score. Swin MSI was able
to reach 100% subspecies-level identification in Culex pipiens Complex and 96.26% accuracy
for novel species categorization. However, the authors did not evaluate the model using other
performance metrics.

Motta et al. [28] carefully selected 823 images collected across the globe from three
mosquito species. They applied three pre-trained models: LeNet, AlexNet, and GoogleNet.
They observed that GoogleNet performed best, and it obtained 76.2% accuracy.

Goodwin et al. [6] constructed a detection algorithm employing 2,696 specimens from
67 species and performing 97.04% accuracy for 16 known species and 89.07% accuracy
for novel species. They applied a 3-tier ensemble model involving Xception in Tier 1, RF,
SVM, and Wide and Deep Neural Network (WDNN) in Tier 2, and soft voting and Gaus-
sian Mixture Model (GMM) arbiter in Tier 3. However, the study possibly lacks coverage of
global species because it employed desiccated mosquito specimens from North America and
Africa.
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Ong and Ahmed [16] created a dataset of 1,500 mosquito images on the human skin. It
consists of three species (A. aegypti, A. albopictus, and C. quinquefasciatus) in two states
(landing and smashed). They conducted a pilot test on the dataset to validate the quality of
the dataset in terms of the feasibility of deep convolutional neural networks (DCNN) model
construction. They utilized a web-based tool, namely Google Teachable Machine 2.0 [29], to
train and test a deep learning model with no coding required. A testing accuracy of 92.56%
was achieved.

Kumar et al. [17] used the dataset created by Ong and Ahmed [16] and applied 6 differ-
ent DL algorithms, namely, simple DCNN, EfficientNetB7, MobileNetV2, DenseNet121,
XceptionNet, and ResNet152V2. They observed that the simple DCNN with hyperparameter
tuning provides the best accuracy of 91%.

In Park et al. [7], a dataset of 3,600 images of eight mosquito species was created and inves-
tigated with the use of DL architectures, such as ResNet-50, VGG-16, and SqueezeNet to
classify vector mosquitoes from images, acquiring over 97% accuracy by fine-tuning general
features and using data augmentation techniques.

The summary of the related work on image-based mosquito classification is presented in
Table 1.

After reviewing the extensive literature, it has become readily apparent that the classifica-
tion of mosquito species and diseases presents notable research gaps.

1. The datasets’ drawbacks include the preponderance lack of sample sizes in the current
datasets, which presents difficulties for training because of data scarcity and imbalance.

2. Many researchers often focused on only a few (2 or 3) classes in their dataset.
3. Majority of the research works had been done using the conventional approach; there-

fore, the accuracy of the models was quite low.
4. Even while the accuracy of modern models has improved significantly, their effective-

ness frequently comes at the expense of time efficiency because of increased computing
complexity.

Table 1. Existing research work on image-based mosquito classification (A: accuracy; P: precision; F: F1-score).
Ref. Stage #classes Innovations/methods Results
[20] Larvae 2 CNN A: 73%
[21] Larvae 2 ROI segmentation, SSD-DNN P: 94.19%
[22] Larvae 2 ResNet-50 (CNN) A: 98.76%
[23] Egg 2 CNN A: 90%
[24] Adult 4 GLCM, RF, SVM, KNN A: 95.26%
[13] Adult 2 VGG-16 (CNN) A: 94%
[15] Adult 2 CNN, Android app A: 84.87%
[25] Adult 3 Data augmentation, CNN A: 93%
[14] Adult 2 R-CNN, InceptionV2,

MobileNet, IoT platform
A: 95.19%

[26] Adult 2 VGG-16, ETC, ROI, RIFS A: 99%
[27] Adult 2 Texture-based features, SVM A: 90%
[5] Adult 17 Swin transformer A: 99.04%, F: 99.16%
[28] Adult 3 LeNet, AlexNet, GoogleNet A: 76.21%
[6] Adult 16 three-tier ensemble, Xception,

RF, SVM, WDNN, Soft voting,
GMM arbiter

A: 97.04%

[16] Adult 6 DCNN A: 92.56%
[17] Adult 6 DCNN, EfficientNetB7,

MobileNetV2, DenseNet121,
XceptionNet, ResNet152V2

A: 91%

[7] Adult 8 ResNet-50, VGG-16,
SqueezeNet, Data augmentation

A: 97%

https://doi.org/10.1371/journal.pone.0322171.t001
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5. Despite few samples in the dataset and the imbalance situation, no proper strategy was
employed to solve these issues.

6. The researchers did not do cross-checking on other datasets in order to determine the
robustness and generalizability of their model.

7. Previous researchers faced difficulties with model underfitting, overfitting, and biased
results, which required further techniques to address these problems.

8. Even though research on diseases and specific mosquito vector species has progressed
significantly, there is still a significant gap in treating both at the same time. It is nec-
essary to conduct additional studies in order to help classify species and clarify the
complex interactions between the traits of vector species and the dynamics of disease
transmission.

9. In this field, ensemble models—especially those that rely on transfer learning—are still
comparatively uncommon. Further research is needed to understand how well transfer-
learning ensemble combinations perform in identifying vector mosquitoes, and the
efficiency and effectiveness of ensemble models need to be focused on.

Data and methodology
Our research on mosquito species and vector mosquito classification was conducted in multi-
ple stages.

Firstly, we made use of the public dataset that gathered images from different kinds of
mosquitoes. Next, in order to increase the number of samples in the dataset, we employed
augmentation techniques and image processing techniques to extract pertinent features from
the images. With the previously processed data, we then trained pre-trained CNNmodels.
Lastly, to improve overall classification accuracy, we combined the outputs of multiple mod-
els using ensemble methods. Next, we used a variety of metrics to assess the models’ perfor-
mance. Additionally, we evaluated the models’ resilience by putting them to the test on a dif-
ferent validation (a.k.a. testing) dataset and examining how well they performed on data that
had never been seen before. The overall procedure of our research is shown graphically in
Fig 1.

Dataset description
The “Mosquito on Human Skin” dataset by Ong and Ahmed [16] is a specialized collec-
tion of high-resolution images designed for the development and evaluation of mosquito
recognition systems. It is which is available from both Mendeley (https://data.mendeley.
com/datasets/zw4p9kj6nt/2) and Kaggle (https://www.kaggle.com/datasets/naiborhujosua/
mosquito-on-human-skin), This dataset is a comprehensive and meticulously curated col-
lection of images designed specifically for advancing research in mosquito species recogni-
tion on human skin. This dataset is particularly significant due to its focus on three mosquito
species: Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. These species are cap-
tured in two distinct conditions. One is their normal landing posture on human skin, and the
other one is their appearance when smashed. The dataset contains six classes. It represents
a unique combination of species and conditions that comprises a total of 1,500 images, with
each class containing 250 images.

Below, we describe the definitions of these three species of mosquitoes in detail, both on
“landing” and “smashed”:

• Aedes aegypti:The Aedes aegypti mosquito is a significant disease vector known for its
black and white stripes shown in Figs 2a and 2d. It originated in Africa and spread world-
wide, particularly in tropical and subtropical regions. We have investigated two conditions
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Fig 1. Procedure of the research workflow.

https://doi.org/10.1371/journal.pone.0322171.g001

of it. One is on human skin, and the other is when it’s smashed. This species is a primary
transmitter of dengue, Zika, yellow fever, and chikungunya. It prefers laying eggs in water-
filled containers close to human habitats, which makes it a prevalent urban health threat.
The adult mosquito is small, about 4-7 mm in length. Aedes aegypti’s adaptation to human
environments and its breeding in small water collections make it a resilient species. It has
developed resistance to many insecticides by complicating control efforts. Control strate-
gies include eliminating breeding sites because they use larvicides and adulticides. It also
promotes public awareness of prevention.

• Aedes albopictus:The Aedes albopictus is an Asian tiger mosquito that is known for its
distinct black and white stripes shown in Figs 2b and 2e. Originally, it was from Southeast
Asia. It has spread to many regions worldwide, thriving in both temperate and subtrop-
ical climates. This mosquito is also a vector for diseases like dengue, Zika, chikungunya,
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A B

C D

E F

Fig 2. Samples of each class in “Mosquito on Human Skin” dataset (reproduced with permission by the original
images’ owners [16]).

https://doi.org/10.1371/journal.pone.0322171.g002

and West Nile virus. It breeds in various standing water sources, from natural to artifi-
cial. Adults are small, about 2 to 10 mm, but they are aggressive biters both day and night.
We have used two situations for our dataset. One is the landing position, and another is
smashed. Their flight is rapid and erratic, with a high-pitched buzz. Their striped pattern is
recognizable even when they are smashed.

• Culex quinquefasciatus:The Culex quinquefasciatus is also known as the Southern house
mosquito shown in Fig 2c and 2f. It is a common vector for diseases like West Nile virus
and filariasis. It is predominant in tropical and subtropical areas and also can adapt well
to temperate climates. This species is brown and ranges from 4 to 10 mm in length. Culex
quinquefasciatus breeds in stagnant, often polluted water and typically in urban settings. It
assumes a hunched posture with its body angled when it lands on human skin. Unlike some
other mosquito species, it lacks distinctive markings when it is smashed. Control strategies
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include eliminating breeding sites and using larvicides and personal protective measures
like nets and repellents.

Within the larger fields of entomology and public health, the classification of mosquito
species and vector mosquitoes are related. Understanding mosquitoes as both diverse organ-
isms with unique species characteristics and disease carriers explains the relationship between
these two classifications. Comprehending the distinct mosquito species that serve as carriers
is imperative for focused disease management. Understanding the species of mosquito that
carries a disease allows public health initiatives to be concentrated on high-risk regions and
populations. So, targeting largely mosquito species classification, we also put our emphasis on
on vector mosquito classification.

In this work, we faced a major difficulty brought about by the relative scarcity of data in the
dataset. It contains only a total of 1,500 images, which is very limited when compared to gen-
eral image datasets commonly used in deep learning research, such as CIFAR-100 [30] with
tens of thousands of images and ImageNet [31] containing several millions of images. In order
to generalize well, deep learning models—especially those for image classification—typically
require enormous volumes of data. Nevertheless, our datasets have sample size limitations.
This lack of data is a significant challenge because it makes it more difficult for traditional
deep-learning techniques to operate at their best. To overcome this difficulty, our work cre-
atively uses both data augmentation methods and ensemble models to incorporate transfer
learning techniques. This allows complex characteristics to be extracted from a small dataset.

Data preprocessing and augmentation
Image preprocessing is a fundamental pipeline phase in our research. Firstly, the image is
resized to 299×299×3. Among the datasets, 90% of the data is used for training, and the rest
of the samples are used for validation (a.k.a. testing). That is, 1,350 samples are for training,
and 150 are for validation. In our research, the dataset is comparatively small. So, we plan
to increase the dataset using data augmentation techniques. Data augmentation is a tech-
nique used in DL to artificially increase the size and diversity of a dataset by creating new
training examples through various transformations or modifications of the existing data. It
is commonly used when the available dataset is limited or imbalanced or when the model
needs to be more robust to variations in the input data. As the data is limited here, we applied
data augmentation techniques in our research. The performance of the learning algorithms is
enhanced, and data augmentation techniques avoid overfitting.

