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Abstract

Background: Dengue virus (DENV) is a significant public health threat in tropical and subtropical regions of the world. A
therapeutic antibody against the viral envelope (E) protein represents a promising immunotherapy for disease control.

Methodology/Principal Findings: We generated seventeen novel mouse monoclonal antibodies (mAbs) with high
reactivity against E protein of dengue virus type 2 (DENV-2). The mAbs were further dissected using recombinant E protein
domain I-II (E-DI-II) and III (E-DIII) of DENV-2. Using plaque reduction neutralization test (PRNT) and mouse protection assay
with lethal doses of DENV-2, we identified four serotype-specific mAbs that had high neutralizing activity against DENV-2
infection. Of the four, E-DIII targeting mAb DB32-6 was the strongest neutralizing mAb against diverse DENV-2 strains. Using
phage display and virus-like particles (VLPs) we found that residue K310 in the E-DIII A-strand was key to mAb DB32-6
binding E-DIII. We successfully converted DB32-6 to a humanized version that retained potency for the neutralization of
DENV-2 and did not enhance the viral infection. The DB32-6 showed therapeutic efficacy against mortality induced by
different strains of DENV-2 in two mouse models even in post-exposure trials.

Conclusions/Significance: We used novel epitope mapping strategies, by combining phage display with VLPs, to identify
the important A-strand epitopes with strong neutralizing activity. This study introduced potential therapeutic antibodies
that might be capable of providing broad protection against diverse DENV-2 infections without enhancing activity in
humans.
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Introduction

Dengue is the most important arthropod-borne viral disease in

humans and an increasing public health concern in tropical and

subtropical regions of the world. Approximately 50–100 million

cases of dengue fever (DF) and 500,000 cases of dengue

hemorrhagic fever (DHF) occur every year, and 2.5 billion people

are at risk of dengue infection globally [1,2]. Dengue infection may

lead to fever, headache and joint pain in milder cases but may also

lead to the more severe life-threatening DHF/dengue shock

syndrome (DSS) has plasma leakage, thrombocytopenia, and

hemorrhagic manifestations, possibly leading to shock [3,4].

Dengue virus (DENV) is positive-sense single-stranded RNA

virus of approximately 11 kb genome of the genus Flavivirus, a

family Flaviviridae. It has four genetically and antigenically related

viral serotypes: DENV-1, -2, -3 and -4. Flaviviruses encode a

single polyprotein processed by host and viral protease to produce

three structural proteins, including capsid (C) protein, precursor

membrane/membrane (prM/M) and envelope (E) protein, and

seven nonstructural proteins: NS1, NS2A, NS2B, NS3, NS4A,

NS4B and NS5 [5]. The E protein, a 53 kDa glycoprotein

important for attachment, entry, and viral envelope fusion, can

bind to cellular receptors and induce neutralizing antibodies [6,7].

The DENV consists of an icosahedral ectodomain, containing

180 copies of the E protein [8]. E protein monomer contains

three structural and functional domains [9,10]. E protein domain

I (E-DI) is a central b-barrel structure. E protein domain II (E-

DII) is organized into two long finger-like structures and contains

the flaviviruses conserved fusion loop. E protein domain III (E-

DIII) has an immunoglobulin-like fold and may mediate

interactions between the virus and the receptors on the host cell

[11]. Studies of the biological characteristics and epitope

specificities of mouse monoclonal antibodies (mAbs) have

elucidated the antigenic structure of flavivirus E proteins [12–

15]. Serotype-specific mAbs with neutralizing activity against

DENV-2 have been found to be located on the lateral ridge of E-

DIII and the subcomplex-specific mAbs recognized A-strand of

E-DIII [14,16,17]. Antibody-mediated neutralization has been

found to alter the arrangement of viral surface glycoproteins that

prevent cells from viral attachment [16]. Binding of an antibody
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to the viral surface can interfere with virus internalization or

membrane fusion [6].

Primary DENV infection is believed to provide lifelong

immunity against re-infection with the same serotype [18,19].

However, humoral immune responses to DENV infection are

complex [20–22], and may exacerbate the disease during

heterologous virus infection [18,19]. Antibody-dependent en-

hancement (ADE) in dengue pathogenesis results from the increase

in the efficiency of virus infection in the presence of non-

neutralizing or sub-neutralizing concentrations of anti-E or anti-

prM immunoglobulins [21,23]. The attachment of antibody-virus

complex to such Fcc receptor-bearing cells as monocytes and

macrophages can lead to an increased virus replication [18,24,25].

A better understanding of the neutralizing epitopes may

facilitate the generation of new antibody-based therapeutics

against DENV infection. In this study, we generated several

mAbs against DENV-2. We found that serotype-specific anti-E-

DIII mAbs played an important role in the neutralization of virus

infectivity. Studies of the neutralizing epitopes found the strongest

mAbs to be DB32-6 and DB25-2, both DENV-2 serotype-specific

antibodies. These two mAbs recognized the A-strand of E-DIII at

residues K310 and E311, respectively. Humanized DB32-6 mAb

efficiently neutralized DENV-2 infection in a therapeutic mouse

model and its variant version prevented enhancing activity.

Methods

Cells and viruses
BHK-21 cells were grown at 37uC with 5% CO2 in Minimal

Essential Medium (MEM, Gibco) supplemented with 10% heat-

inactivated fetal bovine serum (FBS, Gibco) and 100 U/ml

penicillin, 100 mg/ml streptomycin, 0.25 mg/ml amphotericin B

(Antibiotic-Antimycotic, Gibco). Aedes albopictus C6/36 cells were

grown at 28uC in 1:1 Mitsuhashi and Maramorosch (MM) insect

medium (Sigma-Aldrich)/Dulbecco’s modified Eagle’s medium

(DMEM, Gibco) containing 10% FBS and 100 U/ml penicillin,

100 mg/ml streptomycin, 0.25 mg/ml amphotericin B (Antibiotic-

Antimycotic, Gibco). The four DENVs (DENV-1 Hawaii, DENV-

2 16681, DENV-3 H87 and DENV-4 H241) were provided by Dr.

Duane J. Gubler from the Centers for Disease Control and

Prevention, Fort Collins, U.S.A. The various DENV-2 strains

including New Guinea-C (NGC), NGC-N (mouse-adapted

neurovirulent), PL046 and Malaysia 07587 were used in this

study [26,27]. These viruses were passaged in C6/36 cells.

Generation and purification of mAbs
Anti-DENV-2 mAbs were generated according to previously

described procedures [28,29]. Female 4- to 6-week-old BALB/c

mice were immunized with 107 plaque-forming units (pfu) of

DENV-2 (16681). The DENV-2 was purified from viral culture

supernatant using 4G2 (an anti-E protein mAb)-coupled protein

G-Sepharose 4 Fast Flow gel. After four inoculations with the same

concentration of antigens, the splenocytes from the immunized

mouse spleen were harvested and then fused with mouse myeloma

NS-1 cells. Fused cells were cultured in DMEM supplemented

with 15% FBS, HAT medium and hybridoma cloning factor

(Roche) in 96-well tissue culture plates. Two weeks after fusion,

culture supernatants were screened by ELISA. Selected clones

were subcloned by limiting dilutions. Hybridoma clones were

isotyped using a commercially isotyping kit (Southern Biotech) by

ELISA. Ascites fluids were produced in pristine-primed BALB/c

mice. mAbs were affinity-purified by standard protein G-

Sepharose 4 Fast Flow (GE Healthcare Bio-Sciences) according

to manufacturer’s directions.

