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Abstract
Species often exhibit different levels of genetic structuring correlated to their environment.

However, understanding how environmental heterogeneity influences genetic variation is

difficult because the effects of gene flow, drift and selection are confounded. We investi-

gated the genetic variation and its ecological correlates in an endemic and critically endan-

gered stream breeding mountain newt, Neurergus kaiseri, within its entire range in

southwestern Iran. We identified two geographic regions based on phylogenetic relation-

ships using Bayesian inference and maximum likelihood of 779 bp mtDNA (D-loop) in 111

individuals from ten of twelve known breeding populations. This analysis revealed a clear

divergence between northern populations, located in more humid habitats at higher eleva-

tion, and southern populations, from drier habitats at lower elevations regions. From seven

haplotypes found in these populations none was shared between the two regions. Analysis

of molecular variance (AMOVA) of N. kaiseri indicates that 94.03% of sequence variation is

distributed among newt populations and 5.97% within them. Moreover, a high degree of

genetic subdivision, mainly attributable to the existence of significant variance among the

two regions is shown (θCT = 0.94, P = 0.002). The positive and significant correlation

between geographic and genetic distances (r = 0.61, P = 0.002) following controlling for

environmental distance suggests an important influence of geographic divergence of the

sites in shaping the genetic variation and may provide tools for a possible conservation

based prioritization policy for the endangered species.

Introduction
Distribution of genetic variation across animal and plant populations is under influence of the
environmental heterogeneity which has long been recognized as an important factor in the evo-
lution of fitness-related traits in the wild [1]. Such spatial structuring of intraspecific genetic
diversity can also occur under both historical and current evolutionary processes such as geo-
graphic distances between populations [2], physical barriers to gene flow [3], and habitat
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fragmentation [4]. In many populations, gene flow tends to decrease with increasing geo-
graphic distances, resulting in an increase in genetic differentiation among individuals. Spatial
genetic variation known as ‘isolation by distance’ [5] can be detected by analyzing the distribu-
tion of pair-wise estimates of genetic distances between individuals [6]. Such analysis can also
demonstrate associations between genetic variation and environmental variation known as
“isolation by environmental distance” [7]. Here, environmental characteristics (or ecological
processes) may influence gene flow either by disrupting dispersal or by influencing survival
(e.g. local adaptation) [8,9]. There are numerous studies that show spatial structures in genetic
composition that are associated with “isolation by distance” (e.g.[10,11]), “isolation by environ-
mental distance” (e.g.[12,13]) or “isolation by ecological processes” (e.g.[8,9,14]) for various
taxa under different circumstances.

Population divergence generated by geographical or environmental isolation as a conse-
quence of natural or anthropological variation are normally well documented in the form of
demonstrating association between genetic variation and geographic or environmental dis-
tances [1,2]. However, exploring the casual role of environmental or geographical factors in
producing genetic differentiation in an isolated population and assessing their importance rela-
tive to that of other factors is difficult [15] because the interactions among various factors can-
not always be detected by isolation-by-distance association [16]. Explicit evaluation of
environmental impact on the spatial distribution of genetic variation is now possible by
employing good molecular markers, geographic information system (GIS) data and spatial sta-
tistics [17,18,19]. Using this approach it is possible to assess how various evolutionary pro-
cesses such as gene flow and connectivity between populations, neutral and selective processes
and the extent of local adaptation are affected by specific landscape and environmental features
[20].

In recent years, combining genetic, geographic and ecological data have been used for vari-
ous conservation purposes including delimiting or defining population distinctiveness of vari-
ous types [21], mapping suitable habitat for endangered species [22], selecting re-introduction
sites [23], restoring native populations in their natural habitat [24], and designing conservation
and management plans [25]. However, ecological and spatial data concerning distribution and
ecological roles of endangered species are often sparse. N. kaiseri is a poorly known amphibian
that is restricted to the highlands of the Zagros Mountains in southwestern Iran. This moun-
tain newt is endemic to the first order streams at elevations ranging between 800 and 1500 m a.
s.l. [26]. N. kaiseri has been evaluated as a critically endangered species by International Union
for Conservation of Nature (IUCN) criteria [27]. This species has also been amended to the
Appendix I of the Convention to the International Trade to Endangered Species (CITES).