The key augmentation strategies we employed through the tensorflow.keras.
preprocessing.image.ImageDataGenerator class in our research are

described below.

• Random horizontal flip:This arbitrary augmentation horizontally flips the image. Every
image is randomly selected to be left in its original state or flipped horizontally. If flipping
is chosen, the image is mirrored by applying the flip function along the horizontal axis.

• Random rotation:The image is arbitrarily rotated by a given angle (in radians) via this aug-
mentation. Within the given range, a random angle is selected for every photograph. We
employed a maximum of 0.2 radians in our study. The rotate function is then used to rotate
the image by this angle.

• Random zoom:We use the “Random Zoom” approach, one of the vital augmentation
strategies, in this research. For this augmentation, every input image is given a random
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zoom factor. A zoom factor larger than one creates a reduction or zooming-out effect, offer-
ing a broader image perspective. In contrast, a zoom factor less than one generates a mag-
nification or zooming-in effect, effectively focusing on certain portions of the image. This
method is applied using the zoom function, which modifies the image based on the factor.
The factor is 0.2, and the zoom factor will be randomly selected from a uniform distribution
between 0.8 and 1.2.

• Random height shift:This process includes moving the pixels within the image up or down
to change the image’s height—a vertical displacement effect results from this. Objects in the
image can appear to move higher or downwards by adjusting the height. This adds varia-
tion to the vertical position of objects, which is particularly helpful in real-world situations
where object locations could change. In this case, the function argument 0.2, which denotes
the permitted shift’s magnitude, was used. This indicates that the shift factor will be chosen
randomly from a uniform distribution ranging from -20% to 20% of the height of the entire
image. Assuming that the image’s overall height is represented by the symbol H, the shift
factor S will be selected randomly from the interval [-0.2H, 0.2H]. Accordingly, the image’s
pixels will be moved up or down by a maximum of 20% of the height of the entire image.
The image will be pushed upward or below depending on whether S is positive or negative.
A randomly selected shift factor S might be, for instance, -150 pixels if H = 1000 pixels. As a
result, the image would have a 150-pixel upward shift.

• Random width shift:The difference between this operation and Random Height Shift is
that the image’s width is randomly shifted. It adds variation to the items’ horizontal posi-
tions in the picture. Additionally, we utilized the number 0.2 in this case, which indicates
that a uniform distribution between -20% and 20% of the entire image width will be used to
select the shift factor randomly.

After completing the augmentation, the training samples increased by 95.18% and reached
2,758 samples. A sample of an augmented image is shown in Fig 3.

Algorithm 1 Data augmentation algorithm for mosquito species classification.
1: Input: Mosquito images

2: Result: Augmented dataset with balanced classes

3: for all N images do
4: ▷ Mirroring the image horizontally

5: Apply Random Horizontal Flip with probability 0.5

6: ▷ Arbitrarily rotating the image

7: Apply Random Rotation with maximum angle 0.2 radians

8: ▷ Zooming in or out of the image

9: Apply Random Zoom with factor randomly chosen from [0.8,

1.2]

10: ▷ Vertically displacing the image

11: Apply Random Height Shift with magnitude randomly chosen

from [-20%, 20%]

12: ▷ Horizontally displacing the image

13: Apply Random Width Shift with magnitude randomly chosen

from [-20%, 20%]

14: end for
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Fig 3. Samples of augmentation. (Augmented images are generated from an original image, which is used with
permission by the original image’s owners [16].)

https://doi.org/10.1371/journal.pone.0322171.g003

Pre-trained CNNmodels (base learners)
In this study, we proposed an unweighted average ensemble model using a combination of
pre-trained CNNmodels as the base learners. We utilized four individual models: (i) Incep-
tionV3 [32,33], (ii) ResNet-50 [34,35], (iii) DenseNet-121 [36,37], and (iv) VGG-16 [38,39].
The reason for selecting those models is their widespread popularity and extensive application
in image classification across various domains [40,41]. (As of October 11, 2024, the original
papers for Inception [33], ResNet [35], DenseNet [37], and VGG [39] have received 62306,
238992, 47794, and 130804 citations, respectively.)

The pre-trained CNNmodels were intended for multi-class categorization. It accepts three
color channel images with the size IMG_SIZE(299*299) as input. Pre-trained weights from
ImageNet are used as a base model in the pre-trained architecture, which is renowned for
its efficacy and simplicity. In our work, the pre-trained models’ first fully connected layers
were eliminated, and the models were fine-tuned by freezing the layers. Data preprocessing,
including data augmentation, is applied to input images. To minimize spatial dimensions,
the preprocessed images are sent via a modified pre-trained base and then a global average
pooling layer. A dropout layer with a 0.2 dropout rate is added to reduce overfitting. A dense
layer with softmax activation is inserted at the end for six classes of classification. The robust
pre-trained features are combined with extra layers specifically designed for categorization to
create the final model architecture.
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The descriptions of the four pre-trained models that we employed in our research are given
below.

ResNet-50. ResNet is a principal deep learning architecture, presenting variations with 50,
101, and 152 layers [42], and its learning mechanism revolves around residual representation,
where the prior layer’s output operates as the input to the next layer without alterations.

The architecture includes two key types of blocks: Convolutional and Identity. These
blocks, merged, construct the foundation for creating ResNet. Residual entities, categorized as
pooling, convolution, and batch normalization layers, form the building blocks, as illustrated
in Fig 4.

Mathematically, each unit can be defined using Eqs 1, 2, and 3. Here, xn is the input, xn+1 is
the output of the n-th unit, and f is the residual function of the n-th unit.

yn = h(xn) + f(xn,Wn) (1)
xn+1 = f(yn) (2)
h(xn) = xn (3)

Here, h(xn) describes the identity mapping of the activation function. Notably, ResNet
uses back-propagation to address the vanishing gradient issue since its residual representa-
tion contains short-cut networks. As seen in Figs 5 and 6, these short-cut networks use skip
connections, which are similar to basic convolutional layers, to add input values to the output
after specific weight layers.

ResNet-50, utilizing 50 parameterized layers with recurrent connections as residual blocks,
uses transfer learning. The architecture culminates in a personalized softmax layer for detect-
ing mosquitoes on human skin, enhanced with an L2 regularizer. Noteworthy elements of
ResNet-50 include:

Fig 4. Graphical representation of ResNet architecture.

https://doi.org/10.1371/journal.pone.0322171.g004
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Fig 5. ResNet convolutional block architecture.

https://doi.org/10.1371/journal.pone.0322171.g005

Fig 6. ResNet identity block: A foundational unit in ResNet.

https://doi.org/10.1371/journal.pone.0322171.g006

• Fully connected layers are previous to the softmax output layer,
• A 7×7 average pooling layer with stride 7,
• 16 residual building blocks,
• A 7×7 convolution layer, and
• A 3×3 max pooling layer with stride 2.

DenseNet-121. DenseNet, an architecture in Convolutional Neural Networks (CNNs), is
created to streamline connectivity patterns among layers by allowing direct connections. To
overcome the restriction on the maximum information flow, this enables direct connections
between each layer and the other layers. In comparison with traditional CNN, there are fewer
feature maps in DenseNet than in regular CNN. DenseNet uses feature reuse to maximize the
potential of its layers, and it also fixes the problems caused by the gradients. Using a classic
feed-forward architecture, the DenseNet associates each layer’s output with the layer before it
through a composite operation that combines activation functions, batch normalization, and
layer pooling.

The foundational equation governing DenseNet is is given in Eq 4:

Xn =Hn(Xn–1) (4)

In the ResNet architecture, this equation is extended by containing the skip connection,
reformulating as in Eq 5.

Xn =Hn(Xn–1) + (Xn+1) (5)

In comparison to ResNet, which expands the equation with skip connections, DenseNet
opts for a concatenation approach without the summation of outgoing and incoming feature
maps. Therefore, the equation reshapes again into Eq 6.

Xn =Hn([x0, x1, x2,… , xn–1]) (6)
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DenseNet employs Dense Blocks as fundamental building blocks within the model struc-
ture. These Dense Blocks consist of layers directed as transition layers, which handle down-
sampling by including batch normalization. Despite changes in the number of filters, the fea-
ture map dimensions stay constant throughout the model. However, the dimensions of each
channel experience an expansion as a result of the concatenation of feature maps from every
layer.

Every time Hn is employed to produce k feature maps in the generalized n-th layer as
defined in Eq 7.

kn = k0 + k ⋅ (n – 1) (7)

The expansion rate of hyperparameter k is regulated by the level of information added to
the network at each layer. DenseNet demonstrates a distinctive architecture where input vol-
umes and the output of two operations become intricately linked. This connection concerns
not only the additive infusion of information into the shared knowledge of the network but
also the concatenation of k feature maps, thereby constructing an outstanding interweaving of
information flow within the network.

VGG-16. The VGG-16 convolutional neural network model is a highly prosperous archi-
tecture in computer vision. Well-known for its simplicity and versatility, VGG-16 has become
a widely embraced model due to its precise design principles, giving valuable insights for the
exploration of deep neural networks.

To maintain spatial resolution post-convolution, the model utilizes 3×3 convolutional
filters with both a stride and padding set to 1. Feature extraction concerns the integration
of certain convolutional layers with a subsequent 2×2 max-pooling layer, directing with a
stride of 2 over a pixel window of 2×2. Individual passage through a pooling layer results in
a halving of the input’s spatial resolution.

There are three fully connected levels at the end of the architecture. Both of the initial lay-
ers have 4,096 channels each, while the number of channels in the third layer varies depend-
ing on which particular dataset is being used. The last layer is a softmax layer responsible for
classification predictions. ReLU assists in the overall efficacy of the model by serving as the
activation function for every layer in the VGG-16 convolutional layer architecture. The deep
learning model VGG-16 is constructed of 13 convolution layers, three fully connected layers,
and five max-pooling layers, as demonstrated in Fig 7.

InceptionV3. InceptionV3 desires to scale up networks by dealing with the computation
as efficiently as possible. It utilizes appropriately factorized convolutions, aggressive regular-
ization, and an advancement in Inception architecture. Inception architecture remains differ-
ent from conventional approaches to expand network accuracy. The model is carefully created
based on four key principles: representational bottlenecks in the network should be ignored;
high-dimensional representations are easy to process; low-dimensional embeddings can be
utilized for spatial aggregation with no loss in a representative capacity, and the network’s
width and depth can be extended concurrently to reach the best performance for a provided
amount of computation. Inception architecture stays different from traditional methods of
improving network accuracy by following these guidelines.