Screening of mAbs against DENV1-4 by ELISA
C6/36 cells at 80% confluency in 96-well plates were infected

with DENV-1 to -4 to produce viral antigens. These cells were then

harvested 5–7 days after infection. One mg/ml mAbs was added to

the plates and incubated at room temperature (RT) for 1 h. After

washing with PBS, horseradish peroxidase (HRP)-conjugated anti-

mouse IgG (Jackson ImmunoResearch Laboratories) was incubated

at RT for 1 h. Finally, plates were incubated with peroxidase

substrate o-phenylenediamine dihydrochloride (OPD; Sigma-Al-

drich). Reaction was stopped with 3N HCl and optical density was

measured using a microplate reader set at 490 nm.

Western blot analysis
C6/36 cells were harvested after viral infection. Lysates or

expression proteins were collected. Cell extracts were mixed with

sample buffer (Bio-Rad Laboratories). Protein samples were

separated by SDS-PAGE and transferred to nitrocellulose

membrane (Hybond-C Super). Nonspecific antibody-binding sites

were blocked with 5% skimmed milk in PBS, and membranes

were incubated with primary antibody. Blot was then treated with

horseradish peroxidase-conjugated goat anti-mouse immunoglob-

ulin (Jackson ImmunoResearch Laboratories) and then developed

with enhanced chemiluminescence reagents (ECL, Thermo Fisher

Scientific).

Immunofluorescence assay (IFA)
BHK-21 cells at 80% confluency were infected at a multiplicity

of infection (MOI) of 0.5 with DENV-2 (16681). After 2 days

infection, the cells were fixed with 1:1 methanol/acetone for

10 min at 220uC. Cells were blocked using PBS supplemented

with 1% BSA for 1 h at RT. Primary anti-DENV antibodies or

control antibodies (normal mouse IgG, Jackson ImmunoResearch

Laboratories) were diluted (1:250) in block solution for 1 h at RT.

Secondary antibody, FITC-conjugated goat anti-mouse IgG

Author Summary

Dengue virus (DENV) infection remains a serious health
threat despite the availability of supportive care in modern
medicine. Monoclonal antibodies (mAbs) of DENV would
be powerful research tools for antiviral development,
diagnosis and pathological investigations. Here we de-
scribed generation and characterization of seventeen
mAbs with high reactivity for E protein of DENV. Four of
these mAbs showed high neutralizing activity against
DENV-2 infection in mice. The monoclonal antibody mAb
DB32-6 showed the strongest neutralizing activity against
diverse DENV-2 and protected DENV-2-infected mice
against mortality in therapeutic models. We identified
neutralizing epitopes of DENV located at residues K310
and E311 of viral envelope protein domain III (E-DIII)
through the combination of biological and molecular
strategies. Comparing the strong neutralizing activity of
mAbs targeting A-strand with mAbs targeting lateral ridge,
we found that epitopes located in A-strand induced
stronger neutralizing activity than those located on the
lateral ridge. DB32-6 humanized version was successfully
developed. Humanized DB32-6 variant retained neutraliz-
ing activity and prevented DENV infection. Understanding
the epitope-based antibody-mediated neutralization is
crucial to controlling dengue infection. Additionally, this
study also introduces a novel humanized mAb as a
candidate for therapy of dengue patients.
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(Jackson ImmunoResearch Laboratories) was diluted to 1:250 and

supplemented with DAPI (Invitrogen) diluted 1:2,000 for 1 h at

RT. The binding activity of antibodies to the DENV-2-infected or

transfected cells were observed and photographed through a

fluorescence microscope.

Cloning and expression of DENV recombinant proteins
The expression constructs of E-DI-II and E-DIII were cloned

into the pET21a vector (Merck). The E-DI-II, comprising amino

acids 1–295 of the E protein, was tagged to flag and hexahistidine

at the C terminus for affinity purification. The E-DIII, comprising

amino acids 295–400 of the E protein, was tagged to flag and

hexahistidine, too. The plasmids were expressed in Escherichia coli

strain BL21 (DE3). The recombinant proteins E-DI-II and E-DIII

were analyzed using 12% SDS-PAGE by Western blot analysis.

The DNA fragments corresponding to E-DI-II and E-DIII were

also cloned into a mammalian expression vector, pcDNA3.1

(Invitrogen). The expression constructs of DENV-2 C, prM, prM-

E, E, NS1, NS2A, NS2B, NS2B-3, NS3, NS4A, NS4B and NS5

were obtained from Dr. Y.-L. Lin [30]. Transient expression of

DENV-2 proteins in BHK-21 cells was transfected by PolyJet

(SignaGen Laboratories) according to manufacturer’s recommen-

dations and then to test specificity of mAbs.

In vitro neutralization assay
(i) For the plaque reduction neutralization test (PRNT), eight 3-

fold serial dilutions of mAbs (from 200 mg/ml to 0.1 mg/ml) were

mixed with an equal volume of 200 pfu of DENV-2 (16681) and

incubated at 4uC for 1 h. The final concentration of mAbs at the

PRNT ranged from 100 to 0.05 mg/ml. Antibody-virus mixtures

(100 ml) were added to BHK-21 cells at 80%–90% confluency in

12-well plates. After absorption of virus for 2 h, BHK-21 cells were

washed and 2 ml of 1% (w/v) carboxyl methyl cellulose (Sigma-

Aldrich) in MEM plus 2% (v/v) FBS was layered onto the infected

cells. After incubation at 37uC for 5 to 7 days, the viral plaque that

had formed on the cell monolayer was fixed by 1 ml 3.7%

formaldehyde (Sigma-Aldrich) at RT for 1 h. The cells were then

stained with 1% crystal violet. Percentage of plaque reduction was

calculated as: %Inhibition = 1002[(plaque number incubated with

mAb/plaque number without mAb)6100]. (ii) For flow cytometry,

serial dilutions of DB32-6 mAb were incubated with DENV-2

(16681, NGC, PL046 and Malaysia 07587) at MOI of 0.5 at 4uC
1 h before adding BHK-21 cells. After 2 h absorption, the

monolayers were washed and incubated with MEM (Gibco) plus

2% (v/v) FBS at 37uC for 2 days. The cells infected with DENV-2

were washed and fixed with 3.7% formaldehyde at 4uC for

10 min. They were then permeabilized in PBS supplemented with

1% FBS, 0.1% saponin (Sigma) at 4uC for 10 min. For staining,

cells were incubated with 4G2 at a concentration of 1 mg/ml at

4uC for 30 min. After two washes, R-Phycoerythrin (PE)-

conjugated AffiniPure F(ab9)2 fragment goat anti-mouse IgG

(H+L) (Jackson ImmunoResearch Laboratorie) diluted 1:250 was

then added at 4uC for 30 min followed by two washes and

analyzed by flow cytometry. % Infection = (the intensity of cells

incubated with mAb/without mAb)6100.