The main aims of this study were to (1) determine whether N. kaiseri populations exhibited
genetic differentiation using traditional population genetics techniques (D-loop sequence anal-
ysis), (2) examine on the ecological differences found between the regions associated with pop-
ulations that show genetic differentiations and (3) associate the pattern of genetic differences
with spatial differences to provide tools for a possible conservation-based prioritization policy
for the Kaiser’s mountain newt.

Materials and Methods

Ethics statement
The permit for collecting toe clips from live Kaiser’s mountain newts in 10 of 12 known breed-
ing streams was issued by Kermanshah Department of Environment. None of the breeding
streams are located in any of the four sanctuaries (National Park, Protected Regions, Natural
Monument andWildlife Refuge) under legal control of the Iranian Department of
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Environment. Meanwhile, these streams which are located at high elevation in remote parts of
Zagros Mountains are not owned by private sectors therefore access to these areas doesn't
require any permit. No approval was obtained for ethical conduct of the present study because
laboratory and field studies in Iran are not directed by law.

Study site and sampling
This study was conducted across the entire species’ natural distribution range in southern Zag-
ros Mountains in Iran encompassing a minimum convex polygon of 789 km2 [26]. The locali-
ties are breeding streams generally dispersed with nearest neighbor distances among the
known breeding localities average 11.84 km (range, 1.14–39.28 km). These streams are sepa-
rated from one another by steep and rocky terrain at elevations between 930−1395 meters with
vegetation cover of mature open oak woodland in the west and sparse scrubland or thin oak-
pistachio woodland in the central area and east, thus potentially isolating many of the popula-
tions from each other [26].

We collected 114 samples (included: 111 N. Kaiseri) from 10 out of 12 known breeding
streams throughout the range of N. kaiseri in Iran (Fig 1; Table 1). We captured adult newts
with dip nets in their breeding stream. Knowing that tissue will regenerate, we removed a small
section from the tail tip or clipping toe (i.e. second or third) and preserved in 70% ethanol. Scis-
sor blades were disinfected with ethanol and flame between clippings. The newts were kept in
small (30x30 cm) pools by putting up several stones at the sampling site for approximately two
hours to see if toe amputation caused any visible side effect such as bleeding, and then released.
We did not observe any apparent side effects following the amputations.

Samples were collected on six occasions: late March 2011, early May 2011, late May 2011,
mid-June 2011, late May 2012, and mid-June 2012. We determined the elevation and

Fig 1. Map of sampling localities ofN. kaiseri in the south-western Zagros Range, Iran for genetic
analyses. Site IDs correspond to IDs in Table 1. Note that northern region populations are denoted with open
circles and that southern region populations are denoted with closed circles. Numbers designate haplotypes
found within each population. The polygons illustrate administrative boundaries.

doi:10.1371/journal.pone.0149596.g001
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geographic coordinates of all sites using a Garmin GPS unit (GPSMAP 60CSx; Garmin Inter-
national, New York, USA). We used ArcGIS 9.3 (ESRI, Redlands, California, USA) and Google
Earth (Google, Inc., Mountain View, California, USA) to calculate the area of the convex poly-
gon encompassing the localities and to determine linear distances between localities and the
breeding streams where newts were observed.