Table 2 and Fig 8 represent the general structure of the InceptionV3 network architecture.

TransembleNet: The proposed ensemble model
Ensemble averaging is the process of building multiple models and combining them to pro-
duce the desired output, as opposed to creating just one model, in machine learning, espe-
cially in deep neural networks. A group of models often outperforms a single model because
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Fig 7. Graphical representation of VGG-16 architecture.

https://doi.org/10.1371/journal.pone.0322171.g007

Table 2. General structure of InceptionV3 network architecture.
Layer Operation Patch Size Input Size
1 conv2d(ReLU, BN) 3 × 3/2 229 × 229 × 3
2 conv2d(ReLU, BN) 3 × 3/1 149 × 149 × 32
3 conv2d(ReLU, BN, padded) 3 × 3/1 147 × 147 × 32
4 max pool 3 × 3/2 147 × 147 × 64
5 conv2d(ReLU, BN) 3 × 3/1 73 × 73 × 64
6 conv2d(ReLU, BN) 3 × 3/2 71 × 71 × 80
7 conv2d(ReLU, BN) 3 × 3/1 35 × 35 × 192
8 3 × Inception Module 1 As in Fig 7a 35 × 35 × 288
9 5 × Inception Module 2 As in Fig 7b 17 × 17 × 768
10 2 × Inception Module 3 As in Fig 7c 8 × 8 × 1280
11 max pool 8 × 8 8 × 8 × 2048
12 linear logits 1 × 1 × 2048
13 softmax classifier 1 × 1 × 1000

https://doi.org/10.1371/journal.pone.0322171.t002

the individual errors in the models “average out.” Less-than-satisfactory networks are main-
tained in the ensemble averaging but with reduced weight. Any network can have its bias
decreased at the expense of higher variance. It is possible to decrease variance in a group of
networks without increasing bias. The concept behind average ensembling is that forecasts are
taken from several models and then averaged to arrive at the ultimate forecast.

Deep neural networks with millions to billions of parameters make ensemble learning
based on deep learning models more difficult than ensemble learning based on traditional
classifiers [43]. Multiple base deep learners require a lot of time and space to train. The huge
amount of parameters is thus a problem when using ensemble deep learning methods. When
modifying the data level or the baseline model level, ensemble learning strategies are devel-
oped. When manipulating data, new training sets are created to train various base learners
through sampling or cross-validation data (re-sampling). The ability to reduce the number of
parameters used in the ensemble base deep models by choosing the same model and adjusting
its parameters sets deep learning apart from traditional or machine learning when it comes to
manipulation at the level of base models [44].
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Fig 8. Inception modules: (a) two 3×3 convolutions are employed in place of each 5×5 convolution, (b) factorization of the n×n convolutions, and (c)
modules with expanded filter bank outputs.

https://doi.org/10.1371/journal.pone.0322171.g008

Two general types for conducting ensemble learning are (i) Type 1: applying different base
models to the same dataset and (ii) Type 2: applying the same base model instances to the
same dataset (with different sub-sampling for each instance). We opt to use Type 1 in our
research because we cannot afford to sub-sample the dataset, which is already relatively small,
and the diversity of base models gives a better generalization of the ensemble model.

The ensemble deep learning system’s strength is determined by its design, which includes
choosing the best deep learning models to solve the issue and the right number of base mod-
els (three or more). Deep neural networks with millions to billions of parameters make it
more difficult for ensemble learning based on deep learning models than ensemble learn-
ing based on traditional classifiers [43]. Multiple base deep learners require a lot of time and
space to train. Our proposed novel ensemble learning strategy, which is described below,
helps solve this problem to some extent.

Proposed novel ensemble learning strategy. The four pre-trained base learner mod-
els are fine-tuned using the training data, and the resultant models are saved (as .h5 files) as
shown in Fig 9.

Here, our goal is to create ensembles using those four base models. In order to generate
more variety, instead of creating just one ensemble containing all four base models, we opt to
create four ensemble models, each containing three different base models (see the subsequent
section for more details).

Let us consider one particular ensemble model (out of four ensembles). Suppose this
ensemble contains three base learner models (namely, Base Learner 1, Base Learner 2, and
Base Learner 3). Those saved models (.h5 files) from those three models are loaded into mem-
ory in order to generate the ensemble model. The input data of shape (299, 299, 3) is defined
for a single input layer, which is then transmitted through each loaded model to produce its
final outputs. A single composite output is produced by averaging these distinct outputs. The
ensemble model’s final classification output is directly derived from the averaged output. By
combining the predictions of the three models, this technique makes use of their strengths
and may outperform individual models. The ensemble model as a whole (containing the three
base models) is trained using the same training data. The weights of the three base models are
further updated during the ensemble training process. The block diagram is shown in Fig 10.
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Fig 9. Fine tuning and saving of four base models.

https://doi.org/10.1371/journal.pone.0322171.g009

Our approach is unique because it builds an ensemble model based on transfer learning
specifically designed to handle parameter efficiency and computational complexity. By using
pre-trained models with significant amounts of frozen layers, our method dramatically mini-
mizes these complexities compared to existing deep learning models, which frequently exhibit
high parameter counts, resulting in significant processing demands during ensemble com-
binations. We optimize and fine-tune pre-trained models to meet our particular mosquito
species classification job by utilizing transfer learning approaches. The development of this
customized ensemble model framework based on transfer learning is the main innovation of
our work.

This methodology significantly enhances the efficiency and efficacy of ensemble learning
in complex classification tasks such as mosquito species identification while also optimizing
computational resources. To our knowledge, the use of such an ensemble model idea based on
transfer learning for the classification of mosquito species has not been explored before, mak-
ing it a unique and promising contribution to the field of machine learning in disease vector
management and biodiversity conservation.

Our strategy is distinct from other ensemble strategies involving the pre-trained deep
learning models such as majority voting [45], average voting [46], weighted voting [47], or
combined ensemble outputs being fed into a dense (fully-connected) neural network [48,49].
In all those ensemble models, the base learners (pre-trained models) are frozen and no longer
updated once they have been trained with the training data. In our case, another round of
end-to-end training of the whole ensemble network was carried out, and the participating
base learner models are still updated accordingly.

Building ensemble models. As discussed above, the basic idea of our ensemble learn-
ing is an average ensemble model. Our learning procedure involves applying various base
models to the same set of data. We have utilized transfer learning as our base model, and for
using the different transfer learning models, the structure of the models was different. We
have described the base learners’ architecture above. This technique is only possible on deep
learning ensemble models where traditional ensemble models cannot perform this learning
strategy [43].

In the pursuit of constructing an ensemble model for our research, we sought to explore
the various combinations of four pre-trained models. In order to improve generalization
and predictive performance, deep learning ensemble methods combine several deep learn-
ing models. To improve the performance in deep learning tasks, pre-trained CNNmodels
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Fig 10. Block diagram of proposed ensemble model.

https://doi.org/10.1371/journal.pone.0322171.g010

like VGG-16, InceptionV3, DenseNet-121, and ResNet-50 are assembled by combining their
respective strengths. Every pre-trained model excels at capturing various facets of intricate
data patterns through their specialized features and hierarchical representations. We devel-
oped a more thorough and reliable understanding of the underlying features in the dataset by
combining these models. The variety of architectures improves generalization, reduces over-
fitting, and allows for flexibility with different kinds of input. Through the use of pre-trained
models’ transfer learning capabilities, this ensemble approach facilitates efficient knowledge
transfer from the massive datasets used in the models’ initial training. We selected three base
models at a time to form ensembles with diverse architectures. The calculation of the number
of unique combinations was performed using Eq 8.

C(n, r) = n!
r!(n – r)!

(8)
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Here, n represents the total number of base models, and r denotes the number of mod-
els to be selected for each ensemble. For our case, n = 4 (the number of available base mod-
els) and r = 3 (the desired ensemble size). Substituting these values into the formula, we
obtained:

C(4, 3) = 4!
3!(4 – 3)!

= 4

Thus, selecting three models out of the four aforementioned architectures allows for four
unique combinations. These combinations represent distinct ensemble configurations with
diverse model architectures, contributing to our research’s comprehensive exploration of the
model ensemble space.

Here, the ensemble model’s final prediction is obtained by averaging the base learners’
results. Because the DL architectures have low bias and high variance, generalization perfor-
mance can be improved by simply averaging the ensemble models, which reduces variance
among the models. Let D represent the pre-trained model set, consisting of {“InceptionV3”,
“ResNet-50”, “DenseNet-121”, “VGG-16”}. The images of six different species of mosquitoes
from the dataset (Xi and Yi), where Xi is the total number of images and Yi is the correspon-
dent labels of images Y = {“Aedes albopictus landing”, “Aedes albopictus smashed”, “Aedes
aegypti landing”, “Aedes aegypti smashed”, “Culex quinquefasciatus landing”, “Culex quinque-
fasciatus smashed”}.

The size of each image is (299×299). Mini batches are created by dividing the training set
by n, which lowers the empirical loss and improves the accuracy of the DL models. The base
learners’ outputs directly or the classes’ anticipated probabilities using the softmax function
are used to average the base learners as shown in Eq 9.

Pji =
esoftmaxj(Oi)

∑k
k=1 e

Ojk
(9)

Here, Pji is the probability outcome of the i-th unit on the j-th base learner, Oji is the out-
put of the i-th unit of the j-th base learner, and k is the number of classes. In our case, k is
6. As indicated in [35], unweighted averaging makes sense when the base learners’ perfor-
mance is comparable. In our research, the base learners’ performance is indeed compara-
ble. The changes in the training samples did not lead to significant changes in accuracy in
our base learners, which was also a reason to apply unweighted ensemble techniques in our
research. This technique is suitable for low model variance. However, because it is influ-
enced by the performance of the overconfident yet weak learners, naive unweighted averag-
ing may lead to sub-optimal performance when the ensemble consists of heterogeneous base
learners [50].