Mouse experiments
This study was carried out following strict guidelines from the

care and use manual of National Laboratory Animal Center. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of Academia Sinica. (Permit Number: MMi-

ZOOWH2009102). The mice were killed with 50% CO2

containing 50% O2. All efforts were made to minimize suffering.

(i) Breeder mice of the ICR strain were purchased from the

Laboratory Animal Center National Taiwan University College of

Medicine. Purified mAbs at doses of 1, 10 and 100 mg/ml were

incubated with 16104 pfu (25-fold LD50) of DENV-2 (16681) at

4uC for 30 mins. Two-day-old suckling mouse brain was inoculated

with 20 ml of the reaction mixture by intracranial (i.c.) injection.

Survival rate and signs of illness, including paralysis, were observed

daily for 21 days following challenge. In post-exposure therapeutic

experiments, mice were passively injected with 5 mg of mAb via i.c.

route after 1 day of infection. (ii) Stat1-deficient mice (Stat12/2) [31]

were bred in the specific-pathogen-free animal facility at the

Institute of Biomedical Sciences, Academia Sinica. Mice were

challenged intraperitoneally with 16105 pfu (300-fold LD50) of

DENV-2 (NGC-N) in 300 ml of PBS and simultaneously injected

intracranially (i.c.) with 30 ml of PBS. In prophylaxis experiments,

antibodies (100 mg per mouse, intraperitoneally) were administered

1 day before infection and administered on day 0, 1, 3, 5 and 7 after

infection. In postexposure therapeutic experiments, antibodies

(100 mg per mouse, intraperitoneally) were administered on day 1,

3, 5 and 7 after infection.

Phage display biopanning
The phage display biopanning procedures were performed

according to previous reports [28,32]. Briefly, an ELISA plate was

coated with mAbs at 100 mg/ml. Samples of 100 ml diluted mAb

were then added to wells and incubated at 4uC for 6 h. After

washing and blocking, the phage-displayed peptide library (New

England BioLabs, Inc.) was diluted to 461010 pfu of phage and

incubated for 50 mins at RT. After washing, bound phage was

eluted with 100 ml 0.2 M glycine/HCl (pH 2.2) and neutralized

with 15 ml 1 M Tris/HCl (pH 9.1). The eluted phage was

amplified in ER2738 for subsequent rounds of selection. The

phage was titrated onto LB medium plates containing IPTG and

X-Gal. The biopanning protocol for the second and third rounds

was identical to the first round except for the addition of

261011 pfu of amplified phage for biopanning.

Identification of immunopositive phage clones by ELISA
An ELISA plate was coated with 50 ml mAbs 50 mg/ml. After

washing and blocking, amplified phage diluted 5-fold was added to

coated plate and incubated at RT for 1 h. After washing, 1:5000

diluted HRP-conjugated anti-M13 antibody (GE Healthcare) was

added at RT for 1 h. OPD developed and was terminated with

HCl. Optical density was measured at 490 nm.

Identification of neutralizing epitopes by virus-like
particle (VLP) mutants

We used the recombinant expression plasmid pCBD2-2J-2-9-1

[33] to generate VLP mutants. Various VLP mutants were

generated by site-directed mutagenesis derived from pCBD2-2J-2-

9-1 as a template. PCR was performed using pfu ultra DNA

polymerase (MERCK) and all mutant constructs were confirmed

by sequencing. BHK-21 cells at 80%-90% confluency in 48-well

plates were transfected with plasmids of various VLPs. After two

days transfection, the cells were washed with PBS supplemented

with 1% FBS, fixed with 3.7% formaldehyde at 4uC for 10 min,

and then permeabilized in PBS supplemented with 1% FBS, 0.1%

saponin (Sigma-Aldrich) at 4uC for 10 min. For staining, cells were

incubated with mAbs at 4uC for 30 min, DB32-6, DB25-2, 3H5

and mix mAbs (4G2, DB2-3, DB13-19, DB21-6 and DB42-3) at a

concentration of 0.1, 1, 1 and 1 mg/ml, respectively. After being

washed twice, R-Phycoerythrin (PE)-conjugated AffiniPure F(ab9)2
fragment goat anti-mouse IgG (H+L) (Jackson ImmunoResearch

Laboratories) diluted to 1:250 was then added at 4uC for 30 min

Humanized mAb against Dengue Virus
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and analyzed by flow cytometry. Relative recognition was

performed according to previously described procedures and

calculated as [intensity of mutant VLP/intensity of WT VLP]

(recognized by a mAb)6[intensity of WT VLP/intensity of mutant

VLP] (recognized by mixed mAbs) [34].

Cloning and sequencing of neutralizing mAbs
Total RNA was extracted from hybridoma cells using the

TRIzol reagent (Invitrogen) and mRNA was isolated with the

NucleoTrap mRNA Mini Kit (Macherey-Nagel GmbH & Co.

KG.). Purified mRNA was reverse transcribed using oligo (dT) as a

primer in a ThermoScript RT-PCR system (Invitrogen). The

variable heavy- and light-chain domains (VH and VL) were

amplified from the cDNA product by PCR with a variety of

primer sets [35,36]. The PCR products were cloned using the TA

kit (Promega) and the VH and VL sequences were determined by

DNA sequencing. Software Vector NTI was used for sequence

analysis. From these sequences, the framework regions (FRs) and

complementarity-determining regions (CDRs) were analyzed by

comparing them with those found in the Kabat database and the

ImMunoGeneTics database [37].

Construction and expression of humanized DB32-6
Two human genes, GenBank accession DI084180 and

DI075739, were 94.7% and 92.2% identical to DB32-6 VH and

VL, respectively. Humanized DB32-6 VH consisted of the

modified FR1 to FR4 from the accession DI084180 gene, and

the CDR1 to CDR3 of the DB32-6 VH, respectively, while

humanized DB32-6 VL consisted of the modified FRs from the

accession DI075739 gene and the CDRs of the DB32-6 VL. Both

were synthesized (GENEART) and amplified by PCR using pfu

Turbo DNA polymerase (EMD Bioscience). The resulting VH was

cloned into modified expression vector pcDNA3.1 (Invitrogen)

with a signal peptide and human IgG1 constant region, while the

VL was cloned into modified expression vector pSecTag (Invitro-

gen). We generated a variant of humanized DB32-6 (hDB32-6

variant) in which leucine residues at positions 1.2 and 1.3 of CH2

domain were substituted with alanine residues [38]. The VH and

VL plasmids were cotransfected into CHO-K1 cells and selected

by G 418 and puromycin for 2–3 weeks. Transformed cells were

limit diluted in 96-well plates. After two weeks, stable clones

produced humanized antibodies in the McCoy’s 5A medium

(Sigma-Aldrich), as identified by ELISA. Humanized antibodies

were produced by CELLine AD 1000 (INTEGRA Biosciences)

according to manufacturer’s directions.