DNA isolation and sequencing
We extracted total genomic DNA from each sample using Tissue Kits (GenNetBio™), following
the manufacturer’s instructions (Seoul, South Korea). For genetic analysis we used Polymerase
Chain Reaction (PCR) to amplify a 779 base-pair fragment of the mitochondrial (mtDNA) D-
loop region using primers L-Pro-ML 50-GGCACCCAARGCCAAAATTCT-30 and H-12S1-ML
50- CAAGGCCAGGACCAAACCTTTA-30 [28]. In the H-12S1-ML primer we used R nucleotide
instead of G just for a single base. Polymerase chain reactions (PCRs) were carried out in a
final volume of 25 μl containing optimized amounts of PCR water, 12.5 μl of Master Mix kit
(Sinaclon, Iran), 0.5 μl of each primer (10μM), and 2–5 ng of genomic DNA template. PCR
conditions were as follows: initial denaturation of 94°C for 4 min, 35 cycles of 95°C for 30 s,
49°C for 45 s and 72°C for 1 min; and a final extension 72°C for 7 min. Purification of PCR
products and sequencing were commercially performed by Macrogen (Korea). Sequencing was
performed with both primers mentioned above. The haplotype sequences obtained have been
deposited to GenBank (Accession numbers KP748175- KP748182).

Genetic Data analysis. The resulting sequences of the D-loop fragment were edited manu-
ally and automatically aligned using the BioEdit v. 5.0.9 program [29]. The identity of the con-
sensus sequences was assessed and confirmed using BLAST (http://www.ncbi.nlm.nih.gov/
BLAST/) and 779 bp were included for the final alignment. The D-loop region sequences from
N.microspilotus, N. strauchii and Triturus karelinii as closely related taxa were used as out-
groups. N.microspilotus has recently been considered synonymous with N. derjugini [30]. Indi-
vidual haplotypes were used to construct a Bayesian inference (BI) tree in MrBayes, version
3.1.2 [31] and Maximum likelihood (ML) with PHYML, version 3.0 [32]. The appropriate
model for BI and ML analysis was selected with jModelTest, version 0.1.1 [33] using Akaike
Information Criterion (AIC). The best fit model identified by AIC for phylogenetic reconstruc-
tion was TPM1uf+G.

In ML analysis a starting tree was obtained by BIONJ and nodal support was estimated
from 1500 bootstrap replicates. Bayesian Inference was performed for 5,000,000 generations.
After discarding 5000 sampled trees, a consensus tree with posterior probabilities was gener-
ated and visualized using the FigTree v1.3.1 [34]. In this method the same substitution model
was used as the ML analyses. In both analyses, the tree was rooted with outgroups. To comple-
ment the tree-based approaches we also implemented 95% statistical parsimony haplotype net-
work [35] using the program TCS implemented in NCPA version 1.1 [36].

Additionally, genetic diversity was estimated for all populations based on haplotype diver-
sity (h) and nucleotide diversity (π). Values for the numbers of polymorphic sites, parsimony
informative site, and the mean numbers of pairwise differences among sequences and number
of transitions and transversions were also calculated using the software DnaSP version 4.0 [37]
and Arlequin version 3.1 [38]. To investigate intraspecific divergence within N. kaiseri in dif-
ferent populations, genetic distances, net average distances and standard error estimates were
computed using Kimura 2-parameter [39] with 1,000 bootstrap replicates using MEGA ver. 4
software package [40]. Uncorrected pairwise Kimura 2-parameter distances for 7 haplotypes
that are recovered from our analyses were also calculated using the Kimura 2-parameter
model.
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To assess differences between northern and southern regions in nucleotide and haplotype
diversities we used Independent-Sample T-Test (2- tailed). Molecular variance was assessed
using separate analyses of molecular variance (AMOVA) with 10,000 permutations [41] at sev-
eral possible population groupings of N. kaiseri in Arlequin version 3.1 [38]. First the analysis
was performed considering only the population from northern region, then considering only
the populations from southern region to assess the hierarchical genetic structure in each region.
Second, the analysis was performed considering all populations and assigning them to the cor-
respondent regions to assess the degree of differentiation among regions. Finally, the analysis
was performed without considering regions, with all populations in one group. The different
structures were assessed according to the degree of differentiation among regions (θCT), among
populations within regions (θSC) and within populations (θST).