The overview of the proposed ensemble model is shown in Fig 11.
Four ensemble models are created using Algorithm 2 described above. They are:

1. Ensemble Model 1 (EM1): InceptionV3 + ResNet-50 + DenseNet-121
2. Ensemble Model 2 (EM2): InceptionV3 + ResNet-50 + VGG-16
3. Ensemble Model 3 (EM3): ResNet-50 + DenseNet-121 + VGG-16
4. Ensemble Model 4 (EM4): InceptionV3 + DenseNet-121 + VGG-16
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Algorithm 2 Building mosquito species classification ensemble models.
1: Resize images in dataset (to 299 × 299)
2: Split dataset into training data and validation data

3: Preprocess training data (using Algorithm 1)

4:

5: ▷ Create and fine-tune pre-trained base learner models

6: D = {“InceptionV3”, “ResNet-50”, “DenseNet-121”, “VGG-16” }

7: for i = 1 to |D| do
8: initialize(D[i])

9: fine-tune base learner model D[i] on preprocessed training

data

10: save model D[i] (as .h5 file)

11: end for

12:

13: ▷ Prepare ensemble models through combinations of base

learners

14: ▷ Calculate number of unique combinations using C(n,r) formula

15: n← number of base learner models (4)

16: r← desired ensemble size (3)

17: num_ensembles← n!/(r!(n – r)!)
18: EM[1]← {D[1],D[2],D[3]}
19: EM[2]← {D[1],D[2],D[4]}
20: EM[3]← {D[2],D[3],D[4]}
21: EM[4]← {D[1],D[3],D[4]}
22:

23: ▷ Create, train, and evaluate ensemble models

24: for i = 1 to num_ensembles do

25: ▷ Load saved models

26: for j = 1 to r do

27: load base model EM[i][j] (from original .h5 file)

28: end for

29: ▷ Create ensemble model

30: initialize input layer: model_input
31: for j = 1 to r do

32: base_learner_outputs[j]← output of base learner EM[i][j] on

model_input
33: end for

34: ▷ Perform unweighted averaging

35: ensemble_output← average(base_learner_outputs[1…r])
36: ▷ Prepare ensemble model

37: ensemble_model[i]← Model(model_input, ensemble_output)
38: ▷ Configure ensemble model

39: Configure ensemble_model[i] (optimizer: Adam or Nadam, learning

rate: 0.001, loss function: categorical cross-entropy)

40: ▷ Train ensemble model

41: Train ensemble_model[i] on preprocessed training data

42: ▷ Evaluate ensemble model

43: Evaluate ensemble_model[i] on validation data

44: Print validation accuracy of ensemble_model[i]
45: end for

46:

47: ▷ Select the best ensemble model

48: Identify the ensemble model with the highest validation

accuracy
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Fig 11. Overview of proposed ensemble model. (The mosquito images are reproduced with permission by the original images’ owners [16]).

https://doi.org/10.1371/journal.pone.0322171.g011

Experimental results
Experimental setup
The goal of this study’s research strategy is to use an ensemble of pre-trained base learners to
categorize mosquito species and identify the vector species based on their images.

First, we split the dataset into 90% for training and 10% for validation (a.k.a. testing). We
used 100 epochs to train the ensemble model. We employed comprehensive evaluation crite-
ria to assess the model. Lastly, we applied our model to a validation dataset to test its effective-
ness.

We employed the Python programming language for our investigation and Google Colab
Pro+ to carry out our experiment. Background execution, a feature of Colab Pro+, allows
code to run continuously for up to 24 hours. Idle timeouts only take effect when the code has
finished running. The two DL frameworks of TensorFlow and Keras were used to build the
model. To manipulate and examine the image data structure, we utilized the Pandas library.

Hyperparameters. The hyperparameters of the proposed method represent the pre-
trained models’ estimated computational behavior. In our research, the hyperparameter val-
ues were empirically determined. The model was able to achieve an improvement in accu-
racy at a learning rate of 0.001 when compared to 0.0001, which conversely converged slowly
and exhibited poor performance. The optimizer had major implications for performance
enhancement. Although Adam and Nadam optimizers exhibited competitive results among
themselves, Adam always outperformed Nadam for all metrics. This can be accounted for by
Adam’s adaptive learning rate mechanism that smoothly mediates between momentum and
adaptive gradient estimation, resulting in faster convergence and better generalization.

The proposed architecture uses Softmax activation functions for the output layer and Rec-
tified linear unit (ReLU) for the hidden layer activation, as stated in Eqs 10 and 11.

f(r) = r+ =max(0, r) (10)

f(zi) =
ezi

∑i ezi
, ∀zi ∈ z (11)

• Optimizers:We used two optimizers, namely, (i) Adam [51] and (ii) Nadam [52] optimiz-
ers, in building our ensemble models.
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1. Adam [51] is a method for first-order gradient-based optimization of stochastic
objective functions. The algorithm is based on adaptive estimates of lower-order
moments. It is straightforward to implement, is computationally efficient, and has lit-
tle memory requirements. It is one of the most commonly used optimizers in deep
learning [53].

2. Nadam [52] utilizes an advanced momentum algorithm named Nesterov’s accelerated
gradient (NAG) instead of the regular momentum used in Adam.The authors pre-
sented preliminary evidence suggesting that making this substitution improved the
speed of convergence and the quality of the learned models.

• Epochs:When training a neural network, an epoch is a single run through the whole
dataset. Mathematically, one epoch in our dataset with N samples (where N is the num-
ber of our training samples) entails using each of the N samples once to update the model’s
parameters. Usually, this entails two types of propagation: backward propagation (where
gradients are computed and the loss is calculated to update the model’s parameters) and
forward propagation (where input data is passed through the network to generate predic-
tions). The model has seen the entire dataset once after finishing one epoch. Several epochs
are typically carried out during training to enhance the model’s performance by iteratively
updating its parameters using the complete dataset.

• Loss function: In our multi-class classification vector mosquito and species classification,
we make use of the categorical cross-entropy loss function. For each sample i, it calculates
the difference between the predicted class probabilities ̂yi and the true class distribution yi.
Eq 12 gives the formula for categorical cross-entropy loss.

Categorical Cross-Entropy Loss = –1
n

n
∑
i=1

C
∑
j=1

yij log( ̂yij) (12)

where:
• n denotes the number of samples,
• C denotes the number of classes,
• yij is the indicator function that equals 1 in the event that sample i truly belongs to class j
and 0 otherwise,

• ̂yij represents the expected probability that sample i belongs to class j.

The experimental hyperparameters details are shown in Table 3.

Table 3. Hyperparameters of ensemble models.
Image size 299*299
Epochs 100
Learning rate 0.001
Optimizer Adam, Nadam
Loss function Categorical crossentropy
Class weight Class weights based on class sizes
Use multiprocessing True
Base architecture Pre-trained models
Batch size 128
Model type Multiclass classification
Hidden activation Relu
Output activation Softmax
Random State 1

https://doi.org/10.1371/journal.pone.0322171.t003
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Trainable and non-trainable parameters. Trainable and non-trainable parameters make
up the parameter spaces for our pre-trained models (base models of the ensemble). The num-
ber of parameters (a.k.a. weights) that the backpropagation algorithm can modify is indi-
cated by the term “trainable parameters.” The non-trainable parameters, on the other hand,
are static values that are not changed during training. The numbers of parameters in our base
pre-trained CNNmodels are displayed in Table 4.

Evaluation metrics. In order to thoroughly evaluate the effectiveness of our model, we
utilized various statistical and graphical techniques.

Firstly, we plot a confusion matrix (explained in Fig 12) for each classification exercise.
We evaluated our pre-trained models and the ensemble models using the evaluation met-
rics of accuracy, precision, recall, and F1-score, which are all derivable from the confusion
matrix. Moreover, we assessed our ensemble model using additional criteria such as Cohen’s
Kappa (𝜅) indicator, Matthews correlation coefficient (MCC), receiver operating characteris-
tic (ROC) curve and its area under the curve (AUC), and precision-recall curve.

This multifaceted approach to evaluation allowed us to gain a more comprehensive under-
standing of our model’s strengths and weaknesses. By analyzing both statistical and graphical
data, we identified areas in which our model excelled and areas in which further improvement
was necessary. Furthermore, our use of additional evaluation criteria, such as Kappa, MCC,
and AUC, allowed us to assess our model’s performance in a more nuanced and sophisticated
manner. This, in turn, allowed us to draw more meaningful conclusions about our model’s
effectiveness in real-world scenarios.

The precision of positive predictions is measured. It is the proportion of accurate posi-
tive predictions to all of the model’s positive predictions. Recall gauges the capacity to record
every positive instance; it is also referred to as sensitivity or true positive rate. It is the pro-
portion of all actual positive occurrences to all true positive predictions. The harmonic mean
of recall and precision is known as the F1-score; the other name for it is the F-score or F-
measure. The model’s overall correctness is measured by accuracy. It is the proportion of cases
that were accurately predicted for all instances. They are calculated as follows:

Precision = TP
TP + FP

, Recall = TP
TP + FN

F1-score = 2 × (Precision× Recall)
Precision + Recall

, Accuracy = TP + TN
TP + TN + FP + FN

When considering class i (1≤ i≤ C, where C = 6 is the number of classes, we regard i as the
positive class and the remaining classes as a negative class.

Here,

• TP = no. of true positives (no. of instances belonging to class i correctly predicted as class i),
• FP = no. of false positives (no. of instances belonging to other classes incorrectly predicted
as class i),

Table 4. Total parameters, trainable parameters, and non-trainable parameters of the pre-trained CNNmodels.
Model Total params Trainable params Non-trainable params
InceptionV3 21,817,127 1,949,703 19,867,424
ResNet-50 23,602,055 14,343 23,587,712
DenseNet-121 7,044,679 3,058,759 3,985,920
VGG-16 14,718,279 3,591 14,714,688

https://doi.org/10.1371/journal.pone.0322171.t004
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Fig 12. An example of confusion matrix with 6 classes. If the current class i is 2, blue represents TP, green TN,
yellow FP, and orange FN.

https://doi.org/10.1371/journal.pone.0322171.g012

• TN = no. of true negatives (no. of instances belonging to other classes correctly predicted as
other classes), and

• FN = no. of false negatives (no. of instances belonging to class i incorrectly predicted as
other classes).

The concepts of TP, FP, TN, and FN are illustrated in Fig 12.
For a multi-class classification task with C number of classes (C = 6 in our case), C sets of

metrics for precision, recall, F1-score, and accuracy are generated, and the average metric
values are taken.

For classification tasks, Cohen’s Kappa is a statistical indicator of inter-rater agreement. It
takes into consideration the chance that an agreement could occur. The value of Kappa is a
number between -1 and 1, where -1 denotes perfect disagreement, 0 represents an agreement
that is equal to chance, and 1 indicates perfect agreement.

To handle multiple classes, Cohen’s Kappa for multi-class classification can be modified
from the binary case. When dealing with multiple classes, the Kappa statistic is usually calcu-
lated by taking into account the degree of agreement and disagreement that exceeds chance in
each class. The multi-class Cohen’s Kappa formula is as follows:

𝜅 = Po – Pe
1 – Pe

where:

Po =
∑C

i=1 confii
total instances

and

Pe =
∑C

i=1(marginal rowi ×marginal columni)
(total instances)2

where:

• confii is the number of instances where the predicted class and the true class are both i.
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• marginal cowi is the sum of row i in the confusion matrix.
• marginal columni is the sum of column i in the confusion matrix.
• total instances is the total number of instances.

To handle multiple classes, MCC for multi-class classification can be modified from the
binary case. Usually, in a multi-class scenario, the confusion matrix for each class is taken into
account when computing the MCC.The multi-class MCC formula is as follows:

MCC =
∑C

i=1(TPi + FPi)× (TPi + FNi)× (TNi + FPi)× (TNi + FNi)√
∑C

i=1 TPi × TNi – FPi × FNi

where:

• C is the number of classes.
• TPi: True positives for class i.
• TNi: True negatives for class i.
• FPi: False positives for class i.
• FNi: False negatives for class i.