Surface plasmon resonance
Murine and humanized DB32-6 mAbs affinity analysis for E-

DIII of DENV-2 was performed by surface plasmon resonance

(BIAcore X, Biacore, Inc). Purified E-DIII (50 mg/ml) was

immobilized on a CM5 sensor chip (Biacore, Inc) and injected

at a flow rate of 10 ml/min. The mAbs were diluted to 4, 2, 1, 0.5,

0.25 and 0 nM in HBS-EP buffer (Biacore, Inc). mAbs were

injected at a flow rate of 30 ml/min for 3 min and then allowed to

dissociate over 1.5 min. Regeneration of the surface was achieved

with an injection of 10 mM glycine HCl/0.2 M NaCl (pH 3.0)

before each mAb injection. The data were analyzed by the

BIAevaluation software with a global fit 1:1 binding model.

Antibody-dependent enhancement (ADE) assay
Serial dilutions of mAbs were mixed with DENV-2 (16681) at

MOI of 1 at 4uC for 1 h. The 100 ml mixture were incubated with

56104 K562 cells [39] in 96-well plates at 37uC for 2 h. After

infection, the cells were washed and incubated with RPMI (Gibco)

plus 2% (v/v) FBS at 37uC for 2 days. The cells were washed with

PBS supplemented with 1% FBS, fixed with 3.7% formaldehyde,

and permeabilized in PBS supplemented with 1% FBS, 0.1%

saponin (Sigma) at 4uC for 10 min. For staining, cells were

incubated with DB42-3 at a concentration of 3 mg/ml at 4uC for

30 min. After two times washes, R-Phycoerythrin (PE)-conjugated

AffiniPure F(ab9)2 fragment goat anti-mouse IgG (H+L) (Jackson

ImmunoResearch Laboratories, West Grove, PA) diluted 1:250

was then added at 4uC for 30 min follow by two times wash steps

and analyzed by flow cytometry.

Statistical analysis
Survival rate was expressed using Kaplan-Meier survival curve,

and log rank test was used to determine the significant differences.

For body weight change experiments, paired t-test was used to

determine the significant differences, * P,0.05, ** P,0.01.

Results

Generation and characterization of neutralizing mAbs
against E protein of DENV-2

Seventeen mAbs with high reactivity against E protein of

DENV-2 were generated after immunization of mice with DENV-

2 strain 16681. We identified 17 mAbs belonging to the IgG

isotype that reacted with DENV-2-infected cells but not with

mock-infected cells using immunofluorescence assay (IFA) (Figure

S1) and ELISA (Figure 1A). 4G2 was a pan-flavivirus mAb that

could recognize the fusion loop of E-DI-II, and 3H5 (ATCC

HB46) was a DENV-2 serotype-specific mAb that could recognize

the lateral ridge of E-DIII [12,17,40]. Both 4G2 and 3H5 were

used as positive controls (Figure 1). The specificities of the mAbs

recognized as the four DENVs were further confirmed by ELISA

and Western blotting (Figures 1A–1B and Table 1). Based on our

Western blot analysis using a nonreducing condition, 14 of the

mAbs recognized E protein (53 kDa) (Figure 1B). Three mAbs

could not be identified by Western blotting. In order to identify the

target proteins of these mAbs, we prepared BHK-21 cells

transfected with plasmids expressing DENV-2 C, prM, prM-E,

E, NS1, NS2A, NS2B, NS2B-3, NS3, NS4A, NS4B and NS5

(Figure S2). Results indicated that three mAbs (DB21-6, DB22-4

and DB36-2) recognized E protein (Figure 1C). The identification

and characterization of the 17 mAbs are summarized in Table 1.

To characterize the antigenic structure of the DENV E protein

and to study the relationship between epitopes and their

neutralizing potency, we constructed and expressed the recombi-

nant E-DI-II and E-DIII from DENV-2 in E. coli and mammalian

expression systems. Western blot analysis and IFA showed that, of

the 17 mAbs recognizing E protein, 10 mAbs (DB2-3, DB9-1,

DB13-19, DB21-6, DB22-4, DB23-3, DB27-3, DB33-3, DB39-2

and DB42-3) targeted to E-DI-II and 2 mAbs (DB25-2 and DB32-

6) recognized E-DIII (Figures 1D–1E and Table 1). However, 5

mAbs could not be identified by these two assays.

We evaluated the ability of mAbs to inhibit DENV-2 infection

in BHK-21 cells using a plaque reduction neutralization test

(PRNT). Ten mAbs had neutralizing activity with 50% PRNT

(PRNT50) concentrations ranging from 0.14 mg/ml to 33 mg/ml

(Table 1). DB32-6 was found to be a DENV-2 serotype-specific

mAb against E-DIII (Figures 1A, 1B and 1E) and was the most

efficient at neutralizing DENV-2 infection at a PRNT50

concentration of 0.14 mg/ml (Figure 2A). In addition, it could

completely inhibit the infection at a lower concentration of

1.2 mg/ml (Figure 2A). The mAb DB25-2 was found to be a

DENV-2 serotype-specific mAb against E-DIII (Figures 1A, 1B

Humanized mAb against Dengue Virus
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and 1E) and to neutralize DENV-2 at a PRNT50 titer of 1.2 mg/

ml (Figure 2A). These findings indicate that serotype-specific mAb

DB32-6 against E-DIII was the most potent in neutralizing DENV

infection. Some serotype-specific mAbs, such as DB2-3 and DB23-

3 against E-DI-II and DB25-2 against E-DIII showed strong

neutralizing activity. Many complex reactive mAbs showed

moderate-to-poor neutralizing activity (Table 1).

mAbs prevent DENV-2-induced lethality in suckling mice
and Stat12/2 mice

Two different mouse models were used to assess whether DB32-

6 could efficiently protect mice against DENV-2 challenge.

Protection assay of neutralizing mAbs was performed with ICR

strain 2-day-old suckling mice [41]. Mice were inoculated

intracerebrally with 20 ml of DENV-2-mAb mixture containing

16104 pfu (25-fold LD50) of DENV-2 with neutralizing mAbs at

concentrations of 1, 10 or 100 mg/ml. Generally, the non-

neutralizing antibody normal mouse IgG (NMIgG) treated group

showed paralysis, ruffling, and slowing of activity around 6 to 9

days. This was followed by severe sickness leading to anorexia,

asthenia and death within 9 to 17 days (Figures 2B and 2C). In

contrast, mAbs DB32-6 at a concentration of 10 mg/ml protected

93% of the mice from the lethal challenge of DENV-2 (Figure 2B).