Environmental data
Climate data for current conditions were obtained from the WorldClim database (downloaded
from the WorldClim database; www.worldclim.org; [42], in the raster format at 30 arc-second
resolution (0.93 × 0.93 = 0.86 km2 at the equator). Initially, the correlations among all 21
WorldClim bioclimatic variables and topographic variables for all locations were calculated to
exclude the highly correlated ones (r>75), whilst keeping variables such as climatic averages
and extremes. Second, we chose 12 of the bioclimatic variables to describe the ecological char-
acteristics of the sampled stands. The 12 bioclimatic variables included averages, extremes and
seasonal variation in precipitation and temperature, and the topographic variable altitude. The
following 12 climatic variables were included in the final subset: annual mean temperature, iso-
thermality, maximum temperature of warmest month, mean temperature of wettest quarter,
mean temperature of driest quarter, mean temperature of warmest quarter, mean temperature
of coldest quarter, precipitation of wettest month, precipitation seasonality, precipitation of
wettest quarter, precipitation of coldest quarter and elevation (see Table 2).

Ecological comparisons between regions
Principal Components Analysis (PCA). We performed principal components analysis

(PCA) to further investigate ecological differentiation within N. kaiseri distribution range. We
used PCA to compare environmental data at occurrence points between regions using SPSS
statistical package (version 15, SPSS Inc., Chicago, IL, USA). The multivariate procedures pro-
vide an intuitive interpretation. We extracted environmental data at each occurrence point of
the 10 sampling populations and two remaining localities resulting in a total of seven

Table 2. Hierarchical analysis of molecular variance (AMOVA) amongmtDNA D-loop region sequences ofN. kaiseri in different geographical
groupings. Percentage of variation is provided for three hierarchical levels.

Structure Source of variation Variation (%) Fixation indices P-value

North region Among populations/Within region 55.67 θST = 0.56 < 0.001

Within populations 44.33 - -

South region Among populations/Within region 22.34 θST = 0.22 < 0.001

Within populations 77.65 - -

Two regions (North and South) Among regions 94.31 θCT = 0.94 0.002

Among populations/Within regions 2.69 θSC = 0.47 < 0.001

Within populations 3.00 θST = 0.97 < 0.001

The studied samples Among populations 94.03 θST = 0.94 < 0.001

Within populations 5.97 - -

doi:10.1371/journal.pone.0149596.t002
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occurrence points for the northern region and five points for the southern region, in ArcGIS.
The relative contribution of each environmental parameter to the formation of clusters was
then represented in a PCA distance biplot, and the magnitude and statistical significance of
each variable among the occurrence clouds in the PCA graph were assessed. We evaluated
environmental variable importance by correlating each variable with axis scores from the PCA
ordination.

Correlation between genetic, geographic and environmental distances. We tested the
isolation by distance among the studied samples by plotting the matrix of pairwise genetic dif-
ferentiation index (θST) against geographic distance (in km) between pairs of populations [43].
To assess the statistical significance of the correlation between genetic and geographic distances
across the entire range of the species, a Mantel test was performed. Euclidian distances between
the populations were computed to obtain a matrix of environmental distances among the pop-
ulations. Mantel tests were used to assess the extent to which the neutral genetic structure can
be described by the environmental heterogeneity. We computed and tested the correlations
between the matrix of pairwise genetic differentiation index (θST) and the matrix of environ-
mental distances variables. In addition, a three-way Mantel test was applied between the matrix
of pairwise genetic differentiation index (θST) and the matrix of environmental distances while
accounting for geographical distances among populations. The significance level was assessed
after 10,000 permutations as implemented in Arlequin version 3.1 [38].