Generalization results of base models
We have utilized four different pre-trained models named InceptionV3, ResNet-50,
DenseNet-121, and VGG-16 to classify images into six different classes related to the three
mosquito species in two states (landing or smashed).

To investigate the generalization capabilities of those four base models, we have presented
the training and validation accuracies (after 100 epochs) of these models in Table 5.

Fig 13 displays the outcome of “Training and validation accuracy” and “Training and vali-
dation loss” of the four pre-trained CNNmodels in every epoch.

InceptionV3. The pre-trained model InceptionV3 consists of 48 layers, including con-
volutional layers, pooling layers, fully connected layers, and auxiliary layers. It has achieved
90.30% training accuracy and 84% validation accuracy, with the Nadam optimizer having
21,817,127 Total parameters, 1,949,793 trainable parameters, and 19,867,424 non-trainable
parameters. The difference between training and validation accuracy is 6.3%, which indicates
the model might be overfitted.

Fig 13a has described the InceptionV3 five-epoch training process to represent a full cycle
through the dataset. In the first epoch, the model achieved a validation accuracy of 56.00%
and 1.0716 validation loss with a training accuracy of 34.37% and a training loss of 2.1857.
Then, both accuracies improved significantly in the second epoch, with the validation accu-
racy reaching 70.00% and the training accuracy at 66.74%. The loss reached 0.8787 for train-
ing and 0.7000 for validation loss. While the training accuracy increased to 78.07% and loss
decreased to 0.5971 in the third epoch, the validation accuracy remained at 70.00%, though

Table 5. Accuracy of pre-trained CNNmodels.
Model Training accuracy Validation accuracy
InceptionV3 90.30% 84.00%
ResNet-50 78.37% 85.33%
DenseNet-121 91.48% 88.00%
VGG-16 45.85% 56.67%

https://doi.org/10.1371/journal.pone.0322171.t005
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Fig 13. Training/validation loss and Training/validation accuracy of pre-trained Models: (a) InceptionV3, (b)
ResNet-50, (c) DenseNet-121, and (d) VGG-16.

https://doi.org/10.1371/journal.pone.0322171.g013
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the validation loss has been slightly increased to 0.7875. Then, after the fourth epoch, the val-
idation accuracy improved to 77.33%, and the training accuracy rose to 85.04%, with the loss
reducing further to 0.4291 and 0.5574 for both training and validation losses. In the first two
epochs, the model exhibited underfitting, suggesting that it hasn’t yet learned the complex-
ities of the data. On the other hand, overfitting began to emerge in the third epoch because
the training accuracy surpassed the validation accuracy. Finally, the model achieved its best
performance in the fifth epoch with a training accuracy of 90.30%, a validation accuracy of
84.00%, and the lowest training loss of 0.3156, where the validation loss is 0.4673. The model
was saved after each epoch that saw an improvement in validation accuracy. The training pro-
cess was computationally intensive, with each epoch taking between 405 to 449 seconds to
complete.

ResNet-50. ResNet-50 has a total of 23,602,055 parameters, 1,443 trainable parame-
ters and 23,587,712 non-trainable parameters with a depth of 50 layers. The training accu-
racy obtained by ResNet-50 is 78.37%, and the validation accuracy is 85.33%. In this case, an
underfitting issue was presented.

Fig 13b shows RenseNet-50 performance in every epoch. In epoch 1, the model leaped
from an undefined initial validation accuracy of 70.67% with 1.0227 validation loss. This sig-
nificant upturn is coupled with a modest training accuracy of 34.22% and a loss of 1.6998.
This epoch indicates underfitting as the model has a low training accuracy compared to a
higher validation accuracy. Epoch 2 climbed to 74.00% in validation accuracy with training
accuracy, which has raised to 59.04%, and losses have been reduced to 1.0560 validation loss
and 0.8004 training loss. The model hit a stride by reaching a validation accuracy of 79.33%
and training accuracy of 69.26%, where losses are 0.8316 for training and 0.7152 for vali-
dation loss. The model’s consistency and improvement are evident in Epoch 4. It achieved
80.00% in validation accuracy where the loss is 0.6164 and a training accuracy of 73.11% with
a loss of 0.7326. Lastly, epoch 5 culminated this upward trajectory, marking the peak with an
impressive 85.33% validation accuracy and a solid 78.37% training accuracy, where the loss is
0.6261 for training and 0.5476 for validation.

DenseNet-121. DenseNet-121 has performed very well by getting 91.48% training accu-
racy and 88% validation accuracy with the help of the Nadam optimizer. The validation accu-
racy is reasonably close to the training accuracy, and it indicates effective generalization.
DenseNet-121 has comprised 3,985,920 non-trainable parameters, 3,058,759 trainable param-
eters, and 7,044,679 total parameters, having a total of 121 layers where each layer is con-
nected to every other layer in a dense block to contribute to its depth and efficiency in feature
learning.

Throughout five intriguing epochs, DenseNet-121 (Fig 13c) validation accuracy has soared
to 68% with a promising debut complemented by a 46.89% training accuracy where the
losses are 1.3716 for training and 0.7898 for validation. In the last and final epoch, the model
reached its zenith with a stellar 88% validation accuracy and 91.48% training accuracy, where
the training loss is 0.2637 and the validation loss is 0.3938. The model’s validation accuracy is
88%.

VGG-16. VGG-16 presented the lowest performance among all the pre-training models,
with the Nadam optimizer containing 14,718,279 total parameters, where 3,591 are trainable
and 14,714,688 are non-trainable. The model has a total of 16 layers, including 13 convolu-
tional layers and 3 fully connected layers. But, when we customized the model, we used one
fully connected layer in our research. The accuracy of both training and validation accuracy
values is much lower than other pre-trained models. It has yielded 45.85% training accuracy
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and 56.67% validation accuracy. The model has appeared to be underfitted as validation accu-
racy is relatively lower than training accuracy, which indicates that the model is not capturing
the underlying patterns in the data effectively.

We have presented the five-epoch journey of VGG-16 in Fig 13d. Starting with Epoch 1,
the model showed a validation accuracy of about 22.67% and a training accuracy of 17.48%,
where training loss is 2.9269 and validation loss is 2.2223. There’s a consistent improvement
as the epochs progress. The validation accuracy rises to 34.67%, with the training accuracy
at 25.48% in epoch two, having a 2.2080 training loss and 1.8132 validation loss. By moving
to epoch 3, the model reached 42.67% in validation accuracy and 35.33% in training accu-
racy. Here, 1.8170 is the training loss, and 1.5151 is the validation loss. Having a training loss
of 1.5944 and validation loss of 1.3085 in the fourth epoch, the validation accuracy goes up
to 48.00% and the training accuracy to 41.93%. In final epoch 5, the model hits a validation
accuracy of 56.67% and a training accuracy of 45.85% with a validation loss of 1.1472 and
a training loss of 1.4109. Though the model does improve its accuracy over time, the train-
ing accuracy remains relatively low compared to the validation accuracy, suggesting that the
model’s capacity may be too limited to grasp the nuances of the training dataset fully. So,
despite the steady increase in accuracy throughout the five epochs of training the VGG-16
model, persistent underfitting was evident.

Testing results of base models
In addition to the testing accuracy, we investigate the four pre-trained CNNmodels’ other
performance evaluation metrics, namely precision, recall, and F1-score. In order to do that,
first, we generate the confusion matrices of those four models on the testing (validation) data
as displayed in Fig 14.

From the confusion matrices, the performance evaluation metrics (Precision, recall, and
F1-score) are calculated. The average values for each evaluation metric for all the classes are
presented in Table 6.

InceptionV3. Firstly, InceptionV3 achieved a precision of 87.00%, meaning that 87% of
the time, it is correct in predicting a class. With a recall of 84.00%, the model is able to cap-
ture 84% of the relevant instances. The F1-score, which harmonizes precision and recall, also
stands at 84.00%, suggesting a balanced performance.

ResNet-50. Another pre-trained model, ResNet-50, performs slightly lower in terms of
precision compared to InceptionV3. The model has achieved 86% precision. However, the
recall value of the ResNet-50 model is higher, almost 1%, than that of InceptionV3. This
model’s performance is more balanced than that of InceptionV3. The harmonic mean of this
model is 85%, which is 1% higher than the previous one.

DenseNet-121. DenseNet-121 achieved the same value for both precision and recall,
about 88%, which is higher than the previous models. Also, this model is able to obtain a
perfectly balanced F1-score, which is 88%. That typically means that the pre-trained model
DenseNet-121 performed very well, especially in terms of both identifying true positives and
avoiding false positives.

VGG-16. At last, we applied VGG-16 as a pre-train CNNmodel. But in this case, we got
much lower values. The VGG-16 performs noticeably worse in terms of precision, recall, and
F1-score. VGG-16 got only 58% precision and recall value, and the F1-score is 57%, whereas
InceptionV3, ResNet-50, and DenseNet-121 achieved higher scores. VGG-16 obtained 18-
20% lower precision and 16-20% lower recall than the other three pre-trained models.

So, our experiments showed that DenseNet-121 is the best pre-trained CNNmodel among
those that have been applied; it offers the highest F1-score, recall, and precision. Conversely,

PLOS One https://doi.org/10.1371/journal.pone.0322171 May 29, 2025 29/ 54

https://doi.org/10.1371/journal.pone.0322171


ID: pone.0322171 — 2025/5/29 — page 30 — #30

PLOS One TransembleNet: Enhancing vector mosquito species classification

Fig 14. Confusion matrices of pre-trained CNNModels: (a) InceptionV3, (b) ResNet-50, (c) DenseNet-121, and (d) VGG-16 (contd.).

https://doi.org/10.1371/journal.pone.0322171.g014

Table 6. Precision, recall, F1-score of the pre-trained CNNmodels.
Model Precision Recall F1-score
InceptionV3 87.00% 84.00% 84.00%
ResNet-50 86.00% 85.00% 85.00%
DenseNet-121 88.00% 88.00% 88.00%
VGG-16 58.00% 58.00% 57.00%

https://doi.org/10.1371/journal.pone.0322171.t006

VGG-16 performs the worst, having the lowest F1-score, recall, and precision. These find-
ings highlight that to classify the mosquito species, we need extensive experiments to achieve
better performance.
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Generalization results of ensemble models
From the previous analysis, we have found that DenseNet-121 gives the best results among the
four pre-trained models. Also, InceptionV3 and DenseNet-121 showed overfitting, and VGG-
16 and ResNet-50 models showed underfitting. To overcome the situation of a pre-trained
model and achieve better accuracy, we proposed ensemble models (EM1, EM2, EM3, and
EM4). The models are a combination of previously trained base models.