mAbs 3H5, DB23-3, DB2-3 and DB25-2 had survival rates of

Figure 1. Characterization of mAbs against DENV. (A) C6/36 insect cells were infected by DENV-1, -2, -3 and -4 or uninfected (Mock). After
fixation and permeabilization, mAbs were incubated with cells and binding was assessed by cellular ELISA. A490, optical density at 490 nm. (B)
Identification of mAbs by Western blotting. C6/36 cells were infected with DENV-1 to -4 (D1, D2, D3 and D4) as viral antigens. Protein samples were
dissolved in native sample buffer and fractionated by 10% SDS-PAGE. mAbs recognized E protein (53 kDa) of DENV. (C and D) mAbs recognized
DENV-2 E protein and E-DI-II was determined by IFA, respectively. (E) Dissection of DENV-2 mAbs recognized E-DI-II or E-DIII by Western blot analysis.
The DENV-2 recombinant E-DI-II-flag (36 kDa) and E-DIII-flag (17 kDa) fusion proteins were expressed in Escherichia coli. Protein extract was dissolved
in denatured sample buffer and fractionated on 12% SDS-PAGE. 4G2, a cross-reactive mAb and 3H5, a DENV-2 serotype-specific mAb recognized D2-
E-DI-II and D2-E-DIII, respectively. They were used as positive controls.
doi:10.1371/journal.pntd.0001636.g001
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75%, 76%, 72% and 71%, respectively. DB42-3 and DB13-19

had survival rates of 46% and 28%, respectively (Figure 2B). The

neutralizing mAbs showed a significant delay of the onset of

paralysis and death relative to the NMIgG. To evaluate the

therapeutic potential of the highly protective mAb DB32-6, we

administered 100 mg/ml or 1 mg/ml to infected suckling mice.

The survival rates for DB32-6 at 100 mg/ml or 1 mg/ml were

100% and 89%, respectively (Figure 2C). In comparison, 3H5

showed 82% and 40% survival rates at 100 mg/ml or 1 mg/ml,

respectively.

Stat12/2 mice, which lack a transcription factor involved in

interferons (IFNs) signaling were sensitive to lethality induced by

DENV-2 infection [27,31]. To test the potential therapeutic effects

of the strongest neutralizing mAb DB32-6, we challenged Stat12/2

mice at a strict condition with 16105 pfu (300-fold LD50) of

DENV-2 (NGC-N). After 21 days observation, mice showed

ruffled fur, mild paralysis and lost approximate 20% of their initial

body weight at day 7 after infection (P,0.01), and then they all

died within 7–18 days of infection (Figures 2D and 2E). In the

prophylaxis experiments, antibodies (100 mg per mouse, intraper-

itoneally) were administered 1 day before infection and at day 0, 1,

3, 5 and 7 after infection. The DB32-6 prophylactically treated

group showed 100% protection (Figure 2D left). Even in the

postexposure therapeutic experiments, the DB32-6 treated mice

had a survival rate of 50% (Figure 2E left). The mAb DB32-6 had

excellent neutralizing activity against different DENV-2 strains

(16681 and NGC-N) in two mouse models.

To further evaluate whether the strongest mAb DB32-6 could

broadly neutralize the diverse DENV-2 strains, we infected BHK-

21 cells with four different DENV-2 Southeast Asian genotype

strains, 16681, NGC, PL046 and Malaysia 07587. Remarkably,

mAb DB32-6 exhibited effective neutralization against various

DENV-2 strains (Figure S3).

Identification of neutralizing epitopes
Epitopes recognized by neutralizing antibodies have been

identified in all three domains of the E protein [42–44]. To find

out more about the epitopes of these neutralizing antibodies, we

used phage display [29,45] to identify the neutralizing epitopes.

After three rounds of phage display biopanning, the phage titers

were increased to 85-fold (DB32-6) and 331-fold (DB25-2)

compared to the phage display biopanning results from the first

round (Figure 3A). Individual phage clones from the third round of

biopanning were randomly selected. ELISA was performed to

determine whether the mAbs could specifically recognize selected

phage clones. Of 20 selected phage clones, 17 and 18 clones had

significant enhancement of binding activity to DB32-6 and DB25-

2, respectively (Figure 3B). The selected phage clones PC32-6 and

PC25-14 were specific and dose dependently bound to DB32-6

and DB25-2, respectively. They did not react with control NMIgG

(Figure 3C).

The 17 immunopositive phage clones that were highly reactive

with DB32-6 were amplified and phage DNA was isolated for

DNA sequencing. All of the phage clones displayed 12 amino acid

(aa) residues (Figure 3D left). Phage-displayed peptide sequences

selected by DB32-6 had the consensus motifs of histidine (H)-lysine

(K)-glutamic acid (E)-tryptophan (W)/tyrosine (Y)-histidine (H)

(Figure 3D left). Similarly, 17 immunopositive phage clones

Table 1. Characterization of DENV-2 mAbs by IFA, ELISA, WB and PRNT50 (mg/ml).

mAbs
Isotype, Light
chain Specificity IFA ELISA WB

PRNT50 (mg/
ml)

D2 D1 D2 D3 D4 D1 D2 D3 D4 D2

DB2-3 IgG1, k E-DI-II + 2 + 2 2 2 + 2 2 1.2

DB3-4 IgG1, k E + 2 + 2 2 2 + 2 2 3.7

DB9-1 IgG1, k E-DI-II + 2 + 2 2 2 + 2 2 3.7

DB13-19 IgG1, k E-DI-II + + + + + + + + + 33

DB19-4 IgG2b, k E + 2 + 2 2 2 + 2 2 3.7

DB21-6 IgG1, k E-DI-II + + + + + 2 2 2 2 .33

DB22-4 IgG2a, k E-DI-II + 2 + 2 2 2 2 2 2 .33

DB23-3 IgG2a, k E-DI-II + 2 + 2 2 2 + 2 2 0.41

DB24-2 IgG2a, k E + 2 + 2 2 2 + 2 2 3.7

DB25-2 IgG1, k E-DIII + 2 + 2 2 2 + 2 2 1.2

DB27-3 IgG1, k E-DI-II + 2 + 2 2 2 + 2 2 .33

DB32-6 IgG2b, k E-DIII + 2 + 2 2 2 + 2 2 0.14

DB33-3 IgG1, k E-DI-II + + + + + + + + + .33

DB36-2 IgG1, k E + 2 + 2 2 2 2 2 2 n.d.

DB37-1 IgG1, k E + 2 + 2 + 2 + 2 + .33

DB39-2 IgG1, k E-DI-II + + + + + + + + + .33

DB42-3 IgG1, l E-DI-II + + + + + + + + + 3.7

3H5 IgG1 E-DIII + 2 + 2 2 2 + 2 2 0.41

4G2 IgG2a E-DI-II + + + + + + + + + 11

mAbs, monoclonal antibodies; IFA, immunofluorescence assay; ELISA, enzyme-linked immunosorbent assay; WB, Western blotting; PRNT, plaque reduction
neutralization test; D1, D2, D3, and D4, DENV-1 to -4; Ig, immunoglobulin; E, envelope protein; E-DI-II, envelope protein domain I-II; E-DIII, envelope protein domain III.
(+) positive result to DENV, A490.0.2; (2) negative result to DENV, A490,0.2; (n.d.) not determined.
doi:10.1371/journal.pntd.0001636.t001
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selected by DB32-6 using phage library displayed 7 amino acid

residues, which contained the consensus motif H-K-E-W/Y-H

(Figure 3D left). Interestingly, all phage-displayed peptides selected

by DB32-6 and DB25-2 contained lysine (K) and glutamic acid

(E), respectively (Figure 3D).