Results

Genetic structure within and among populations and biogeographical
regions
We identified 7 unique haplotypes (Table 1 and Fig 2) from a total of 111 N. kaiseri individuals
based on 779 base pairs of the mitochondrial D-loop region. A total of 11 polymorphic sites
were recorded including 10 transitions, one transversion and 10 variable characters were

Fig 2. A majority-rule consensus tree of haplotypes of D-loop sequences forN. kaiseri samples plus
outgroups, constructed by Bayesian inference (BI).Maximum likelihood topologies were identical.
Numbers at the nodes refer to the bootstrap values in the Bayesian inference (above line) and Maximum
likelihood (below line) analysis. The haplotype names refer to the sampling locations depicted in Fig 1.

doi:10.1371/journal.pone.0149596.g002
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parsimony informative. Means nucleotide composition were A: 30.1%, T: 35.1%, C: 20.6% and
G: 14.2%. The dominant haplotype (H5) of N. kaiseri was different up to 8 nucleotide substitu-
tions with the rest of haplotypes. Haplotype diversity values (h) ranged from 0 in DMA, DAR
and CH, to 0.71 in TZ population (Table 1). Nucleotide diversity values (π) varied from 0 to
0.001, and show a close relationship among the haplotypes (Table 1). The average number of
nucleotide differences was 3.664 and the average number of nucleotide substitutions per site
was 0.9±0.738. The mean of pairwise distance between all haplotypes was 0.83%. The results of
the Independent Sample t-test (2-tailed) show that there wasn’t a significant difference in
nucleotide (t = 0.72, df = 8, P = 0.49) and haplotype (t = 0.71, df = 8, P = 0.49) diversities
between northern and southern regions. Pairwise uncorrected Kimura 2-parameter genetic dis-
tances between all populations (Table 3) in different regions ranged from 0–1.3% and for hap-
lotypes were 0.1–1.5%. The genetic distance between two clades of N. kaiseri is 1.00±0.4%.

Phylogenetic relationships are represented by ML and Bayesian trees of seven haplotypes of
N. kaiseri (Fig 2). The two methods of phylogenetic reconstruction gave similar tree topologies,
although the statistical support of some nodes depended on which optimization criterion was
used. The analyses produced highly concordant trees, each revealing that N. kaiseri forms a
monophyletic lineage with respect to the congeneric species (N.microspilotus and N. strauchii)
and Triturus karelinii. In the Bayesian tree (Fig 2), all haplotypes grouped into two main
groups (the southern: TZ, DMA and AB, and the northern: KER, DAR, CH, TAF, BOZ and
PIF).

The statistical parsimony haplotype network (Fig 3), based on 95% statistical parsimony,
suggested two haplotype subnetworks, which were in agreement with the topology described in
the Bayesian tree. Of the 7 different haplotypes in all populations, 3 are found in 91.89% of the
individuals. Of these, two haplotypes (5 and 3) are in the northern region and one (1) in the
southern region. Given the greatest value for outgroup weight [44] haplotype 3 (found only in
northern populations) was identified as the most likely ancestral haplotype. Haplotype 5 was
the most widespread, shared among six of the ten locations (all in northern region, sites KER,
DAR, CH, TAF, PIF and HAJ; Fig 1, Table 1), and occurred with the greatest frequency
(75.32%) in the northern region. Haplotype 1 was the most abundant haplotype (79.41%) in
the southern region and was found at all sites (AB, TZ and DMA). Interestingly, none of the
haplotypes are shared between northern and southern regions. Shared haplotypes only
occurred within regions (Fig 1) and we did not uncover any haplotypes shared between north-
ern and southern regions. The haplotype network (Fig 3) showed a pattern suggestive of little
or no gene flow between regions because northern and southern haplotypes were not
intermingled.

Table 3. K2P genetic distances values among 10 populations of Neurergus kaiseri.