The training and validation accuracies of the ensemble models, representing their general-
ization capabilities, are shown in Table 7.

The graphical representations of training, validation accuracies, and losses for different
epochs are shown in Fig 15.

Ensemble Model 1 (EM1). The first model, EM1, is the combination of InceptionV3,
ResNet-50, and DenseNet-121, showing about 99% and 93% accuracy on training and val-
idation, respectively, using the Nadam optimizer. EM1’s training and validation accuracy
increased significantly using the Adam optimizer. We achieved 95.33% validation accuracy
when Adam is used as an optimizer in this model. However, EM1 still outperformed the
best-performing single pre-trained model DenseNet-121.

Ensemble Model 2 (EM2). The second one, EM2, which is a combination of (VGG-16 +
ResNet-50 + InceptionV3), gives the same training accuracy as the first one but reduces 3%
overfitting. The validation accuracy is 96% by the Nadam optimizer. Using the Adam opti-
mizer, the model achieved the same validation accuracy, whereas training accuracy slightly
increased.

Ensemble Model 3 (EM3). The third ensemble model, EM3, performs worse than EM1
and EM2. This model is a combination of the ResNet-50, VGG-16, and DenseNet-121 weak
learners. However, the model’s accuracy is 99% and 92% in training and validation accuracy
for both optimizers.

Ensemble Model 4 (EM4). Finally, the fourth ensemble model, EM4, which is the com-
bination of InceptionV3, VGG-16, and DenseNet-121, performs best when the optimizer is
used as Adam.The model’s validation accuracy is 91% for Nadam and 94% for Adam.The
analysis shows that the best-performing pre-trained model (DensNet-121) combinations give
lower accuracy in the ensemble model most of the time.

Among the four ensemble models, EM2 performs best and does not suffer from any over-
fitting issues. Notably, DenseNet-121 was not involved in the combination of EM2. The
worse ensemble model performances were observed in the combinations that involved the
DenseNet-121 model. Using the Adam as an optimizer performed best in our research. How-
ever, all of the ensemble models outperformed all the pre-trained CNNmodels. So, the
experiments showed that the combination of weak learners increases the performance in our
research.

Table 7. Accuracy of four ensemble models with different optimizers.
Ensemble model Nadam optimizer Adam optimizer

Training accuracy Validation accuracy Training accuracy Validation accuracy
EM1 99% 93% 100% 95.33%
EM2 99% 96% 99.56% 96%
EM3 99% 92% 99.41% 92%
EM4 97% 91% 99.85% 94%

https://doi.org/10.1371/journal.pone.0322171.t007
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Fig 15. Training/validation loss and training/validation accuracy of four ensemble models using Adam and
Nadam optimizers.

https://doi.org/10.1371/journal.pone.0322171.g015
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Testing results of ensemble models
The confusion matrices of the four ensemble models on the testing (validation) data are
shown in Fig 16.

The precision, recall, and F1-score of the ensemble models are shown in Table 8. To gain
a more nuanced understanding of the performance of the four models, it is imperative to
analyze their details thoroughly.

Ensemble Model 1 (EM1). EM1 achieved 96% precision, 95% recall, and 95% F1-score
with Adam optimizer. The Nadam optimizer, a variant of the Adam optimizer, produced 93%
precision, recall, and F1-score, which is 3% lower than the Adam optimizer performance.
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Fig 16. Confusion matrices of four ensemble models using Adam and Nadam optimizers.

https://doi.org/10.1371/journal.pone.0322171.g016

Ensemble Model 2 (EM2). EM2 demonstrated the robustness of the Adam optimizer in
optimizing the model’s parameters and striking a harmonious balance between precision and
recall, with an astounding 96% precision, recall, and F1-score. In terms of precision, recall,
and F1-score, the model performed better than EM1, but more significantly, it maintained a
balanced performance.

Ensemble Model 3 (EM3). EM3, using the Nadam optimizer, consistently produced
results with 93% precision, recall, and F1-score. Still, the model’s performance was inferior to
that of EM1 and EM2.
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Table 8. Precision, recall, and F1-score of four ensemble models.
Ensemble
model

Nadam optimizer Adam optimizer

Precision Recall F1-score Precision Recall F1-score
EM1 93% 93% 93% 96% 95% 95%
EM2 96% 96% 96% 96% 96% 96%
EM3 93% 93% 93% 92% 92% 92%
EM4 92% 91% 91% 94% 94% 94%

https://doi.org/10.1371/journal.pone.0322171.t008

Ensemble Model 4 (EM4). EM4 has marginally better performance than EM3 using the
Adam optimizer as well. EM4 performed worse than EM1 and EM2 with 94% precision, 94%
recall, and 94% F1-score.

Out of the four models, EM2 with the Adam optimizer is the most efficient and well-
balanced model, with the best precision, recall, and F1-score. Some of the classification results
produced by EM2 are demonstrated as examples in Fig 19.

EM1 exhibited competitive results with EM2, using the Adam optimizer. EM3 and EM4
perform marginally worse than the other two, with EM3 being the least optimal, especially
when it comes to recall and F1-score.

Kappa and MCC results. To evaluate the model extensively, We have also calculated the
Kappa (𝜅) and MCC values of our model, which are shown in Table 9. The findings provided
insight into the models’ consistency and dependability in making predictions.

Regardless of the optimizer used, EM2 performed exceptionally well, displaying high
Kappa values that indicate a significant degree of agreement between its predicted classifica-
tions and the actual results (Nadam: 𝜅=0.9519; Adam: 𝜅=0.9519). These findings imply that
when it came to correctly classifying observations, EM2 consistently performed better than
the others. Even with slightly lower Kappa values (Adam: 𝜅=0.9118; Nadam: 𝜅=0.9038), EM1
showed a good degree of agreement.

Higher Kappa values are indicative of more robust and consistent predictive performance,
offering practitioners and researchers insightful information about how well ensemble models
perform under various optimization schemes.

The MCC results provide more information about the models’ performance. In addition to
consistently displaying high Kappa values, EM2 also showed remarkable MCC values, high-
lighting its resilience in producing precise predictions (MCC = 0.9523 for Adam and MCC =
0.9523 for Nadam).

EM1 also displayed the second-highest performance in this criterion. The subtle varia-
tions in MCC values between the ensemble models and optimizers offer a thorough grasp

Table 9. Kappa and MCC values of four ensemble models.
Ensemble Model Nadam optimizer Adam optimizer

Kappa value MCC value Kappa value MCC value
EM1 0.9438 0.9446 0.9199 0.9184
EM2 0.9519 0.9523 0.9519 0.9523
EM3 0.9038 0.9030 0.9118 0.9125
EM4 0.9278 0.9295 0.8958 0.8966

https://doi.org/10.1371/journal.pone.0322171.t009
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of their predictive capacities. Models with higher MCC values are better able to predict out-
comes accurately in a variety of classes. When paired with Kappa values, these MCC results
help provide a more complete evaluation of the ensemble models.

Graphical evaluation. The performance of the positive class is typically the minority or
less frequent class and is the focus of precision-recall curves. More useful metrics for evaluat-
ing how well a model recognizes instances of the positive class are recall (a.k.a. true positive
rate or sensitivity) and precision (a.k.a. positive predictive value). These metrics make it pos-
sible to track how the decision threshold is adjusted and how the trade-off between recall and
precision changes.

Fig 17 provided an overview of the precision vs. recall performance evaluation of our
ensemble models, whereas Figs 17a–17d showed the Adam optimizer curves and Figs 17e–
17h the Nadam optimizer curves. The illustrated graphs also showed that EM2 with Adam
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Fig 17. Precision-recall curves of four ensemble models using Adam and Nadam optimizers.

https://doi.org/10.1371/journal.pone.0322171.g017

optimizer performed better than the other models. For every class, an additional examination
of the precision-recall performance was conducted.

Impressively, the Aedes albopictus landing class achieved a 96% recall value and 100% pre-
cision. The Aedes aegypti landing class, on the other hand, showed a higher true positive rate
than the positive predicted value, with a precision value of 92% and a recall value of 96%.
With a sensitivity rate of 91%, EM2 positively predicted 95% of the Aedes aegypti smashed
class. The precision and recall values of the Aedes albopictus smashed class were 93% and
100%, respectively. As seen in Fig 17b, the Culex quinquefasciatus landing class showed a bal-
ance between precision and recall values. For this class, EM2 achieved a 97% true positive rate
and positive prediction rate. Finally, the Culex quinquefasciatus smashed class and attained an
astounding 100% precision and 95% recall.
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In summary, our findings suggested that EM2 equipped with the Adam optimizer is a
dependable and efficient instrument for precisely forecasting mosquito species. EM2, with
Nadam optimizer, performed the same, but for the Aedes albopictus smashed class, the pre-
cision value increased by 2%, reaching 93% from 91%.

Receiver operating characteristic (ROC) curves are generated to visually represent the rela-
tionship between sensitivity and specificity for different cut-off points in experimental com-
binations. From ROC curves, we also calculated the area under the ROC curve (AUC) values
for all the classes. The maximum possible AUC value is 1.0. The higher the AUC value, the
better the classifier.

The ROC curve analysis for the Adam and Nadam optimizer of the four ensemble
models with six different mosquito classes is demonstrated in Fig 18. In Figs 18a–18d, the
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Fig 18. ROC curves of four ensemble models using Adam and Nadam optimizers.

https://doi.org/10.1371/journal.pone.0322171.g018

performance of the Adam optimizer is shown, while in Figs 18e–18h, that of the Nadam
optimizer is demonstrated.

A detailed examination of the AUC performance metric in the complex field of mosquito
classification models reveals interesting trends among various ensembles and optimizers.

Aedes albopictus landing, where consistently high scores of 0.98 were achieved by EM1,
EM2, and EM3 with the Adam optimizer. However, EM4, using the Nadam optimizer, expe-
rienced a considerable drop, recording a decreased landing score of 0.88.

Shifting our focus to the Aedes aegypti landing, the pinnacle was achieved at an outstand-
ing 0.99 with EM1 using the Nadam optimizer. Yet, the journey for EM3 was challenging, as it
struggled to gain only a 0.93 success rate, irrespective of whether it was the Adam or Nadam
optimizer.
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Fig 19. Sample outputs of EM2.The blue text color indicates that the model could accurately predict the class, whereas the red text color means a
wrong prediction. (The images are reproduced with permission by the original images’ owners [16]).

https://doi.org/10.1371/journal.pone.0322171.g019

Aedes aegypti smashed, on the other hand, exhibited an impressive 0.95 score with EM2 in
both Nadam and Adam optimizers. In contrast, EM1 lagged at 0.91, particularly in the Nadam
optimizer.

The saga continues with Aedes albopictus smashed, showcasing remarkable performance at
0.99 with EM2 and EM4 in Adam, as well as EM1 and EM2 in Nadam optimizers. However,
a drop in performance was marked with EM3 and EM4 in the Nadam optimizer, alongside
EM1 in Adam, showing comparatively lower scores at 0.97.