To further confirm the neutralizing epitopes, we developed

various E protein epitope-specific variants VLPs and screened loss-

of-binding VLP mutants for identification of critical recognition

residues. Using this strategy, we found that DB32-6 lost its VLP

binding activity when the residue K310 in the A-strand of E-DIII

was changed to alanine (K310A) or glutamine (K310Q) (Figure 4A

left). Similarly, DB25-2 lost its VLP binding activity when E311 was

changed to arginine (E311R) in the A-strand of E-DIII (Figure 4A

right). Both the critical recognition residues K310 and E311 were

located in the A-strand of E-DIII (Figures 4B and 4C). We found

that mAb 3H5 recognized residues K305, E383 and P384 (Figure

S4), as previously reported [17,20]. Notably, even the adjacent

residues (K310 and E311) induced antibodies with different levels of

neutralizing activity. By comparing the amino acid sequences of E

proteins from representing genotypes of DENV-2 (Table S1), we

found residues K310 and E311 in E-DIII of the different genotypes

(Southeast Asian, West African and American) (Figure S5). Our

data further showed epitopes in the A-strand of E-DIII were

important for inducing neutralizing antibodies.

Development of humanized DB32-6 mAbs
Murine mAbs have been shown to have limited clinical use

because of their short serum half-life, inability to trigger human

effector functions and the production of human anti-murine

antibodies (HAMA) response [46]. mAbs have been humanized by

grafting their CDRs onto the VH and VL FRs of human Ig

molecules [47]. DB32-6 was the most potent mAb against DENV-

2 and showed potential as a therapeutic antibody. To develop

humanized mAbs, we sequenced VH and VL segment of the

neutralizing mAbs from hybridoma cell lines. The CDRs of DB32-

6 were grafted onto human IgG1 backbone to create humanized

DB32-6 (hDB32-6) (Figure 5A). The hDB32-6 was expressed in

CHO-K1 cells and purified from culture supernatants. Both

hDB32-6 and mDB32-6 were able to against DENV-2 (Figure 5B).

The hDB32-6 maintained the specificity of murine DB32-6

(mDB32-6). Furthermore, we established stable clones of

hDB32-6. After selection, mAbs hDB32-6-30, hDB32-6-48 and

hDB32-6-51 were found to have highly binding activity

(Figure 5C). Comparing to these mAbs, we found hDB32-6-48

to have the highest production rate in cells. mAb hDB32-6-48 was

dose-dependent against DENV-2 and E-DIII (Figure 5D). The

affinity was analyzed by surface plasmon resonance. The mDB32-

6 and hDB32-6-48 bound to E-DIII of DENV-2 with a similar

affinity (0.12 nM and 0.18 nM, respectively) (Figure 5E). The

results revealed that hDB32-6 maintained the same binding

affinity to the E protein as mDB32-6.

mAb hDB32-6 protected mice from DENV-2-induced
mortality

We established a suckling mice model to determine the

protective activity of mDB32-6 and hDB32-6. To evaluate

Figure 2. Neutralizing activity of DENV-2 mAbs and DB32-6 show therapeutic efficacy in Stat12/2 mice. (A) Plaque reduction
neutralization test with purified mAbs (3H5, DB25-2 and DB32-6) against the DENV-2 (16681). The data for three independent experiments are shown.
(B and C) Neutralizing mAbs protected against DENV-2-induced lethality in suckling mice. (B) Ten mg/ml of neutralizing mAbs (DB2-3, DB13-19, DB23-
3, DB25-2, DB32-6, DB42-3 and 3H5) and NMIgG were incubated with 16104 pfu (25-fold LD50) of DENV-2 (16681) at 4uC for 30 min before injection.
Two-day-old suckling mice (ICR strain) were challenged intracranially (i.c.) with the mAb:DENV-2 mixture. Mice were observed daily for signs of illness
including paralysis for 21 days. The data for each group were an average of two independent experiments. (C) DB32-6, 3H5 and NMIgG at 1 or
100 mg/ml were incubated with 16104 pfu (25-fold LD50) of DENV-2 (16681) and challenged via an i.c. route. Mice were observed daily for 21 days. (D)
Stat1-deficient mice were challenged intraperitoneally (i.p.) with 16105 pfu (300-fold LD50) of DENV-2 (NGC-N). Antibodies (100 mg per mouse, i.p.)
were administered 1 day before infection and administered again on day 0, 1, 3, 5 and 7 after infection (D left). Body weight change of mice treated
with NMIgG or DB32-6 at various time-points after infection (D right). In the therapeutic experiments, antibodies (100 mg per mouse, i.p.) were
administered on day 1, 3, 5 and 7 after infection (E left). Body weight change of mice (E right). Paired t-test was used to determine significance in
body weight change, ** P,0.01. (B–E) Log rank test was used to determine significant differences in survival rate, and the mAbs with neutralizing
activity were compared to the control group treated with NMIgG, P,0.001.
doi:10.1371/journal.pntd.0001636.g002
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therapeutic effect of mAbs, we administered 5 mg of mAb at day

one after 16104 pfu (25-fold LD50) of DENV-2 (16681) infection.

Through 21 days of observation, groups treated with mDB32-6,

hDB32-6-48 and 3H5 mAbs were found to have survival rates of

96%, 94% and 56%, respectively (Figure 6). However, none of the

mice in control antibody normal human IgG (NHIgG)-treated

group survived (Figures 6). These results demonstrate that both

mDB32-6 and hDB32-6 have excellent neutralizing activity

against DENV-2.

mAb hDB32-6 variant eliminate ADE phenomenon
When developing the antibody-based therapy, ADE phenom-

enon is a major cause for concern in dengue pathogenesis because

it might enhance DENV infection. Modification of Fc structure in

an antibody can prevent Fcc receptors binding and lead to

eliminate ADE [38,39,48]. We generated a variant of humanized

DB32-6 (hDB32-6 variant) to prevent Fcc receptors binding while

maintaining DENV neutralizing capability without enhancing

infection (Figure 7). The hDB32-6 variant retained the same

neutralizing activity as unmodified mAb mDB32-6 at high

concentrations (100 mg/ml and 10 mg/ml) but was completely

devoid of enhancing activity at low concentrations (1 mg/ml and

0.1 mg/ml) (Figure 7). The hDB32-6 variant eliminated the ADE

phenomenon and holds great potential for being developed into

therapeutic antibodies for the prevention and treatment of DENV-

2 infection.

Discussion

mAbs of DENV have served as powerful research tools for

antiviral development and pathological investigations. Here, we

newly generated and characterized 17 mAbs with high reactivity

against E protein of DENV-2. Several mAbs had potent

neutralizing activity. The neutralizing epitopes were identified

using a combination of strategies, including phage display,

computational structure analysis [49], and high-throughput

epitope mapping of VLPs. From these results, the A-strand of E-

DIII was found to be important in neutralizing DENV-2 than the

Figure 3. Screening phage-displayed peptide library with neutralizing mAbs DB32-6 and DB25-2. (A) After 3 rounds of biopanning,
phage titers were increased to 85-fold (DB32-6) and 331-fold (DB25-2), respectively. (B) Immunopositive phage clones selected by DB32-6 and DB25-2
were identified by ELISA. (C) ELISA reactivity of selected phage clones with DB32-6 and DB25-2. NMIgG was used as a negative control. (D) Alignment
of phage-displayed peptide sequences selected by DB32-6 and DB25-2. Consensus motifs are indicated in boldface type. The consensus amino acids
of DB32-6 and DB25-2 epitopes are marked in gray.
doi:10.1371/journal.pntd.0001636.g003
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lateral ridge of E-DIII. mAb DB32-6 which had the strongest

neutralizing activity against various strains of DENV-2 was

humanized and modified to abrogate the ADE phenomenon.