No Population name 1 2 3 4 5 6 7 8 9

1 Abejdan

2 Talezang; 0.000

3 Dej Mohamad Alikhan 0.000 0.000

4 Daregol 0.013 0.013 0.013

5 Hajibarikab 0.012 0.013 0.012 0.000

6 Kerser 0.012 0.013 0.012 0.000 0.000

7 Choobeh 0.013 0.013 0.013 0.000 0.000 0.000

8 Pifeh 0.012 0.013 0.012 0.000 0.000 0.000 0.000

9 Bozorgab 0.011 0.011 0.011 0.001 0.001 0.001 0.001 0.001

10 Tafo 0.012 0.012 0.012 0.000 0.000 0.000 0.000 0.000 0.001

doi:10.1371/journal.pone.0149596.t003
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The AMOVA results showed significantly genetic differences attributed to all hierarchical
levels tested and in the three population groupings considered (within regions analyzed sepa-
rately, among two regions “North and South” and among the populations without considering
regions; Table 2). Results suggest that most genetic variation was significantly explained by dif-
ferences among regions (94.31% genetic variation, θCT = 0.94, P< 0.01) and genetic difference
was detected among populations within regions (2.69% genetic variation, θSC = 0.47254,
P< 0.001; Table 2).

Ecological comparisons between regions
The first two principal components (PC1 and PC2) explained 86.66% and 5.31%, respectively,
of the total variation and clearly separated the northern and southern localities along tempera-
ture and precipitation gradients and revealed a northern and a southern group (Table 4, Fig 4).
The relative contributions of the different climatic variables to PC1 and PC2 are illustrated in
the PCA distance biplot (Fig 4). Mean temperature of driest quarter, mean temperature of
warmest quarter, mean temperature of wettest quarter, and mean temperature of coldest quar-
ter with PC1 and precipitation seasonality with PC2 were highly positively correlated
(Table 4). The 12 occurrence sites were divided into two clearly separated environmental
spaces in the Cartesian coordinates formed by the first two principal components. The results
show that northern populations occupy habitats that are cooler with lower winter temperatures
and higher summer rainfall. In contrast, southern populations are characterised by warmer
habitats with higher winter temperatures and wetter winters.

Association between genetic and environmental variation. The analyzed populations
revealed significant levels of isolation by distance (r = 0.61, P = 0.002; Fig 5A) and lower

Fig 3. Statistical parsimony network of sevenN. kaiseri haplotypes, obtained from 111 individuals.
Red circles represent sampled haplotypes from the northern region and blue circles represent sampled
haplotypes from the southern region. The letters codes of the populations are indicated in italic. The size of
each circle is proportional to the relative frequency of that haplotype among all samples. Small circles indicate
inferred haplotypes that are extinct or were not detected in analyses.

doi:10.1371/journal.pone.0149596.g003
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Fig 4. Plot of PCA based on 13 environmental variables describing 12Neurergus kaiseri localities.
The populations in the northern (dark circles) and southern (dark squares) regions were separated along the
PC1 and PC2. The first two axes explain 86.66% and 5.31% of variation among regions. See Table 2 for
environmental variable codes.

doi:10.1371/journal.pone.0149596.g004

Table 4. Pearson correlation coefficients between 13 environmental variables and principal compo-
nent axes.

Environmental variables Principal component

PC1 PC2 PC3

BIO 1 Annual Mean Temperature 0.935*** 0.199** 0.186**

BIO 3 Isothermality (P2/P7)*(100) -0.835** -0.230** 0.003**

BIO 5 Max Temperature of Warmest Month 0.966*** -0.159*** -0.170***

BIO 8 Mean Temperature of Wettest Quarter 0.973*** -0.167*** -0.085***

BIO 9 Mean Temperature of Driest Quarter 0.986*** -0.063*** -0.131***

BIO 10 Mean Temperature of Warmest Quarter 0.985*** -0.038*** -0.117***

BIO 11 Mean Temperature of Coldest Quarter 0.971*** -0.087*** -0.156***

BIO 13 Precipitation of Wettest Month 0.773** -0.369** 0.511**

BIO 15 Precipitation of Seasonality (Coefficient of Variation) 0.843** 0.505* 0.034*