Culex quinquefasciatus landing emerged as a strong performer, especially with EM2, earn-
ing a commendable 0.98 in both the Nadam and Adam optimizers. Yet, EM4 with the Adam
optimizer experienced a fall, dropping to 0.94.

Finally, the class Culex quinquefasciatus smashed reached its peak at 0.98 with EM1, EM2,
and EM4 in Adam, as well as EM2 and EM3 with the Nadam optimizer. However, EM1 with
the Nadam optimizer demonstrated a relatively lower value of 0.96.
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After a thorough examination of the mosquito classification models, EM2 has proven to
perform exceptionally well in a variety of scenarios and classes. This ensemble model con-
sistently attained outstanding peaks of 0.99 in Aedes aegypti landing, 0.95 in Aedes aegypti
smashed, and 0.99 in Aedes albopictus smashed.

Results on the second dataset (“Vector Mosquito”)
Wementioned earlier that for the purpose of classifying mosquito species, we employed four
ensemble models. Notably, in our prior evaluation of the “Mosquito on Human Skin” dataset,
Ensemble Model 2 (EM2) proved to be an outstanding performer. Encouraged by its promis-
ing performance, we also applied it to the “Vector Mosquito” dataset by Park et al. [7] (https:
//github.com/jypark1994/MosquitoDL). The dataset contains 3,600 images and 8 classes,
but the authors grouped three mosquito species into a single non-vector class since they are
considered as less potential vectors transmitting infectious diseases.

In this sub-section, we explore the experimental results of EM2 on Park et al.’s dataset
(hereby named the “second dataset”) for vector Mosquito classification, aiming to understand
how well it performs for this particular dataset. Following the general experimental setup of
Park et al. [7], the dataset is split into 80% (2,880 images) for training and 20% (720 images)
for validation (a.k.a. testing).

Table 10 represents the performance of vector mosquito classification of EM2 on this sec-
ond dataset.

The performance metrics of EM2 on the second dataset demonstrated very good results
across various evaluation parameters. Precision, recall, and F1-score were all significantly
high at 98%, showing the model’s ability to classify vector mosquitoes accurately. The preci-
sion metric indicated the proportion of accurately predicted positive instances out of the total
predicted positives, highlighting the model’s low false-positive rate. Similarly, the high recall
underscored the model’s ability to capture a large portion of actual positives, strengthening its
effectiveness in identifying vector mosquito classification. The F1-score, which balanced pre-
cision and recall, further emphasized the robust performance of EM2 on the Vector mosquito
data.

The accuracy of 98.32% exhibited the overall correctness of the model’s predictions, show-
casing its proficiency in classifying vector mosquitoes classification accurately. This increased
accuracy rate is indicative of the model’s generalization ability on the Vector mosquito
dataset, suggesting its adaptability to various instances within the data.

Kappa and MCC both stand at an exceptional 0.9798. These metrics evaluated the agree-
ment between predicted and actual classifications, with higher values reflecting substantial
concordance. EM2’s Kappa and MCC values indicated its reliability in consistently making
accurate predictions on the Vector mosquito classification.

Table 10. Performance metrics for vector mosquito classification of on the second dataset.
Evaluation metric Value
Precision 98%
Recall 98%
F1-score 98%
Accuracy 98.32%
Kappa 0.9798
MCC 0.9798

https://doi.org/10.1371/journal.pone.0322171.t010
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Fig 20. ROC curves for vector mosquito classification on the second dataset.

https://doi.org/10.1371/journal.pone.0322171.g020

In our analysis of vector mosquito data, EM2 performed outstandingly across various
classes in terms of AUC value, which is demonstrated in Fig 20. ROC curves are generally
operated to visually represent the relationship between sensitivity and particularity for dif-
ferent cut-off points in experimental combinations. We also calculated the AUC value for all
classes. The scores provided a sophisticated insight into its classification ability. The model
performed for Aedes albopictus (0.9900), Aedes vexans (0.9757), Anopheles sinensis (0.9941),
Culex pipiens (0.9943), and Culex tritaeniorhynchus (0.9870). Notably, the model performed
at a perfect value of 1.0000 for non-vectors.

EM2 demonstrated robust learning capabilities, as illustrated by its superior performance
when classifying vector mosquitoes.

After plotting the ROC curves and calculating the AUC values for particular mosquito
classes, we proceeded to illustrate the precision and recall curves for different mosquito
classes, including Aedes albopictus, Aedes vexans, Anopheles sinensis, Culex pipiens, Culex
tritaeniorhynchus, and Non-vectors which have been represented in Fig 21. This visualization
presented a brief overview of the classification model’s performance, showing the trade-off
between precision and recall, also important metrics for evaluating the effectiveness of clas-
sification models and play a vital role in acquiring accurate identification of a specific class
(recall) and minimizing the occurrence of false positives (precision).

Aedes albopictus showed an incredible precision of 1.00, indicating that this species is
nearly always correct when predicted. However, the recall of 0.98 indicated that the model
may miss a small proportion of instances.

Aedes vexans, with a precision of 0.98 and a recall of 0.95, demonstrated a high precision
but comparatively lower recall. It may be suggested that while the model is adept at perfectly
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Fig 21. Precision-recall curves for vector mosquito classification on the second dataset.

https://doi.org/10.1371/journal.pone.0322171.g021

classifying Aedes vexans, it tends to miss some occurrences, potentially due to overlapping
features with other classes or inherent class ambiguity.

Anopheles sinensis showed excellent precision and recall values of 0.98 and 0.99, respec-
tively, demonstrating high accuracy in both accurately identifying instances and minimiz-
ing false positives. This suggested a strong performance in distinguishing Anopheles sinensis
from other classes.

Culex pipiens exhibited a slightly lower precision of 0.94, meaning a small fraction of
false positives. However, it gained a perfect recall of 1.00, showing that the model effectively
captures all instances of Culex pipiens.

Culex tritaeniorhynchus displayed an outstanding precision of 0.99 and a recall of 0.98,
showcasing a high degree of accuracy in classification. The lower recall may be due to specific
instances that share features with other mosquito classes.

Non-vectors demonstrated perfect precision and recall, both at 1.00, showing flawless per-
formance in correctly identifying instances and avoiding false positives. This is expected, as
non-vectors are more distinguishable from the other mosquito classes.

Variations in accuracy and recall performance across mosquito classes may result from
species-specific differences, overlapping traits, or the inherent challenges of class ambiguity.
Model accuracy and the ability to balance recall are important for practical applications, and
understanding the factors contributing to these variations is essential to refining the model
and improving overall performance.

The confusion matrix is shown in Fig 22. Here, the model error rate and misclassified sam-
ples are visualized. From the figure, Aedes albopictus was mainly classified correctly with
98 predictions, but misclassifications occurred 2% with 1 different from Anopheles sinen-
sis, and 1 was considered as Culex pipiens. On the other hand, Aedes vexans exhibited more
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Fig 22. Confusion matrix for vector mosquito classification on the second dataset.

https://doi.org/10.1371/journal.pone.0322171.g022

misclassification (4.51%), where 1 individual was misclassified as Anopheles sinensis, 4 as
Culex pipiens, and 1 as non-vectors. Anopheles sinensis recorded a higher score in classifi-
cation, having 118 correct and only 1 misclassification as Culex pipiens (0.84 percent error).
Culex pipiens and non-vectors were perfectly classified (0% misclassification), while Culex
tritaeniorhynchus had 120 true classifications but was misclassified 2 times as Aedes vexans
and 1 time as Culex pipiens, hence having a 2.43% misclassification rate. The results suggest
that despite the fact that the model did very well in general, Aedes vexans had the highest
misclassification rate, with the misclassification primarily against Culex pipiens.

Discussions
In our study, we first classify the mosquito species using a transfer learning model. The trans-
fer learning models’ performance was promising, but when we started to analyze deeply, we
planned to apply the ensemble model. So, we did not combine any specific models to make
the ensemble model. When making the ensemble model, we considered all possible com-
binations. We found that after applying the first ensemble model, the performance is sig-
nificantly increased. In our pre-trained model, the best-performing model was DenseNet-
121. The study showed that the ensemble model performed well when we did not take the
DenseNet-121 model.
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Our proposed Ensemble Model 2 (EM2) performed best, as we mentioned earlier. The
model outperformed all models from all criteria. Ensemble models perform better on clas-
sification tasks, especially when they combine pre-trained models. The ensemble attains
improved accuracy and broader dataset generalization by utilizing the complementary fea-
tures of multiple models. One common issue in the DL is overfitting, which is lessened by the
ensemble approach. By allowing each model in the ensemble to capture a distinct aspect of the
data, the likelihood of overly relying on the peculiarities of the training set is decreased.

DL architecture-based models, for example, are pre-trained and can learn complex fea-
ture representations from large, complicated datasets. Combining different representations
helped the ensemble identify subtle patterns that are important for differentiating between
mosquito species. Pre-trained models capture generic features that are helpful for a variety
of tasks because they are trained on large and diverse datasets. By utilizing transfer learning,
our model potentially improved performance on mosquito species classification by utilizing
knowledge acquired in unrelated domains. However, Ensemble models can be computation-
ally demanding during both training and inference, particularly if they include pre-trained DL
models. For environments with limited resources or real-time applications, this could present
difficulties. As we were using high-level GPU, we balanced the complexity of our models with
the available resources. Acknowledging limitations associated with smashed specimens, we
worked greatly on these samples. Importantly, the implications of our findings extend to dis-
ease surveillance, emphasizing the relevance of accurate species identification even when
dealing with compromised specimen conditions. Apart from examining Aedes aegypti, Aedes
albopictus, and Culex quinquefasciatus in their smashed state, we also expanded. We also
worked on another dataset that included vector mosquitoes. This dataset offered a chance to
investigate how well our classification techniques applied and generalized to a wide variety of
vector species.

EM2 performed well in our research with Adam optimizer, and we applied this approach
to this dataset. Our study intended to offer a comprehensive understanding of the ensemble
model’s capabilities and limitations in the context of broader mosquito vector classification
by addressing a wider range of vector species. We have compared our model with previous
state-of-the-art models that were applied to classify mosquito species and vector mosquitoes.

Strengths and limitations
Here, we will discuss the strengths and limitations of our proposed method.

Strengths. The two main strengths of our proposed method are as follows.
Reducing complexity: Although ensemble-based models are recognized for their increased
accuracy, real-time applicability is questioned due to their computational cost. Even for deli-
cate activities like vector mosquitoes, we prioritize gaining better classification performance,
and we are open to investigating efficient learning strategies to lower computational costs. To
achieve our desired results, the ensemble model that we have suggested makes use of multi-
ple customized Deep Convolutional Neural Networks (DCNNs) that are adapted to different
learning constraints. With 138 million parameters, the original pre-trained VGG-16 model
is known for its complicated architectural design; however, this complexity has been signifi-
cantly reduced by our fine-tuning procedure. This decrease in the number of parameters is a
common occurrence seen in all of the pre-trained models used as base learners in our study.