The mAb DB32-6 was demonstrated to increase the survival rate

in two mouse models even after DENV-2 infection.

Based on previous epitope mapping results, several epitopes

have been shown to elicit strong neutralizing antibodies against

individual flaviviruses that situated in E-DIII [14,50]. Investigation

of neutralizing epitopes on the E proteins may provide the

framework for a detailed understanding of both specific mecha-

nisms of the viral infection as well as the identification of the

specific DENV domain that attaches to a cellular receptor. Phage

display is useful in the identification of B-cell epitopes, including

linear [32,51] and conformational epitopes [29,45]. However,

these epitopes need to further elucidation using other methods.

Combining different strategies provided a fast and reliable

evidence for identifying epitopes (Figures 3 and 4). To date, few

mAbs possess better neutralizing activity than 3H5, which has

been shown to bind to residues K305, E383 and P384 at the

lateral ridge of E-DIII [17,20]. DB32-6 had higher neutralizing

activity than 3H5. Neutralizing epitope of DB32-6 was mapped on

K310 residue in A-strand of E-DIII (Figure 4). Neutralizing

epitope of another mAb DB25-2 was mapped on E311 residue in

A-strand of E-DIII, too (Figure 4). These serotype-specific

neutralizing epitopes located in the A-strand of E-DIII induced

stronger neutralizing activity than those located on the lateral

ridge of E-DIII. We aligned different DENV-2 genotypes and

found that the K310 and E311 were frequently observed in

DENV-2 (Figure S5). The K310 may be important to DENV-2.

Thus by binding DB32-6 to K310, it lead to dramatic neutralized

DENV-2. To determine whether DB32-6 can neutralize diverse

genotypes of DENV-2 is a critical step in evaluating the potential

of therapeutic development in the future.

Previous studies have shown that the strongly neutralizing mAb,

subcomplex-specific 1A1D-2 and cross-reactive 9F12 recognized

residues at K305, K307 and K310 in A-strand [15,17]. Our mAb

DB32-6 is a serotype-specific neutralizing mAb that recognized

residue K310 but not residues K305 or K307. Although K310 is

considered as a subcomplex-specific epitope, DB32-6 is a serotype-

specific mAb. There may be other regions that affect the binding

of DB32-6 to DENV-2. We found that by mutating residue I312,

DB32-6’s binding activity was reduced by 50% (data not shown).

Residue I312 may be a minor epitope of DB32-6. Moreover,

1A1D-2 is a temperature dependent mAb due to its needs for

dynamic motion on the virion surface to neutralize virus [16].

Different from 1A1D-2, DB32-6 is temperature independent.

When DB32-6 was incubated with DENV at 4uC, it still exhibited

significant neutralizing activity (Figures 2 and 6). As expected,

when incubating the DENV and DB32-6 at 37uC, DB32-6

showed better efficacy than it did at 4uC (data not shown). The

residue K310 on the surface of DENV-2 may be accessible to

DB32-6 binding. Additionally, DB32-6 had high binding affinity

(0.12–0.18 nM) to DENV-2. Based on the above finding, the

residue K310 induce serotype-specific mAbs and is crucial in the

neutralization of virus infectivity.

Antibodies to E-DI-II tend to be more cross-reactive and less

potent in neutralization of dengue infection [39]. However, there

are fewer antibody concentrations capable of recognizing E-DIII

than there are that recognize E-DI-II in dengue patients [20,39].

Wahala et al. studied the human immune sera of DENV infection

and found the E-DIII binding antibodies to play a minor role in

DENV neutralization, similar to West Nile virus-infected human

[52,53]. The mAbs that bind to E-DIII expresses potent

neutralizing activity, but only a few of them exist in serum of

the patients infected with DENV or WNV. Combining the

information from both mice and human mAbs studies of DENV

Figure 4. Identification of neutralizing epitopes of mAbs against DENV-2. (A) Various DENV-2 virus-like particle (VLP) mutants were
expressed in BHK-21 cells. After fixation and permeabilization, the cells were incubated with DB32-6 and DB25-2. Binding activity was assessed by
flow cytometry. The fluorescence intensities were quantified to determine the relative recognition. Substitutions of K310 and E311 led to a significant
loss of binding activity of neutralizing mAbs DB32-6 and DB25-2, respectively. Data shown are one representative experiment out of three
independent experiments. (B) Location of neutralizing epitopes on DENV-2 E protein. Structure of DENV-2 E protein (1OAN, Protein Data Bank) is
shown as a ribbon diagram. E protein consisted of three domains designated DI (red), DII (yellow) and DIII (blue). The native E protein is a homodimer
on the surface of the virus. The serotype-specific neutralizing epitopes located in E-DIII were K310 (green) and E311 (purple). (C) Ribbon diagram of
neutralizing epitopes K310 (green) and E311 (purple) in A-strand (cyan) of E-DIII.
doi:10.1371/journal.pntd.0001636.g004
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infection is critical to understanding the complex mechanism

behind the humoral immunity following natural DENV infection.

According to one previous study, the immunoglobulin populations

recognizing residues K310, E311 and P364 in dengue fever

patients were much larger in IgM than in IgG [20]. The strong

neutralizing IgG made up a small proportion of the antibody in

dengue patients. de Alwis et al. has conducted an in-depth analysis

of the human mAbs derived from memory B-cells of patients

infected with primary DENV infections [54]. After the epitope

mapping of anti-DENV-2 human mAbs, the strong neutralizing

mAb 10.16 was mapped to K305, K310 and E311 in the A-strand.

Together, the finding above suggest that the highly protective

epitopes K310 and E311 in mouse play a role in humans as well.