BIO 16 Precipitation of Wettest Quarter 0.964*** 0.128*** 0.119***

BIO 19 Precipitation of Coldest Quarter 0.963*** 0.098*** 0.099***

Alt Elevation -0.948*** 0.247*** 0.172***

Eigenvalue 10.40 0.637 0.441

% of variance 86.66 5.31 3.68

*** significance at the 0.1% nominal level,

** significance at the 1% nominal level,

* significance at the 5% nominal level

doi:10.1371/journal.pone.0149596.t004
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correlation between genetic divergence and environmental distance (r = 0.49, P = 0.023; Fig
5B). The correlation between genetic and geographical distances remained significant (r = 0.61,
P = 0.002) even after accounting for the effect of environmental distance in a three-way Mantel
test. On the other hand, the removal of the effect of geographical distance in the partial Mantel
test resulted in a non-significant correlation between genetic and environmental distances (r =
-0.364, P = 0.992).

Discussion
As discussed by Steinfartz et al. [28], patterns of genetic variation can be effectively assessed by
sequencing the complete D-loop region in urodeles. Other authors have also used the mtDNA
D-loop for studying population genetic diversity [45] and conservation genetics [46] of differ-
ent species of newts and have shown remarkable levels of genetic structuring that has been
helpful to describe the relationships between newt populations and provides sufficient infor-
mation to resolve historical divergences. In the present study, variation in the D-loop region
has revealed notable levels of genetic structuring in N. kaiseri.

The distribution of the newt’s haplotypes demonstrated a high geographical structuring.
The geographical structure found in the haplotype distribution which may result from a degree
of isolation among populations within regions in north and south regions of the distribution
range of N. kaiseri is also supported by hierarchical analysis of genetic diversity (Table 2).
Steinfartz et al. [28], who have worked on phylogeny of salamandrid taxa including all species
of the genus Neurergus, have presented a molecular clock calibrated for the D-loop indicating
0.8% sequence divergence per 1 Myr. Based on this time scale separation of the two species of
the genus Neurergus, N.microspilotus in western and N. kaiseri in the southern Zagros

Fig 5. Plot of simple Mantel test showing the relationships between (A) geographic and genetic
distances and (B) environmental and genetic distances among 10 populations ofNeurergus kaiseri.

doi:10.1371/journal.pone.0149596.g005
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Mountains occurred approximately 4 MYA. Accordingly, the two clades observed in N. kaiseri
in the present study have been isolated about 1–1.25 million years.

The genetic analysis results in present study agree with the expectations of low genetic
diversity within populations and high genetic differentiation between populations (θST = 0.94)
due to limited mobility over land in restricted ranges reported for other species of stream
breeding amphibians [47]. Our combined analysis of genetic data and geographic distance (Fig
5A) suggests that in N. kaiseri with a very small distribution an important genetic variation
exist which may have been shaped by isolation by distance rather than by ‘‘isolation by envi-
ronmental distance”. There are reports of several species of salamanders with low mobility and
strong fidelity to their breeding habitats with a genetic structure shaped under the influence of
the Pleistocene glaciation [48,49]. Although the southern edge of the Zagros Mountains at 32
degrees latitude has been well away from direct influence of the glacial ice, indirect effects of
glaciations by lowered temperature, increase in aridity, expansion of alpine glaciation and
changes in hydroperiod of highland streams could have great impacts on distribution and
abundance of amphibians [50]. Following glacial maxima a subsequent period of better cli-
matic and hydrological conditions, leading to typical warm and humid interglacial periods,
could have promoted a secondary range expansion with migration of individuals from south to
the northern part of the species range [51]. Further genetic studies are needed to show that sep-
aration of the two clades in N. kaiseri could have been caused by isolation of populations in
two refugia or changes in dispersal pattern of N. kaiseri under the influence of the adverse cli-
matic conditions during the Pleistocene.