For a comprehensive analysis of the parameters for each base model, we have presented
Table 4. A typical deep ensemble model usually entails using many CNN designs and averag-
ing the predictions that result from them. Our work seeks to set itself apart, nevertheless, by
proving the effectiveness of ensembles based on transfer learning while also cutting down on
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computing complexity. We reduced the requirement for extensive training from the start by
leveraging the knowledge gained from pre-trained models by utilizing the power of transfer
learning.

We have found that our EM2 model (InceptionV3 + ResNet-50 + VGG-16) performed the
best. The large number of trainable parameters for DenseNet-121 (over 3 million, ref. Table 4)
is not in this best-performing combination. So, our model not only improves performance but
also significantly lowers its computing overhead after customizing the pre-trained models.

Prediction quality and robustness:The proposed method did not suffer from any “accu-
racy fallacy” or “accuracy paradox.” The term accuracy fallacy/paradox refers to a situation in
which a model achieves a high accuracy but is unable to predict correctly. This phenomenon
occurs when a model performs well overall but finds it difficult to classify instances correctly,
especially in datasets that are imbalanced or when misclassification costs differ between
classes. The accuracy paradox draws attention to the drawbacks of using accuracy as the only
performance metric. This is because accuracy may not accurately represent the efficacy of the
model, particularly in practical applications where precise predictions are crucial.

To acquire a more thorough grasp of the model’s overall prediction quality and robustness,
it is necessary to take into account alternative metrics such as AUC, F1-score, precision, recall,
MCC, and Kappa. The proposed model has also been evaluated on those measurement crite-
ria, and the analysis of the outcomes shows that the model can overcome the problem of accu-
racy fallacy. As stated before, the dataset is imbalanced, but our model does not exhibit much
bias against minority classes. The confusion matrices, precision-recall curves, and ROC curves
showed excellent class-wise performances of the proposed method graphically.

Limitations. On the other hand, our proposed method has its limitations.
Dependence on transfer learning: Because our model depends on pre-trained networks,
its initial knowledge may derive from datasets that are not entirely relevant to our particular
topic. By utilizing past information, transfer learning dramatically improves performance, yet
it also restricts the model’s capacity to learn features that are unique to a given domain. Pre-
dictive performance may suffer when our dataset differs significantly from the ones used to
pre-train the models, requiring further fine-tuning or even starting over.

Data imbalance challenges: Although our model has demonstrated encouraging outcomes
in managing data imbalance, it is not completely impervious to the difficulties presented by
severely skewed datasets. The suggested method’s performance may be further improved if the
data distribution is more evenly distributed.

Interpretability issues: Interpretability/explainability is still a major challenge even though
our model performs exceptionally well in terms of accuracy and other performance measures.
Ensemble models typically operate as “black boxes,” making it challenging to comprehend the
decision-making process, particularly for those based on deep learning architectures. This lack
of transparency may be an issue when implementing models in industries where interpretabil-
ity is critical, such as healthcare, where knowing the reasoning behind predictions is just as
vital as the predictions themselves.

Comparison with other state-of-the-art methods
Ong and Ahmed [16] compiled the first dataset used in our research. They used web-based
DCNN (namely, Google Teachable Machine 2.0 [29]) in their research and achieved 92.56%
accuracy. However, our EM2 model indicatively outperformed their model, obtaining 96%
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validation accuracy for classifying the mosquito species by using the ensemble learning strat-
egy.

Kumar et al. [17] used the same dataset created by Ong and Ahmed [16] and applied 6 dif-
ferent DL algorithms, namely, simple DCNN, EfficientNetB7, MobileNetV2, DenseNet121,
XceptionNet, and ResNet152V2. They observed that the simple DCNN with hyperparame-
ter tuning provides the best accuracy of 91%. Again, our proposed model, EM2, indicatively
achieves a higher accuracy.

For vector mosquito classification, Park et al. [7] employed transfer learning VGG-16
mode. In the dataset they collected, there were 3,600 samples. The authors achieved 97.19%
accuracy. They evaluated the model using just the accuracy measure, although precision,
recall, and F1-score are important evaluation metrics for an imbalanced dataset. Their result
showed that the model confused a maximum of 6.26% times to differentiate between classes.
Our analysis showed in Fig 22 that the proposed EM2 exhibits less confusion among the dif-
ferent classes. In particular, there is no confusion at all for the non-vector class. We achieved
98.32% accuracy on this dataset with our proposed model.

Table 11 gives indicative comparisons of our proposed model (EM2) with the other state-
of-the-art methods on the two datasets. The comparisons are also displayed graphically in
Figs 23 and 24.

Table 11. Comparisons of the accuracy results of our proposed model (EM2) with those of the other state-of-the-
art methods (as reported in their respective publications). (Caveat: here, the comparisons are merely indicative
because different experimental protocols were used.)
Method Train:validation split Accuracy Remark
Mosquito on Human Skin dataset [16]
Ong and Ahmed [16] 2100:900 (70:30) 92.56% Preprocessed data was used.
Kumar et al. [17] 2100:900 (70:30) 91% Preprocessed data was used.
Proposed model (EM2) 1350:150 (90:10) 96% Raw data was used.
Vector Mosquito dataset [7]
Park et al. [7] 2880:720 (80:20) 97.19% 5-fold cross-validation was

used.
Proposed model (EM2) 2880:720 (80:20) 98.32% Single split was used.

https://doi.org/10.1371/journal.pone.0322171.t011

Fig 23. Indicative performance comparison on “Mosquito on Human Skin” dataset.

https://doi.org/10.1371/journal.pone.0322171.g023
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Fig 24. Indicative performance comparison on “Vector Mosquito” dataset.

https://doi.org/10.1371/journal.pone.0322171.g024

As the proposed model is benchmarked against previous research works that used the
same datasets, it is observed that we achieved superior performances compared to them (as
summarized in Figs 23 and 24).

Our EM2 model is well-generalized with neither overfitting nor underfitting observed,
whereas many of the previous models faced overfitting or underfitting issues [15,20]. Further-
more, the proposed model reduces the computational complexity, although we are using an
ensemble strategy. We have found some of the models applied in previous research showed
some biased results for minority classes, whereas the proposed model is not biased as in [6].

In Goodwin et al. [6], the dataset contains 67 species of mosquitoes in total. However, they
chose 20 species to be deemed known for their study based on a number of factors, including
the number of specimens in the database, the species’ medical significance, and the distribu-
tion of known and unknown species in the class. Sixteen known species were present in each
of the five data folds that were used to train the model; the remaining species were regarded as
unknown for each fold. As a result, they took into account 20 classes and the unbalanced con-
ditions in the photos for their classification task. Ae. albopictus contains 692 samples, com-
pared to 343 for Cx. erraticus. Their research indicates that they have 71% accuracy for Cx.
erraticus and 99% accuracy for this class.

Additionally, many of the prior research works used datasets with a limited number of
classes (such as 2 or 3) [13–15,25]. Moreover, since their datasets contained only a very lim-
ited number of samples, some of the previous works had to rely on data augmentation tech-
niques to increase the sample size [25]. On the other hand, in our research, we used two
datasets with 6 classes in each of them with a sizeable number of samples. So, our proposed
methodology is advanced in several factors, such as data quantity, data diversity, robustness,
performance, and reducing computational complexity.

Conclusion
In the present work, we proposed a novel methodology, TransembleNet, for classifying
mosquito species. We used a combination of pre-trained CNNmodels with two distinct opti-
mizers and incorporated data augmentation techniques to enhance comprehensive gener-
alization. Our emphasis on vector mosquitoes, especially in the context of diseases such as
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malaria, dengue, and Zika, introduces a significant practical relevance to our work. The suc-
cess of our approach lies in exhibiting the efficacy of deep convolutional neural networks for
accurate classification of mosquito species, mainly when confronted with the challenges of
high inter-species similarity and intra-species variations.

On the “Mosquito on Human Skin” dataset, the proposed Ensemble Model 2 (EM2)
appeared as the top performer, acquiring an impressive 96% precision, recall, F1-score, and
accuracy, outperforming previous research benchmarks. On another dataset, namely, “Vector
Mosquito”, with a very high 98.32% accuracy, EM2 also outperformed the previous research
works.

Future works
In this research, we worked on 3 species of mosquitoes and their landing/smashed conditions.
Gathering a dataset that includes more species is a promising research direction. Expanding
the dataset could help in assessing the robustness of the model in more diverse real-world
scenarios. The dataset could also be organized based on the different regions. Malaria and
dengue are life-threatening for third-world countries. Thus, more extensive research is needed
for the responsible species to control and understand the disease patterns.

The proposed TransembleNet scheme, while specifically optimized for vector mosquito
classification, holds broader potential for various classification tasks across different domains.
When paired with transfer learning from pre-trained models, its ensemble-based method-
ology offers a versatile framework that can be used for various datasets where high accuracy
and robustness are necessary. TransembleNet, for instance, might be used in environmental
monitoring to find patterns in satellite or aerial images, or it could be used in medical image
analysis to discover minute alterations in features.

Furthermore, its incorporation into the current public health surveillance systems might
greatly improve the efficiency of tracking and responding to diseases. Especially in isolated
or resource-constrained places, authorities might monitor vector-borne diseases in real time
by integrating TransembleNet into mobile health applications or edge devices. The model is
a dynamic tool for changing settings because of its modular nature, which enables it to learn
from fresh data continuously.

In order to address the issue of interpretability/explainability, we have a plan to explore
Explainable Artificial Intelligence (XAI) techniques for images [54] and select the suitable
ones for our task. In the future, TransembleNet’s resilience and adaptability, when incorpo-
rated with its interpretability, will have a great potential to impact applications beyond vec-
tor mosquito classification, providing promising capabilities for a variety of classification
challenges and public health applications.

Lastly, the introduction of TransembleNet into present public health surveillance systems
can magnify the capacity for tracking diseases and responding to them. Specifically, inte-
gration with mobile health applications and edge computing [55] devices would enable real-
time surveillance of vector-borne diseases in remote or resource-poor areas. By deploying the
model on edge devices such as smartphones, drones, or IoT-enabled traps, mosquito classifi-
cation can be performed locally without relying on constant cloud connectivity. This would
allow rapid on-site analysis, reducing latency and enabling immediate decision-making for
vector control strategies. Additionally, edge computing can enhance privacy by processing
sensitive health data locally, reducing the risk of data breaches while ensuring continuous
monitoring and disease prevention.
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Code availability
All the models applied in the research can be found in the publicly accessible GitHub reposi-
tory: https://github.com/abdullahamruf/Mosquito. All are open source and publicly available.
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