We also identified several E-DI-II specific mAbs with high to no

neutralizing activity. Serotype-specific mAbs (DB2-3 and DB23-3)

with potent neutralizing activity were found to recognize E-DI-II

of DENV-2 (Figure 2 and Table 1). Some studies have identified

highly neutralizing and protective antibodies against JEV and

Figure 5. Construction and characterization of humanized DB32-6 mAb. (A) Amino acid sequences of humanized DB32-6 (hDB32-6). FR,
framework region; CDR, complementarity determining region. Red residues represent the different amino acids from murine DB32-6 (mDB32-6). (B)
mDB32-6 and hDB32-6 mAbs recognized DENV-2-infected BHK-21 cells by IFA. Cells were counterstained with DAPI (blue) and observed at 4006
magnification. (C) Binding activity of hDB32-6 mAbs. Three stable clones of hDB32-6 (hDB32-6-30, hDB32-6-48 and hDB32-6-51) recognized DENV-2-
infected C6/36 cells and recombinant E-DIII of DENV-2 by ELISA. (D) Various concentrations of mDB32-6 and hDB32-6-48 mAbs were reactive to
DENV-2 and recombinant E-DIII of DENV-2 but not to mock control. NMIgG and NHIgG were used as negative controls. (E) Binding affinities of
mDB32-6 and hDB32-6-48 to E-DIII of DENV-2. mAbs affinity analysis was performed by surface plasmon resonance (SPR). Binding affinity was tested
at the mAb concentrations ranging 0 to 4 nM. Binding curves and kinetic parameters are shown.
doi:10.1371/journal.pntd.0001636.g005
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DENV located in E-DI [55,56] Currently, we are in the process of

identifying the neutralizing epitopes of DB2-3 and DB23-3. mAbs

that broadly cross-react with other flaviviruses are in E-DII near

the fusion loop, which is immunodominant antigenic [20,34,42].

Binding an antibody to DENV can change the rearrangement of

the E protein, which may neutralize or enhance viral infection

[16,57]. The high or no neutralizing activity of our mAbs can be

used help identify neutralizing or immunopathogenic epitopes in

the E protein. Studies that explore the mAbs mediated

neutralization mechanism and mAbs dependent enhancement

are currently underway.

The mouse models for dengue infection developed to date do not

represented the entirety of the pathogenesis of human dengue

infection [58]. Developing of mouse models to studying its

pathogenesis is important but challenging. We used two models,

suckling mice protection assay and Stat1-deficient (Stat12/2) mouse

model with different DENV-2 strains through intracerebral or

intraperitoneal inoculation to evaluate the neutralizing activity of

DB32-6 mAb (Figures 2 and 6). Our findings suggested that mAb

DB32-6 might effectively block virus entry. However, disease

manifestation of suckling mice is not relevant to dengue disease in

humans since DENV infections in humans rarely involve the nervous

system [58]. The Stat1-deficient mice are genetically mutated and not

immunocompetent, hence they are not representative of the wild

types’ immune response to DENV. However, their survival rates

might reflect the therapeutic potential of these mAbs. The results

from these mouse models showed that the therapeutic potential of this

newly generated mAb DB32-6 is worth further investigation.

In the absence of an effective dengue vaccine, neutralizing

antibodies can be used as a passive immunotherapeutic strategy

for treating dengue. Previous studies of humanized antibodies

against DENV were derived from two chimpanzee Fab fragments:

humanized IgG1 1A5 cross-neutralizing DENV-1 and DENV2

and humanized IgG1 5H2 specific against DENV-4 [42,48,56].

Our newly generated hDB32-6 was derived from murine mAb.

However, when developing antibody-based therapy, ADE phe-

nomenon is a major concern. Modification of Fc structure in an

antibody can prevent Fcc receptors binding and inhibit ADE

(Figure 7) [39,48].

Our studies show that the serotype-specific mAbs targeting the

A-strand of E-DIII could serve as a dramatic neutralization

determinant. Through testing in different mouse models, we have

successfully generated a mAb hDB32-6 variant with high

therapeutic potential against diverse DENV-2 strains without

inducing ADE. Such an antibody-based therapy may help control

severe dengue in the future.

Supporting Information

Figure S1 Specificity of mAbs against DENV. mAbs

recognized DENV-2 (16681) infected BHK-21 cells by immuno-

fluorescence assay. BHK-21 cells were infected at a multiplicity of

infection (MOI) of 0.5 with DENV-2. At 48 hours post-

inoculation, antigen was detected by staining with mAbs to

DENV-2, followed by staining with FITC conjugated goat anti-

mouse IgG antibodies (green). Cells were counterstained with

DAPI (blue) and examined under fluorescence microscopy (Zeiss).

Cells images were acquired at 4006magnification.

(DOC)

Figure S2 Expression of DENV-2 proteins in BHK-21
cells. BHK-21 cells were transfected with plasmids of DENV-2 C,

prM, prM-E, E, NS1, NS2A, NS2B, NS2B-3, NS3, NS4A, NS4B

and NS5. After 48 hours, antigen was detected by mAbs, followed

by staining with FITC conjugated goat anti-mouse IgG antibodies

(green). Cells were counterstained with DAPI (blue) and examined

under fluorescence microscopy (Zeiss). Cells images were acquired

at 4006magnification.

(DOC)

Figure S3 DB32-6-mediated neutralization of different
DENV-2 genotypes infection. Serial dilutions of DB32-6 mAb

were incubated with DENV-2 (16681, NGC, PL046 and Malaysia

07587) at MOI of 0.5 at 4uC for 1 hour before they were added to

BHK-21 cells. After 2 days infection, the percentages of infected

cells were assessed by flow cytometry.

(DOC)

Figure S4 Identification of mAb 3H5 neutralizing epi-
topes by VLP mutants. BHK-21 cells expressed various

DENV-2 VLP mutants. After fixation and permeabilization,

mAbs were incubated with the cells. Binding activity was assessed

Figure 6. mAbs, mDB32-6 and hDB32-6-48, protected against
DENV-2-induced mice mortality. Two-day-old suckling mice (ICR
strain) were injected intracranially (i.c.) with 16104 pfu of DENV-2
(16681). After 1 day of infection, 5 mg of mAb were passively injected
into mice through an i.c. route. Log rank test was used to determine
significant differences in survival rate, and the mAbs with neutralizing
activity were compared to the control group treated with NHIgG,
P,0.001.
doi:10.1371/journal.pntd.0001636.g006

Figure 7. Antibody-mediated enhancement of DENV-2 infec-
tion by mAbs. Serial dilutions of NMIgG, 4G2, mDB32-6 and hDB32-6
variant were incubated with DENV-2 (16681) at MOI of 1 at 4uC for 1 h
before they were added to K562 cells. After 2 days infection, cells were
fixed, permeabilized, and stained with mAb DB42-3, and the percentage
of cells infected with DENV-2 was detected by flow cytometry.
doi:10.1371/journal.pntd.0001636.g007
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by flow cytometry. The fluorescence intensities were quantified to

determine the relative recognition, calculated as [intensity of

mutant VLP/intensity of WT VLP] (recognized by a mAb)6[in-

tensity of WT VLP/intensity of mutant VLP] (recognized by

mixed mAbs). Data shown are one representative experiment out

of three independent experiments.

(DOC)

Figure S5 Sequence alignment of different DENV-2
genotypes and highlights of the neutralizing epitopes
in E-DIII. The sequence of E-DIII from DENV-2 (strain 16681,

Southeast Asian genotype) is aligned with other DENV-2 genotypes

including NGC (Southeast Asian), PL046 (Southeast Asian),

PM33974 (West African) and IQT2913 (American). Black blocks

show residues of genotypic variation. The serotype-specific neutral-

izing epitopes located in E-DIII are K310 (green) and E311 (purple)

which are recognized by DB32-6 and DB25-2, respectively.

(DOC)

Table S1 The database, gene/protein and accession/ID
number were mentioned in the text.

(DOC)
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