As the climatic factors used in the principal components analysis (Fig 4) are highly corre-
lated, separate climatic profiles of the distribution range of N. kaiseri including northern and
southern populations were compared (Fig 6). Fig 6 demonstrates the variation in different

Fig 6. Different environmental variables in the distribution range ofNeurergus kaiseri. A: Bio 1 (annual
mean temperature), B: Bio 2 (precipitation of seasonality (coefficient of variation), C: Bio 16 (Precipitation of
Wettest Quarter), D: Bio 19 (Precipitation of Coldest Quarter). Populations in the northern region represented
by open circles and in the southern region represented by red circles.

doi:10.1371/journal.pone.0149596.g006
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bioclimatic variables in the distribution range of N. kaiseri such as annual mean temperature
(A), precipitation of seasonality (B), precipitation of Wettest Quarter (C), and precipitation of
Coldest Quarter (D). As is shown in Fig 1 northern and southern populations are located fairly
isolated in different bioclimate maps.

The detected IBD pattern in this study explained the genetic divergence better than the
IBED pattern (37% vs. 24%, respectively). Mantel tests across 10 populations detected low
but significant correlations between genetic distance and geographic distance (r = 0.61,
P = 0.002). However, similar correlation between genetic distance and environment distance
was not significant (r = 0.49, P = 0.023). Such geographic isolation may partly be enforced by
rough topography in a very steep and dry terrain causing limitation in gene flow among
northern and southern population of N. kaiseri [26]. Limited gene flow in many amphibian
species with limited dispersal abilities, strong site fidelity and spatially disjunct breeding hab-
itat has been reported [43] including a small home range in their breeding streams for adult
Neurergus microspilotus a closely related species to N. kaiseri occurring in western Zagross
Range [52].

The Mantel tests showed positive, but statistically not significant, correlation between
genetic and environmental distances for all populations. Contrary to our expectations of
observing an effect of two disjunctive environments of more humid habitats at higher elevation
(northern region), and drier habitats at lower elevations (southern region) on the spatial
genetic structure of N. kaiseri, our study found no clear and significant correlation between
genetic and environmental variable. The absence of a clear genetic differentiation might suggest
that high gene flow among newts in breeding streams is still maintained despite habitat differ-
entiation. There are recent evidences that support such gene flow in amphibians because of
their ability to migrate over longer distances than previously presumed (e.g. [53,54,55]). It is
also possible that N. kaiseri with high longevity of up to 14 years [56] living in a very small dis-
tribution range (789km2) with a small nearest neighbor distance 11.84 km [26] avoid or delay
the effect of genetic drift.

According to the results obtained from present study an association exists between geo-
graphic distance and population genetic structure in the Endangered Kaiser’s Mountain Newt,
N. kaiseri. Effect of habitat heterogeneity on the genetic structure of N. kaiseri cannot be
ignored, but it is not strong enough to lead to a clear independent conclusion. Further studies
based on more appropriate genetic markers and ecological studies are needed to better under-
stand the underlying causes and mechanisms leading to the observed genetic structure. These
studies should be based on larger sample size and use of more, already developed microsatellite
loci [57] to test the effects of habitat heterogeneity on genetic structure. Such studies should
also include the role of habitat alteration on population genetics of species with different den-
sity, dispersal ability and longevity.

Conclusions
This study demonstrates the clear reciprocal monophyly obtained from the D-loop region with
the lack of shared haplotypes between southern and northern populations. Genetic structure
determined in the present study shows a clear historical phylogenetic pattern supported by
recent genetic exchange as evidenced by the distribution of haplotypes among populations
within and between the regions. Positive and significant correlation between geographic and
genetic distances following controlling for environmental distance suggests a possible impact
of geographic divergence shaping the genetic variation. Combination of genetic analysis and
environmental data demonstrates a clear ‘‘isolation by distance” pattern and has provided
broad conservation benefits as a combined approach that can provide valuable information
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regarding the likelihood studies for re-introduction programs or designating a protected area
for an endangered species.
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